
Adaptivity and Optimality: A Universal Algorithm for
Online Convex Optimization

Guanghui Wang, Shiyin Lu, Lijun Zhang
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

fwanggh,lusy,zhangljg@lamda.nju.edu.cn

Abstract

In this paper, we study adaptive online convex
optimization, and aim to design a universal al-
gorithm that achieves optimal regret bounds for
multiple common types of loss functions. Exist-
ing universal methods are limited in the sense
that they are optimal for only a subclass of loss
functions. To address this limitation, we pro-
pose a novel online algorithm, namely Maler,
which enjoys the optimal O(

p
T ), O(d log T )

and O(log T ) regret bounds for general con-
vex, exponentially concave, and strongly con-
vex functions respectively. The essential idea
is to run multiple types of learning algorithms
with different learning rates in parallel, and uti-
lize a meta-algorithm to track the best on the fly.
Empirical results demonstrate the effectiveness
of our method.

1 INTRODUCTION

Online convex optimization (OCO) is a well-established
paradigm for modeling sequential decision making
(Shalev-Shwartz et al., 2012). The protocol of OCO is
as follows: in each round t, firstly a learner chooses an
action xt from a convex set D � Rd, at the same time,
an adversary reveals a loss function ft : D 7! R, and
consequently the learner suffers a loss ft(xt). The goal is
to minimize regret, defined as the difference between the
cumulative loss of the learner and that of the best action
in hindsight (Hazan et al., 2016):

R(T ) =

T∑
t=1

ft(xt)�min
x∈D

T∑
t=1

ft(x). (1)

There exist plenty of algorithms for OCO, based on dif-
ferent assumptions on the loss functions. Without any
assumptions beyond convexity and Lipschitz continuity,

the classic online gradient descent (OGD) with step size
on the order of O(1/

p
t) (referred to as convex OGD)

guarantees an O(
p
T ) regret bound (Zinkevich, 2003),

where T is the time horizon. While it has been proved
minimax optimal for arbitrary convex functions (Aber-
nethy et al., 2008), tighter bounds are still achievable
when loss functions are known to fall into some easier
categories in advance. Specifically, for strongly convex
functions, OGD with step size proportional to O(1/t) (re-
ferred to as strongly convex OGD) achieves an O(log T )
regret bound (Hazan et al., 2007); for exponentially con-
cave functions, the state-of-the-art algorithm is online
Newton step (ONS) (Hazan et al., 2007), which enjoys an
O(d log T ) regret bound, where d is the dimensionality.

This divides OCO into subclasses, relying on users to
decide which algorithm to use for their specific settings.
Such requirements, not only are a burden to users, but also
hinder the applications to broad domains where the types
of loss functions are unknown and choosing the right algo-
rithm beforehand is impossible. These issues motivate the
innovation of adaptive algorithms, which aim to guarantee
optimal regret bounds for arbitrary convex functions, and
automatically exploit easier functions whenever possible.
The seminal work of Hazan et al. (2008) propose adaptive
online gradient descent (AOGD), which attains O(

p
T )

and O(log T ) regret bounds for convex and strongly con-
vex functions respectively. However, AOGD requires the
curvature information of ft as input in each round, and
fails to provide logarithmic regret bound for exponen-
tially concave functions. Another milestone is MetaGrad
(van Erven and Koolen, 2016), which only requires the
gradient information, and achieves O(

p
T log log T ) and

O(d log T ) regret bounds for convex and exponentially
concave functions respectively. Although it also implies
an O(d log T ) regret for strongly convex functions, there
still exists a large O(d) gap from the 
(log T ) lower
bound (Abernethy et al., 2008).

Along this line of research, it is therefore natural to ask
whether both adaptivity and optimality can be attained



simultaneously, or there is an inevitable price in regret to
be paid for adaptivity, which was also posed as an open
question by van Erven and Koolen (2016). In this paper,
we give an affirmative answer by developing a novel on-
line method, namely Maler, which achieves the optimal
regret bounds for all aforementioned three types of loss
functions. Inspired by MetaGrad, our method runs mul-
tiple expert algorithms in parallel, each with a different
learning rate, and combines them with a meta-algorithm
that learns the empirically best for the OCO problem
in hand. However, different from MetaGrad where ex-
perts are the same type of OCO algorithms (i.e., a variant
of ONS), experts in Maler consists of various types of
OCO algorithms (i.e., convex OGD, ONS and strongly
convex OGD). Essentially, the goal of MetaGrad is to
learn only the optimal learning rate. In contrast, Maler
searches for the best OCO algorithm and the optimal
learning rate simultaneously. Theoretical analysis shows
that, with O(log T ) experts, which is on the same order
as that of MetaGrad, Maler achieves O(

p
T ), O(d log T )

and O(log T ) regret bounds for convex, exponentially
concave and strongly convex functions respectively. Em-
pirical results on both synthetic and real-world datasets
demonstrate the advantages of our method.

Notation. Throughout the paper, we use lower case
bold face letters to denote vectors, lower case letters to
denote scalars, and upper case letters to denote matrices.
We use k � k to denote the `2-norm. For a positive definite
matrix H 2 Rd×d, the weighted `2-norm is denoted by
kxk2H = x>Hx. The H-weighted projection �H

D (x) of
x onto D is defined as �H

D (x) = argminy∈D ky � xk2H .
We denote the gradient of ft at xt as gt, and the best
action in hindsight as x∗ = max

x∈D

∑T
t=1 ft(x).

2 RELATED WORK

In the literature, there exist various of algorithms for OCO
targeting on a specific type of loss functions. For general
convex and strongly convex loss functions, the classic
OGD with step size on the order of O(1/

p
t) and O(1/t)

achieveO(
p
T ) andO(log T ) regret bounds, respectively

(Zinkevich, 2003; Hazan et al., 2007). For exponentially
concave functions, online Newton step (ONS) attains a re-
gret bound of O(d log T ) (Hazan et al., 2007). The above
bounds are known to be minimax optimal as matching
lower bounds have been established (Abernethy et al.,
2008).

To simultaneously deal with multiple types of loss func-
tions, Hazan et al. (2008) propose adaptive online gra-
dient descent (AOGD), which is later extended to prox-
imal settings by Do et al. (2009). Both algorithms can
achieve O(

p
T ) and O(log T ) regret bounds for convex

and strongly convex loss functions respectively. More-
over, they have shown superiority over non-adaptive meth-
ods in the experiments (Do et al., 2009). However, in each
round t these algorithms have to be fed with a parame-
ter which depends on the curvature information of ft(�)
at xt, and cannot achieve the logarithmic regret bound
for exponentially concave cases. To address these limita-
tions, van Erven and Koolen (2016) propose the multiple
eta gradient (MetaGrad), whose basic idea is to run a
bunch of variant of ONS algorithms with different learn-
ing rates simultaneously, and employ a meta-algorithm
to learn the best adaptively based on the empirical per-
formances. They show that the regret of MetaGrad for
arbitrary convex functions can be simultaneously bounded
by a worst-case bound of O(

p
T log log T ), and a data-

dependant bound of O(
√
V ‘T d log T + d log T ), where

V ‘T =
∑T
t=1((x∗ � xt)

>gt))
2. In particular, for strongly

convex and exponentially concave functions, the data-
dependant bound reduces to O(d log T ).

The above works as well as this paper focus on adapting
to different types of loss functions. A related but parallel
direction is adapting to structures in data, such as low-
rank and sparsity. This line of research includes Adagrad
(Duchi et al., 2011), RMSprop (Tieleman and Hinton,
2012), and Adam (Reddi et al., 2018), to name a few. The
main idea here is to utilize the gradients observed over
time to dynamically adjust the learning rate or the update
direction of gradient descent, and their regret bounds de-
pend on the cumulation of gradients. For general convex
functions, the bounds attain O(

p
T ) in the worst-case,

and become tighter when the gradients are sparse.

Another different direction considers adapting to chang-
ing environments, where some more stringent criteria are
established to measure the performance of algorithms,
such as dynamic regret (Zinkevich, 2003; Hall and Wil-
lett, 2013; Zhang et al., 2017, 2018a), which compares
the cumulative loss of the learner against any sequence of
comparators, and adaptive regret (Hazan and Seshadhri,
2007; Daniely et al., 2015; Jun et al., 2017; Wang et al.,
2018; Zhang et al., 2018b, 2019), which is defined as the
maximum regret over any contiguous time interval. In this
paper we mainly focus on the minimization of regret, and
it an interesting question to explore whether our method
can be extended to adaptive and dynamic regrets.

3 MALER

In this section, we first state assumptions made in this pa-
per, then provide our motivations, and finally present the
proposed algorithm as well as its theoretical guarantees.



3.1 ASSUMPTIONS AND DEFINITIONS

Following previous studies, we introduce some standard
assumptions (van Erven and Koolen, 2016) and definitions
(Boyd and Vandenberghe, 2004).

Assumption 1. The gradients of all loss functions are
bounded by G, i.e., 8t > 0, max

x∈D
krft(x)k � G.

Assumption 2. The diameter of the action set is bounded
by D, i.e., max

x1;x2∈D
kx1 � x2k � D.

Definition 1. A function f : D 7! R is convex if

f(x1) � f(x2) +rf(x2)>(x1 � x2),8x1,x2 2 D.
(2)

Definition 2. A function f : D 7! R is λ-strongly convex
if 8x1,x2 2 D,

f(x1) � f(x2) +rf(x2)>(x1 � x2) +
λ

2
kx1 � x2k2.

Definition 3. A function f : D 7! R is α-exponentially
concave (abbreviated to α-exp-concave) if exp(�αf(x))
is concave.

3.2 MOTIVATION

Our algorithm is inspired by MetaGrad. To help under-
standing, we first give a brief introduction to the intuition
behind this algorithm. Specifically, MetaGrad introduces
the following surrogate loss function, parameterized by
η 2 (0, 1

5DG ]:

`�t (x) = �η(xt � x)>gt + η2(x� xt)
>gtg

>
t (x� xt).

(3)
The first advantage of the above definition is that `�t is
1-exp-concave. Therefore, we can apply ONS on `�t and
obtain the following regret bound with respect to `�t :

T∑
t=1

`�t (xt)�min
x∈D

T∑
t=1

`�t (x) � O(d log T ). (4)

The second advantage is that the regret with respect to the
original loss function ft can be upper bounded in terms
of the regret with respect to the defined surrogate loss
function `�t :

R(T ) �
∑T
t=1 `

�
t (xt)�minx∈D

∑T
t=1 `

�
t (x)

η
+ ηV ‘T

(5)
where V ‘T =

∑T
t=1((xt � x∗)

>gt)
2. Both advantages

jointly (i.e., combining (4) and (5)) lead to a regret
bound of O((d log T )/η + ηV ‘T ). Therefore, had we
known the value of V ‘T in advance, we could set η as

minf�(
√
d log T/V ‘T ), 1

5DGg and obtain a regret bound

of order O(
√
dV ‘T log T + d log T ). However, this is im-

possible since V ‘T depends on the whole learning process.
To sidestep this obstacle, MetaGrad maintains multiple
ONS in parallel each of which targets minimizing the
regret with respect to the surrogate loss `�t with a different
η, and employs a meta-algorithm to track the ONS with
the best η. Theoretical analysis shows that MetaGrad

achieves the desired O(
√
dV ‘T log T + d log T ) bound.

While the O(
√
dV ‘T log T + d log T ) regret bound of

MetaGrad can reduce toO(d log T ) for exp-concave func-
tions, it can not recover the O(log T ) regret bound for
strongly convex functions. To address this limitation, we
design a new surrogate loss function:

s�t (x) = �η(xt � x)>gt + η2G2kxt � xk2 (6)

where η 2 (0, 1
5DG ]. The main advantage of s�t over `�t is

its strong convexity, which allows us to adopt a strongly
convex OGD that takes s�t as the objective loss function
and attains an O(log T ) regret with respect to s�t . On the
other hand, the “upper-bound” property in (5) is preserved
in the sense that the regret with respect to the original loss
ft can be upper bounded by:

R(T ) �
∑T
t=1 s

�
t (xt)�minx∈D

∑T
t=1 s

�
t (x)

η
+ ηV sT

where V sT =
∑T
t=1G

2kxt � x∗k2. Thus, the employed
strongly convex OGD enjoys a novel data-dependant
O((log T )/η + ηV sT ) regret with respect to ft, remov-
ing the undesirable factor of d. To optimize this bound to
O(
√
V sT log T + log T ), we follow the idea of MetaGrad

and run many instances of strongly convex OGD.

Finally, to obtain the optimal O(
p
T ) regret bound for

general covnex functions, we also introduce a linear sur-
rogate loss function

ct(x) = �ηc(xt � x)>gt + (ηcGD)
2 (7)

where ηc = 1
2DG

√
T

, which only depends on known quan-
tities. It can be proved that if we run a convex OGD with
ct(�) as the input, its regret with respect to the original
loss function ft(�) can be bounded O(

p
T ).

While the idea of incorporating new types of surrogate
loss functions to enhance the adaptivity is easy to com-
prehend, the specific definitions of the two proposed sur-
rogate loss functions in (6) and (7) are more involved.
In fact, the proposed functions are carefully designed
such that besides the aforementioned properties, they also
satisfy that

exp(�s�t (x)) � exp(�`�t (x)) � 1 + η(xt � x)>gt



Algorithm 1 Meta-algorithm

1: Input: Learning rates ηc, η1, η2, . . . , prior weights
πc1, π�1;s1 , π�2;s1 , . . . and π�1;‘1 , π�2;‘1 , . . .

2: for t = 1, . . . , T do
3: Get predictions xct from Algorithm 2, and x�;‘t ,

x�;st from Algorithms 3 and 4 for all η

4: Play xt =
�ct�

cxct+
P
�(��;st �x�;st +��;‘t �x�;‘t )

�ct�
c+

P
�(��;st �+��;‘t �)

5: Observe gradient gt and send it to all experts
6: Update weights:

πct+1 =
�ct e
−ct(xct)

�t

π�;st+1 =
��;st e−s

�
t (x�;st )

�t
for all η

π�;‘t+1 =
��;‘t e

−‘�t (x
�;‘
t )

�t
for all η

where

�t =
∑
�

(
π�;st e−s

�
t (x�;st ) + π�;‘t e−‘

�
t (x

�;‘
t )
)

+ πct e
−ct(xct)

7: end for

Algorithm 2 Convex expert algorithm

1: xc1 = 0
2: for t = 1, . . . , T do
3: Send xct to Algorithm 1
4: Receive gradient gt from Algorithm 1
5: Update xct+1 = �Id

D

(
xct � D

�cG
√
t
rct(xct)

)
where rct(xct) = ηcgt

6: end for

and
exp(�ct(x)) � 1 + ηc(xt � x)>gt

which are critical to keep the regret caused by the meta-
algorithm under control and will be made clear in Section
4.1.

3.3 THE ALGORITHM

Our method, named multiple sub-algorithms and learning
rates (Maler), is a two-level hierarchical structure: at
the lower level, a set of experts run in parallel, each of
which is configured with a different learning algorithm
(Algorithm 2, 3, or 4) and learning rate. At the higher
level, a meta-algorithm (Algorithm 1) is employed to
track the best expert based on empirical performances of
the experts.

Meta-Algorithm. Tracking the best expert is a well-
studied problem, and our meta-algorithm is built upon
the titled exponentially weighted average (van Erven and
Koolen, 2016). The inputs of the meta-algorithm are learn-

Algorithm 3 Exp-concave expert algorithm

1: Input: Learning rate η
2: x�;‘1 = 0, β = 1

2 min
{

1
4G‘D

, 1
}

, where G‘ = 7
25D ,

�1 = 1
�2D2 Id

3: for t = 1, . . . , T do
4: Send x�;‘t to Algorithm 1
5: Receive gradient gt from Algorithm 1
6: Update

�t+1 =�t +r`�t
(

x�;‘t

)(
r`�t

(
x�;‘t

))>
x�;‘t+1 =�

�t+1

D

(
x�;‘t �

1

β
�−1
t+1r`

�
t

(
x�;‘t

))
where r`�t (x�;‘t ) = ηgt + 2η2gtg

>
t (x�;‘t � xt)

7: end for

Algorithm 4 Strongly convex expert algorithm

1: Input: Learning rate η
2: x�;s1 = 0
3: for t = 1, . . . , T do
4: Send x�;st to Algorithm 1
5: Receive gradient gt from Algorithm 1
6: Update

x�;st+1 = �Id
D

(
x�;st �

1

2η2G2t
rs�t (x�;st )

)
where rs�t (x�;st ) = ηgt + 2η2G2 (x�;st � xt)

7: end for

ing rates and prior weights of the experts. In each round
t, the meta-algorithm firstly receives actions from all ex-
perts (Step 3), and then combines these actions by using
exponentially weighted average (Step 4). The weights of
the experts are titled by their own η, so that those experts
with larger learning rates will be assigned with larger
weights. After observing the gradient at xt (Step 5), the
meta-algorithm updates the weight of each expert via an
exponential weighting scheme (Step 6).

Experts. Experts are themselves non-adaptive algo-
rithms, such as OGD and ONS. In each round t, each
expert sends its action to the meta-algorithm, then re-
ceives a gradient vector from the meta-algorithm, and
finally updates the action based on the received vector.
To optimally handle general convex, exp-concave, and
strongly convex functions simultaneously, we design three
types of experts as follows:

� Convex expert. As discussed in Section 3.2, there
is no need to search for the optimal learning rate in
convex cases and thus we only run one convex OGD



(Algorithm 2) on the convex surrogate loss function
ct(x) in (7). We denote its action in round t as xct .
Its prior weight πc1 and learning rate ηc are set to be
1/3 and 1/(2GD

p
T ), respectively.

� Exp-concave experts. We keep
⌈

1
2 log T

⌉
+ 1 exp-

concave experts, each of which is a standard ONS
(Algorithm 3) running on an exp-concave surrogate
loss function `�t (�) in (3) with a different η. We
denote its output in round t as x�;‘t . For expert
i = 0, 1, 2, ...,

⌈
1
2 log T

⌉
, its learning rate and prior

weight are assigned as follows:

ηi =
2−i

5DG
, and π�i;‘1 =

C

3(i+ 1)(i+ 2)

where C = 1 + 1/
(
1 +

⌈
1
2 log T

⌉)
is a normaliza-

tion parameter.

� Strongly convex experts. We maintain
⌈

1
2 log T

⌉
+ 1

strongly convex experts. In each round t, every ex-
pert takes a strongly convex surrogate loss s�t (�) in
(6) (with different η) as the loss function, and adopts
strongly convex OGD (Algorithm 4) to update its ac-
tion, denoted as x�;st . For i = 0, 1, 2, ...,

⌈
1
2 log T

⌉
,

we configure the i-th strongly convex expert as fol-
lows:

ηi =
2−i

5DG
, and π�i;s1 =

C

3(i+ 1)(i+ 2)
.

Computational Complexity. The computational com-
plexity of Maler is dominated by its experts. If we ignore
the projection procedure, the run time of Algorithms 2,
3 and 4 are O(d), O(d2) and O(d) per iteration respec-
tively. Combining with the number of experts, the total
run time of Maler is O(d2 log T ), which is of the same
order as that of MetaGrad. When taking the projection
into account, we note that it can be computed efficiently
for many convex bodies used in practical applications
such as d-dimensional balls, cubes and simplexes (Hazan
et al., 2007). To put it more concrete, when the convex
body is a d-dimensional ball, projections in Algorithms 2,
3, and 4 require O(d), O(d3), and O(d) time respectively,
and consequently the total computational complexity of
Maler is O(d3 log T ), which is also the same as that of
MetaGrad.

3.4 THEORETICAL GUARANTEES

Theorem 1. Suppose Assumptions 1 and 2 hold. Let
V sT = G2

∑T
t=1 kxt � x∗k2, and V ‘T =

∑T
t=1((xt �

x∗)
>gt)

2. Then the regret of Maler is simultaneously
bounded by

R(T ) �
(

2 ln 3 +
3

2

)
GD
p
T = O

(p
T
)

(8)

R(T )

�3

√
V ‘T

(
2 ln

(p
3

(
1

2
log2 T + 3

))
+ 10d log T

)
+ 10GD

(
2 ln

(p
3

(
1

2
log2 T + 3

))
+ 10d log T

)
=O

(√
V ‘T d log T + d log T

)
(9)

and

R(T )

�3

√
V sT

(
2 ln

(p
3

(
1

2
log2 T + 3

))
+ 1 + log T

)
+ 10GD

(
2 ln

(p
3

(
1

2
log2 T + 3

))
+ 1 + log T

)
=O

(√
V sT log T + log T

)
.

(10)

Remark. Theorem 1 implies that, similar to Meta-

Grad, Maler can be upper bounded by O(
√
V ‘T d log T +

d log T ). Hence, the conclusions of MetaGrad under
some fast rates examples such as Bernstein condition (van
Erven et al., 2015) still hold for Maler. Moreover, it shows
that Maler also enjoys a new type of data-dependant
bound O(

√
V sT log T + log T ), and thus may perform

better than MetaGrad in some high dimensional cases
such that V sT � dV ‘T .

Next, based on Theorem 1, we derive the following re-
gret bounds for strongly convex and exp-concave loss
functions, respectively.

Corollary 2. Suppose Assumptions 1 and 2 hold. For
λ-strongly convex functions, the regret of Maler is upper
bounded by

R(T ) �
(

10GD +
9G2

2λ

)(
2 ln

(p
3

(
1

2
log2 T + 3

))
+ 1 + log T

)
= O

(
1

λ
log T

)
.

For α-exp-concave functions, let β = 1
2 min

{
α, 1

4GD

}
,

and Maler enjoys the following regret bound

R(T ) �
(

10GD +
9

2β

)(
2 ln

(p
3

(
1

2
log2 T + 3

))
+ 10d log T

)
= O

(
1

α
d log T

)
.



Remark. Theorem 1 and Corollary 2 indicate that
our proposed algorithm achieves the minimax optimal
O(
p
T ), O(d log T ) and O(log T ) regret bounds for con-

vex, exponentially concave and strongly convex functions
respectively. In contrast, the regret bounds of MetaGrad
for the three types of loss functions are O(

p
T log log T ),

O(d log T ) and O(d log T ) respectively, which are sub-
optimal for convex and strongly convex functions.

4 REGRET ANALYSIS

The regret of Maler can be generally decomposed into
two components, i.e., the regret of the meta-algorithm
(meta regret) and the regrets of expert algorithms (expert
regret). We firstly upper bound the two parts separately,
and then analyse their composition to prove Theorem 1.

4.1 META REGRET

We define meta regret as the difference between the cumu-
lative surrogate losses of the actions of the meta-algorithm
(i.e., xts) and that of the actions from a specific expert,
which measures the learning ability of the meta-algorithm.
For meta regret, we introduce the following lemma.

Lemma 1. For every grid point η, we have

T∑
t=1

s�t (xt)�
T∑
t=1

s�t (x�;st ) � 2 ln

(p
3

(
1

2
log2 T + 3

))
(11)

T∑
t=1

`�t (xt)�
T∑
t=1

`�t (x�;‘t ) � 2 ln

(p
3

(
1

2
log2 T + 3

))
(12)

and
T∑
t=1

ct(xt)�
T∑
t=1

ct(x
c
t) � ln 3. (13)

Proof. We firstly introduce three inequalities. For every
grid point η,

e−s
�
t (x�;st ) (6)

=e�(xt−x�;st )>gt−�2G2‖xt−x�;st ‖
2

�e�(xt−x�;st )>gt−(�(xt−x�;st )>gt)
2

�1 + η(xt � x�;st )>gt

(14)

where the first inequality follows from Cauchy-Schwarz
inequality, and the second inequality is due to ex−x

2 �
1 + x for any x � � 2

3 (van Erven and Koolen, 2016).
Applying similar arguments, we have

e−‘
�
t (x�;‘t ) (3)

=e�(xt−x�;‘t )>gt−(�(xt−x�;‘t )>gt)
2

�1 + η(xt � x�;‘t )>gt
(15)

and

e−ct(x
c
t)

(7)
=e�

c(xt−xct)
>gt−(�cGD)2

�e�
c(xt−xct)

>gt−(�c(xt−xct)
>gt)

2

�1 + ηc(xt � xct)
>gt.

(16)

Note that by definition of ηc we have ηc(xt � xct)
>gt >

� 1
2 .

Now we are ready to prove Lemma 1. Define potential
function

�T =
∑
�

(
π�;s1 e−

PT
t=1 s

�
t (x�;st ) + π�;‘1 e−

PT
t=1 ‘

�
t (x�;‘t )

)
+ πc1e

−
PT
t=1 ct(x

c
t).

(17)

We have

�T+1 � �T

=
∑
�

π�;s1 e−
PT
t=1 s

�
t (x�;st )

(
e−s

�
T+1(x�;sT+1) � 1

)
+
∑
�

π�;‘1 e−
PT
t=1 ‘

�
t (x�;‘t )

(
e−‘

�
T+1(x�;‘T+1) � 1

)
+ πc1e

−
PT
t=1 ct(x

c
t)
(
e−ct(x

c
T+1) � 1

)
�
∑
�

π�;s1 e−
PT
t=1 s

�
t (x�;st )η(xT+1 � x�;sT+1)>gt

+
∑
�

π�;‘1 e−
PT
t=1 ‘

�
t (x�;‘t )η(xT+1 � x�;‘T+1)>gt

+ πc1e
−

PT
t=1 ct(x

c
t)ηc(xT+1 � xcT+1)>gt

= (aTxT+1 � bT )
>

gt
(18)

where the inequality is due to (14), (15), and (16),

aT =
∑
�

π�;s1 e−
PT
t=1 s

�
t (x�;st )η + πc1e

−
PT
t=1 ct(x

c
t)ηc

+
∑
�

π�;‘1 e−
PT
t=1 ‘

�
t (x�;‘t )η

bT =
∑
�

π�;‘1 e−
PT
t=1 ‘

�
t (x�;‘t )ηx�;‘T+1

+ πc1e
−

PT
t=1 ct(x

c
t)ηcxcT+1

+
∑
�

π�;s1 e−
PT
t=1 s

�
t (x�;st )ηx�;sT+1

On the other hand, by the update rule of xt, we have

xT+1 =

∑
�(π�;sT+1ηx�;sT+1 + π�;‘T+1ηx�;‘T+1) + πcT+1η

cxcT+1∑
�(π�;sT+1η + π�;‘T+1η) + πcT+1η

c

=
bT
aT

(19)



where the second equality comes from Step 6 of Algo-
rithm 1, and note that πct+1, π

�;‘
t+1 and π�;st+1 share the same

denominator. Plugging (19) into (18), we get

�T+1 � �T � 0

which implies that

1 = �0 � �1 � � � � � �T . (20)

Note that all terms in the the definition of �T (17) are
positive. Combining with (20), it indicates that these
terms are less than 1. Thus,

0 � � ln
(
π�;s1 e−

PT
t=1 s

�
t (x�;st )

)
=

T∑
t=1

s�t (x�;st )+ln
1

π�;s1

0 � � ln
(
π�;‘1 e−

PT
t=1 ‘

�
t (x�;‘t )

)
=

T∑
t=1

`�t (x�;‘t )+ln
1

π�;‘1

and

0 � � ln
(
πc1e
−

PT
t=1 ct(x

c
t)
)

=

T∑
t=1

ct(x
c
t) + ln

1

πc1
.

We finish the proof by noticing that for every grid point η,

ln
1

π�;s1

� ln

(
3

(⌈
1

2
log T

⌉
+ 1

)(⌈
1

2
log T

⌉
+ 2

))
�2 ln

(p
3

(
1

2
log2 T + 3

))

ln
1

π�;‘1

� ln

(
3

(⌈
1

2
log T

⌉
+ 1

)(⌈
1

2
log T

⌉
+ 2

))
�2 ln

(p
3

(
1

2
log2 T + 3

))
and ln 1

�c1
= ln 3.

4.2 EXPERT REGRET

For the regret of each expert, we have the following
lemma. The proof is postponed to the appendix.

Lemma 2. For every grid point η and any u 2 D, we
have

T∑
t=1

s�t (x�;st )�
T∑
t=1

s�t (u) � 1 + log T (21)

T∑
t=1

`�t (x�;‘t )�
T∑
t=1

`�t (u) � 10d log T (22)

and
T∑
t=1

ct(x
c
t)�

T∑
t=1

ct(u) � 3

4
. (23)

4.3 PROOF OF THEOREM 1

In the following, we combine the regret analysis of the
meta and expert algorithms to prove Theorem 1.

Proof. To get the O(
p
T ) bound of (8), we upper bound

the regret by using the properties of ct as follows.

R(T )

(1)
=

T∑
t=1

ft(xt)�
T∑
t=1

ft(x∗)

(2)
�

T∑
t=1

g>t (xt � x∗)

(7)
=

∑T
t=1�ct(x∗) +

∑T
t=1(ηcGD)2

ηc

=

∑T
t=1 (ct(xt)� ct(xct)) +

∑T
t=1 (ct(x

c
t)� ct(x∗))

ηc

�
(

ln 3 +
3

4

)
2GD

p
T

where the last inequality follows from (13) and (23).

Next, to achieve the regret of (10), we upper bound R(T )
by making use of the properties of s‘t . For every grid point
η, we have

R(T )

(1)
=

T∑
t=1

ft(xt)�
T∑
t=1

ft(x∗)

(2)
�

T∑
t=1

g>t (xt � x∗)

(6)
=

∑T
t=1�s

�
t (x∗) + η2G2kx∗ � xtk2

η

=

∑T
t=1 (s�t (xt)� s�t (x�;st )) +

∑T
t=1 (s�t (x�;st )� s�t (x∗))

η

+

T∑
t=1

ηG2kxt � x∗k2

�
2 ln

(p
3
(

1
2 log2 T + 3

))
+ 1 + log T

η

+

T∑
t=1

ηG2kxt � x∗k2

=ηV sT +
2 ln

(p
3
(

1
2 log2 T + 3

))
+ 1 + log T

η
(24)

where V sT =
∑T
t=1G

2kxt � x∗k2, and the inequality



comes from (11) and (21). Define

A = 2 ln

(p
3

(
1

2
log2 T + 3

))
+ 1 + log T � 1.

The optimal η̂ to minimize the right hand side of (24) is

η̂ =

√
A

V sT
� 1

5GD
p
T
. (25)

If η̂ � 1
5GD , then by construction there exists a grid point

η such that η̂ 2 [�2 , η], and thus

R(T ) � ηV sT +
A

η
� 2η̂V sT +

A

η̂
= 3
√
V sTA.

On the other hand, if η̂ > 1
5GD , then by (25) we get

V sT � 25G2D2A.

Thus for η1 = 1
5GD , we have

R(T ) � 10GDA.

Overall, we obtain

R(T ) �3
√
V sTA+ 10GDA.

Finally, we upper bound the regret by using the properties
of the exp-concave surrogate loss functions. For every
grid point η, we have

R(T )

(2)
�

T∑
t=1

g>t (xt � x∗)

(3)
=

∑T
t=1�`

�
t (x∗) + η2

(
g>t (xt � x∗)

)2
η

=

∑T
t=1

(
`�t (xt)� `�t (x�;‘t )

)
η

+ η

T∑
t=1

(
g>t (x� x∗)

)2
+

∑T
t=1

(
`�t (x�;‘t )� `�t (x∗)

)
η

�
2 ln

(p
3
(

1
2 log2 T + 3

))
+ 10d log T

η

+ η

T∑
t=1

(
g>t (x∗ � xt)

)2
=ηV ‘T +

2 ln
(p

3
(

1
2 log2 T + 3

))
+ 10d log T

η

where the last inequality comes from (12) and (22). De-
fine

B = 2 ln

(p
3

(
1

2
log2 T + 3

))
+ 10d log T.

By similar arguments, we get

R(T ) � 3
√
V ‘TB + 10GDB.

4.4 PROOF OF COROLLARY 2

Proof. For α-exp-concave functions, we have

R(T )

�
T∑
t=1

g>t (xt � x∗)�
β

2
V ‘T

�3

√
V ‘T

(
2 ln

(p
3

(
1

2
log2 T + 3

))
+ 10d log T

)
+ 10GD

(
2 ln

(p
3

(
1

2
log2 T + 3

))
+ 10d log T

)
� β

2
V ‘T

�3γ

2
V ‘T +

(
10GD +

3

2γ

)(
2 ln

(p
3

(
1

2
log2 T + 3

))
+ 10d log T

)
� β

2
V ‘T

where the last inequality is based on
p
xy � 

2x+ y
2 for

all x, y, γ > 0, The result follows from γ = �
3 .

For λ-strongly convex functions, we have

R(T )

�
T∑
t=1

g>t (xt � x∗)�
λ

2
kxt � x∗k2

�3

√
V sT

(
2 ln

(p
3

(
1

2
log2 T + 3

))
+ 1 + log T

)
+ 10GD

(
2 ln

(p
3

(
1

2
log2 T + 3

))
+ 1 + log T

)
� λ

2G2
V sT

�3γV sT
2

+

(
10GD +

3

2γ

)(
2 ln

(p
3

(
1

2
log2 T + 3

))
+ 1 + log T

)
� λ

2
V sT

where the last inequality is based on
p
xy � 

2x+ y
2 for

all x, y, γ > 0, and the results follows from γ = �
3G2 .

5 EXPERIMENTS

In this section, we present empirical results on different
online learning tasks to evaluate the proposed algorithm.
We choose MetaGrad as the baseline algorithm.



(a) Online regression (b) Online classification

Fig. 1: Emprecial results of Maler and MetaGrad for online regression and classification

5.1 ONLINE REGRESSION

We consider mini-batch least mean square regression with
`2-regularizer, which is a classic problem belonging to on-
line strongly convex optimization. In each round t, a small
batch of training examples f(xt;1, yt;1), . . . , (xt;n, yt;n)g
arrives, and at the same time, the learner makes a predic-
tion of the unknown parameter w∗, denoted as wt, and
suffers a loss, defined as

ft(w) =
1

n

n∑
i=1

(
w>xt;i � yt;i

)2
+ λkwk2. (26)

We conduct the experiment on a symmetric data set, which
is constructed as follows. We sample w∗ and feature vec-
tors xt;i uniformly at random from the d-ball of diameter
1 and 10 respectively, and generate yt;i according to a lin-
ear model: yt;i = w>∗ xt;i + ηt, where the noise is drawn
from a normal distribution. We set batch size n = 200,
λ = 0.001, d = 50, and T = 200. The regret v.s. time
horizon is shown in Fig. 1(a). It can be seen that Maler
achieves faster convergence rate than MetaGrad.

5.2 ONLINE CLASSIFICATION

Next, we consider online classification by using logistic
regression. In each round t, we receive a batch of train-
ing examples f(xt;1, yt;1), . . . , (xt;n, yt;n)g, and choose
a linear classifier wt. After that, we suffer a logistic loss

ft(w) =
1

n

n∑
i=1

log(1 + exp(�yt;iw>t xt;i)) (27)

which is exp-concave. We conduct the experiments on a
classic real-world data set a9a (Chang and Lin, 2011). We

scale all feature vectors to the unit ball, and restrict the
decision set D to be a ball of radius 0.5 and centered at
the origin, so that Assumptions 1 and 2 are satisfied. We
set batch size n = 200, and T = 100. The regret v.s. time
horizon is shown in Figure 1(b). It can be seen that Maler
performs better than MetaGrad. Although the worst-case
regret bounds of Maler and MetaGrad for exp-concave
loss are on the same order, the experimental results are
not surprising since Maler enjoys a tighter data-dependant
regret bound than that of MetaGrad.

6 CONCLUSION AND FURORE WORK

In this paper, we propose a universal algorithm for online
convex optimization, which achieves the optimal O(

p
T ),

O(d log T ) and O(log T ) regret bounds for general con-
vex, exp-concave and strongly convex functions respec-
tively, and enjoys a new type of data-dependent bound.
The main idea is to consider different types of learning al-
gorithms and learning rates at the same time. Experiments
on online regression and online classification problems
demonstrate the effectiveness of our method. In the future,
we will investigate whether our proposed algorithm can
extend to achieve border adaptivity in various directions,
for example, adapting to changing environments (Hazan
and Seshadhri, 2007; Jun et al., 2017) and/or adapting to
data structures (Reddi et al., 2018; Wang et al., 2019).

Acknowledgement

This work was partially supported by NSFC-NRF
Joint Research Project (61861146001), YESS
(2017QNRC001), and Zhejiang Provincial Key
Laboratory of Service Robot.



References

Abernethy, J., Bartlett, P. L., Rakhlin, A., and Tewari, A.
(2008). Optimal stragies and minimax lower bounds
for online convex games. In Proceedings of the 21st
Annual Conference on Learning Theory, pages 415–
423.

Boyd, S. and Vandenberghe, L. (2004). Convex optimiza-
tion. Cambridge university press.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library
for support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2:1–27.

Daniely, A., Gonen, A., and Shalev-Shwartz, S. (2015).
Strongly adaptive online learning. In Proceedings
of the 32nd International Conference on Machine
Learning, pages 1405–1411.

Do, C. B., Le, Q. V., and Foo, C.-S. (2009). Proximal reg-
ularization for online and batch learning. In Proceed-
ings of the 26th Annual International Conference on
Machine Learning, pages 257–264.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive
subgradient methods for online learning and stochas-
tic optimization. Journal of Machine Learning Re-
search, 12:2121–2159.

Hall, E. C. and Willett, R. M. (2013). Dynamical models
and tracking regret in online convex programming.
In Proceedings of the 30th International Conference
on Machine Learning, pages 579–587.

Hazan, E., Agarwal, A., and Kale, S. (2007). Logarith-
mic regret algorithms for online convex optimization.
Machine Learning, 69:169–192.

Hazan, E. et al. (2016). Introduction to online convex
optimization. Foundations and Trends R in Opti-
mization, 2(3-4):157–325.

Hazan, E., Rakhlin, A., and Bartlett, P. L. (2008). Adap-
tive online gradient descent. In Advances in Neural
Information Processing Systems 21, pages 65–72.

Hazan, E. and Seshadhri, C. (2007). Adaptive algorithms
for online decision problems. In Electronic Collo-
quium on Computational Complexity.

Jun, K.-S., Orabona, F., Wright, S., and Willett, R. (2017).
Improved strongly adaptive online learning using
coin betting. In Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics,
pages 943–951.

Reddi, S. J., Kale, S., and Kumar, S. (2018). On the
convergence of adam and beyond. In Proceedings of
6th International Conference on Learning Represen-
tations.

Shalev-Shwartz, S. et al. (2012). Online learning and on-
line convex optimization. Foundations and Trends R
in Machine Learning, 4(2):107–194.

Tieleman, T. and Hinton, G. (2012). Lecture 6.5-rmsprop:
Divide the gradient by a running average of its re-
cent magnitude. COURSERA: Neural networks for
machine learning, pages 26–31.

van Erven, T., Grünwald, P. D., Mehta, N. A., Reid, M. D.,
and Williamson, R. C. (2015). Fast rates in statistical
and online learning. Journal of Machine Learning
Research, 16:1793–1861.

van Erven, T. and Koolen, W. M. (2016). Metagrad: Mul-
tiple learning rates in online learning. In Advances
in Neural Information Processing Systems 29, pages
3666–3674.

Wang, G., Lu, S., Tu, W., and Zhang, L. (2019). Sadam: A
variant of adam for strongly convex functions. ArXiv
preprint arXiv:1905.02957.

Wang, G., Zhao, D., and Zhang, L. (2018). Minimizing
adaptive regret with one gradient per iteration. In
Proceedings of the 27th International Joint Confer-
ence on Artificial Intelligence, pages 2762–2768.

Zhang, L., Liu, T.-Y., and Zhou, Z.-H. (2019). Adap-
tive regret of convex and smooth functions. In Pro-
ceedings of the 36th International Conference on
Machine Learning, pages 7414–7423.

Zhang, L., Lu, S., and Zhou, Z.-H. (2018a). Adaptive on-
line learning in dynamic environments. In Advances
in Neural Information Processing Systems 31, pages
1330–1340.

Zhang, L., Yang, T., Jin, R., and Zhou, Z.-H. (2018b).
Dynamic regret of strongly adaptive methods. In
Proceedings of the 35th International Conference on
Machine Learning, pages 5877–5886.

Zhang, L., Yang, T., Yi, J., Jin, R., and Zhou, Z.-H. (2017).
Improved dynamic regret for non-degenerate func-
tions. In Advance in Neural Information Processing
Systems 30, pages 732–741.

Zinkevich, M. (2003). Online convex programming and
generalized infinitesimal gradient ascent. In Pro-
ceedings of the 20th International Conference on
Machine Learning, pages 928–936.




