SUPPLEMENTAL MATERIALS

Lemma 5. [15] If $f(\mathbf{x})$ is -strongly convex and \mathbf{x}_* denotes the optimal solution to $\min_{\mathbf{x} \in \mathcal{D}} f(\mathbf{x})$. For any $\mathbf{x} \in \mathcal{D}$, we have $f(\mathbf{x}) - f(\mathbf{x}_*) \leq 2G_1^2/$.

Proof. From Assumption A1, we have $|| f(\mathbf{x})||_2 \leq G_1$. Hence

$$f(\mathbf{x}) - f(\mathbf{x}_*) \le G_1 \|\mathbf{x} - \mathbf{x}_*\|_2.$$

Moreover from the strong convexity in $f(\cdot)$ we have

$$f(\mathbf{x}) - f(\mathbf{x}_*) \ge \frac{1}{2} \|\mathbf{x} - \mathbf{x}_*\|_2^2.$$

From the two inequalities above, we can easily verify that

$$\|\mathbf{x} - \mathbf{x}_*\|_2 \le \frac{2G_1}{f(\mathbf{x})}, \ f(\mathbf{x}) - f(\mathbf{x}_*) \le \frac{2G_1^2}{f(\mathbf{x})}.$$

This completes the proof.

Proof of Theorem 2

The proof of Theorem 2 is based on an important result, as summarized in Lemma 6.

Lemma 6. [20] Assume $\|\mathbf{x}_* - \mathbf{x}_t\|_2 \leq D$ for all t. Define $D_T = \int_{t=1}^T \|\mathbf{x}_t - \mathbf{x}\|_2^2$ and $\Lambda_T = \int_{t=1}^T \mathbf{x}_t d\mathbf{x} dt$. We have

$$\Pr \quad \Lambda_T \le 4G_1 \quad \overline{D_T \ln \frac{m}{}} + 2G_1 D \ln \frac{m}{}$$

$$+ \Pr \quad D_T \le \frac{D^2}{T} \quad \ge 1 - ,$$

where
$$m = \lceil 2\log_2 T \rceil$$
 and $T_{t=1}$ $t(\mathbf{x}) = T_{t=1}$ $t(\mathbf{x})$

Proof of Theorem 2 The proof below follows from techniques used in Lemma 2 and Theorem 1. Since $F(\mathbf{x})$ is -strongly convex, we have

$$F(\mathbf{x}_t) - F(\mathbf{x}) \leq (\mathbf{x}_t - \mathbf{x})^{\top} \nabla F(\mathbf{x}_t) - \frac{1}{2} ||\mathbf{x} - \mathbf{x}_t||_2^2$$

Combining the above inequality with the inequality in (8) and taking summation over all t = 1, ..., T, we have

$$\frac{T}{t=1}(F(\mathbf{x}_{t}) - F(\mathbf{x})) \leq \frac{\|\mathbf{x}_{1} - \mathbf{x}\|_{2}^{2}}{2} + \frac{T(G_{1}^{2} + {}^{2}G_{2}^{2})}{BT} + \frac{T}{t=1}(\mathbf{x}) - \frac{1}{2}D_{T}.$$
(23)

We substitute the bound in Lemma 6 into the above inequality with $x = x^*$. We consider two cases. In the first

case, we assume $D_T \leq D^2/T$. As a result, we have

$$\begin{array}{rcl}
T & & & & & T \\
& t(\mathbf{x}^*) & = & & (\nabla f(\mathbf{x}_t) - \mathbf{g}(\mathbf{x}_t))^\top (\mathbf{x}^* - \mathbf{x}_t) \\
t = 1 & & & & t = 1 \\
& \leq & 2G_1 & \overline{TD_T} \leq 2G_1D_t
\end{array}$$

which together with the inequality in (23) leads to the bound

$$(F(\mathbf{x}_t) - F(\mathbf{x}^*)) \le 2G_1D + BT.$$

In the second case, we assume

$$\begin{array}{rcl}
\tau & t(\mathbf{x}^*) & \leq & 4G_1 & \overline{D_T \ln \frac{m}{}} + 4G_1 \ln \frac{m}{} \\
& \leq & \frac{1}{2}D_T + \frac{8G_1^2}{} + 4G_1 & \ln \frac{m}{}
\end{array}$$

where the last step uses the fact $2\sqrt{ab} \le a^2 + b^2$. We thus have

$$(F(\mathbf{x}_t) - F(\mathbf{x}^*)) \le \frac{8G_1^2}{1 + 2G_1D} \ln \frac{m}{1 + BT}$$

Combing the results of the two cases, we have, with a probability $1-\$,

$$T (F(\mathbf{x}_t) - F(\mathbf{x}^*)) \le \frac{8G_1^2}{1} + 2G_1D \ln \frac{m}{1} + 2G_1D + BT_t$$

where $C = \frac{8G_1^2}{1} + 2G_1D$ $\ln \frac{m}{1} + 2G_1D$. Following the same analysis, we have

$$f(\mathbf{x}_T) - f(\mathbf{x}_*) \le \frac{\mu C}{T} + \frac{\mu \|\mathbf{x}_1 - \mathbf{x}_*\|_2^2}{2 T} + \mu G^2$$

Let $\Delta_k = f(\mathbf{x}_k^1) - f(\mathbf{x}_*)$. By induction, we have

$$\Delta_{k+1} \le \frac{\mu C}{T_k} + \frac{\mu \Delta_k}{2 k T_k} + \mu_k G^2$$

Assume $\Delta_k \leq V_k \frac{L^2 G^2}{2^{k-2}}$, by plugging the values of L_k , L_k , we have

$$\Delta_{k+1} \le \frac{V_k}{6} + \frac{V_k}{6} + \frac{V_k}{6} = \frac{V_k}{2} = V_{k+1}$$

where we use $T_1 \ge \max \frac{3C}{\mu G^2}$, 9 and $T_k \ge \max \frac{6\mu c}{V_k}$, $\frac{18\mu^2 G^2}{V_k}$ and $K_k = \frac{V_k}{6\mu G^2} = \frac{2\mu}{2^k(3)}$. This completes the proof of this theorem.

Proof of Lemma 3

To prove Lemma 3, we derive an inequality similar to Eq. (8); the rest proof of Lemma 3 is similar to that of Lemma 2.

Corollary 1. Given a -strongly convex function $f(\mathbf{x}) = f(\mathbf{x}) + g(\mathbf{x})$, and a sequence $\{\mathbf{x}_t\}$ defined by the update $\mathbf{x}_{t+1} = \min_{\mathbf{x}} \frac{1}{2} ||\mathbf{x} - (\mathbf{x}_t - \mathbf{g}(\mathbf{x}_t))||_2^2 + g(\mathbf{x})$. Then for any \mathbf{x} , we have

$$\int_{t=1}^{T} [f(\mathbf{x}_t) + g(\mathbf{x}_{t+1}) - f(\mathbf{x}) - g(\mathbf{x})]$$

$$\leq \frac{\|\mathbf{x} - \mathbf{x}_1\|_2^2}{2} + \frac{\tau}{2} \int_{t=1}^{T} \|\mathbf{g}(\mathbf{x}_t)\|_2^2 + \int_{t=1}^{T} (\mathbf{x} - \mathbf{x}_t)^{\top} (\mathbf{g}(\mathbf{x}_t))$$

$$-\nabla f(\mathbf{x}_t)) - \frac{\tau}{2} \int_{t=1}^{T} \|\mathbf{x} - \mathbf{x}_{t+1}\|_2^2.$$

Corollary 1 can be proved using techniques similar to the ones in [9] but with extra care on the stochastic gradient. As a consequence we have

$$\begin{split} & \frac{1}{T} \mathbf{E} \quad \stackrel{T}{\underset{t=1}{\hat{f}}} \hat{\mathbf{f}}(\mathbf{x}_t) - \hat{\mathbf{f}}(\mathbf{x}) \\ \leq & \frac{\mathbf{E}[\|\mathbf{x} - \mathbf{x}_1\|_2^2]}{2 T} + (G_1^2 + G_2^2) + \frac{g(\mathbf{x}_1) - g(\mathbf{x}_{T+1})}{T} \end{split}$$

Proof of Lemma 4

The lemma is a corollary of results in [6] for general convex optimization. In particular, if we consider the stochastic composite optimization

$$F(\mathbf{x}) = (\mathbf{x}) + q(\mathbf{x})$$

where $g(\mathbf{x})$ is a simple function such that its proximal mapping can be easily solved and (\mathbf{x}) is only accessible through a stochastic oracle that returns a stochastic subgradient $\mathbf{g}(\mathbf{x})$. To state the convergence of ORDA for general convex problems, [6] makes the following assumptions: (i) $\mathrm{E}[\|\mathbf{g}(\mathbf{x}) - \mathrm{E}\mathbf{g}(\mathbf{x})\|_2^2] \leq ^2$ and (ii)

$$(\mathbf{y}) - (\mathbf{x}) - (\mathbf{y} - \mathbf{x})^{\mathsf{T}} \quad (\mathbf{x}) \leq M \|\mathbf{y} - \mathbf{x}\|_2$$

When $\| (\mathbf{x}) \|_2 \le G$, the first inequality holds = G and the second inequality holds with M = 2G. Applying to the augmented objective

$$F(\mathbf{x}) = f(\mathbf{x}) + [c(\mathbf{x})]_{+} + g(\mathbf{x})$$

We note that $= G_1$ and $M = 2(G_1 + G_2)$. Follow the inequality (26) in the appendix of [6], we obtain that

$$E[F(\mathbf{x}_{T+2}) - F(\mathbf{x}_*)] \le \frac{4\|\mathbf{x}_1 - \mathbf{x}_*\|_2^2}{\sqrt{T}} + \frac{2(+M)^2}{\sqrt{T}}$$

by using the Euclidean distance $V(\mathbf{x}, \mathbf{y}) = \frac{1}{2} ||\mathbf{x} - \mathbf{y}||_2^2$ and their notation = 1, and noting that is the inverse of their notation c. Then the second inequality is Lemma 4 can be proved similarly as for Lemma 2.

Proof of Theorem 3

Proof. Recall $\mu = /(-G_1/)$ and $G = 3G_1 + 2G_2$. Let $V_k = \mu^2 G^2 / 2^{k-2}$. By the values of K_k and K_k we have

$$T_k = 2^{k+3} = \frac{32\mu^2 G^2}{V_k}, \quad k = \frac{\mu}{2^{(k-1)/2}} = \frac{V_k \sqrt{T_k}}{8\mu G^2}$$

Define $\Delta_k = \hat{f}(\mathbf{x}_1^k) - \hat{f}(\mathbf{x}_*)$. We first prove the inequality

$$E[\Delta_k] \leq V_k$$

by induction. It is true for k=1 because of Lemma 5, $\mu > 1$ and $G^2 > G_1^2$. Now assume it is true for k and we prove it for k+1. For a random variable X measurable with respect to the randomness up to epoch k+1. Let $\mathrm{E}_k[X]$ denote the expectation conditioned on all the randomness up to epoch k. Following Lemma 2, we have

$$E_{k}[\Delta_{k+1}] \le \mu \frac{2 {}_{k}G^{2}}{\sqrt{T_{k}}} + \frac{E[4\|\mathbf{x}_{1}^{k} - \mathbf{x}_{*}\|_{2}^{2}]}{{}_{k}\sqrt{T_{k}}}$$
(24)

Since $\Delta_k = f(\mathbf{x}_1^k) - f(\mathbf{x}_*) \ge \|\mathbf{x}_1^k - \mathbf{x}_*\|_2^2/2$ by the strong convexity, we have

$$\begin{split} \mathrm{E}[\Delta_{k+1}] & \leq & \mu \; \frac{2 \; {}_{k}G^{2}}{\sqrt{T_{k}}} + \frac{\mathrm{E}[8\Delta_{k}]}{{}_{k}\sqrt{T_{k}}} \\ & = & \frac{2 \; {}_{k}\mu G^{2}}{\sqrt{T_{k}}} + \frac{V_{k}\mu}{{}_{k}\sqrt{T_{k}}} = \frac{V_{k}}{4} + \frac{V_{k}}{4} = \frac{V_{k}}{2} \end{split}$$

where we use the fact $_{K}/\sqrt{T_{K}} = V_{K}/(8\mu G^{2})$ and $T_{K} = 32\mu^{2}G^{2}/(V_{K})$. Thus, we get

$$\mathrm{E}[f(\mathbf{x}_1^{k^{\dagger}+1})] - f(\mathbf{x}_*) = \mathrm{E}[\Delta_{k^{\dagger}+1}] \le V_{k^{\dagger}+1} = \frac{\mu^2 G^2}{2^{k^{\dagger}-1}}$$

Note that the total number of epochs satisfies

$$\int_{k=1}^{k^{\dagger}} (T_k + 1) = 16(2^{k^{\dagger}} - 1) + k^{\dagger} \le T$$

By some reformulations, we complete the proof of this theorem. \Box

Proof of Lemma 6

The proof of Lemma 6 is based on *the Bernstein Inequality for Martingales* [4]. We present its main result below for completeness.

Theorem 4. [Bernstein Inequality for Martingales] Let X_1, \ldots, X_n be a bounded martingale difference sequence with respect to the filtration $\mathcal{F} = (\mathcal{F}_i)_{1 \leq i \leq n}$ and with $\|X_i\| \leq K$. Let

$$S_i = \int_{j=1}^i X_j$$

be the associated martingale. Denote the sum of the conditional variances by

$$\Sigma_n^2 = \sum_{t=1}^n \mathrm{E} \ X_t^2 | \mathcal{F}_{t-1} \ ,$$

Then for all constants t, > 0,

$$\Pr \max_{i=1}$$