
SUPPLEMENTAL MATERIALS

Lemma 5. [15] If f(x) is �-strongly convex and x⇤
denotes the optimal solution to min

x2D f(x). For any
x 2 D, we have f(x)� f(x⇤)  2G2

1/�.

Proof. From Assumption A1, we have k@f(x)k2  G1.
Hence

f(x)� f(x⇤)  G1kx� x⇤k2.

Moreover from the strong convexity in f(·) we have
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From the two inequalities above, we can easily verify that

kx� x⇤k2  2G1

�
, f(x)� f(x⇤) 

2G2
1

�
.

This completes the proof.

Proof of Theorem 2

The proof of Theorem 2 is based on an important result, as
summarized in Lemma 6.

Lemma 6. [20] Assume kx⇤ � xtk2  D for all t. Define
DT =

PT
t=1 kxt � xk2

2 and ⇤T =

PT
t=1 ⇣t(x). We have
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where m = d2 log2 T e and
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Proof of Theorem 2 The proof below follows from tech-
niques used in Lemma 2 and Theorem 1. Since F (x) is
�-strongly convex, we have

F (xt)� F (x)  (xt � x)

>rF (xt)�
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Combining the above inequality with the inequality in (8)
and taking summation over all t = 1, . . . , T , we have
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We substitute the bound in Lemma 6 into the above in-
equality with x = x

⇤. We consider two cases. In the first

case, we assume DT  D2/T . As a result, we have
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which together with the inequality in (23) leads to the
bound
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In the second case, we assume
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where the last step uses the fact 2
p

ab  a2
+ b2. We thus

have
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Combing the results of the two cases, we have, with a prob-
ability 1� ✏,
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same analysis, we have
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Proof of Lemma 3

To prove Lemma 3, we derive an inequality similar
to Eq. (8); the rest proof of Lemma 3 is similar to that of
Lemma 2.

Corollary 1. Given a �-strongly convex function bf(x) =

f(x) + g(x), and a sequence {xt} defined by the update
xt+1 = min

x

1
2kx � (xt � ⌘g(xt))k2

2 + ⌘g(x). Then for
any x, we have

TX

t=1

[f(xt) + g(xt+1)� f(x)� g(x)]

 kx� x1k2
2

2⌘
+

⌘

2

TX

t=1

kg(xt)k2
2 +

TX

t=1

(x� xt)
>
(g(xt)

�rf(xt))�
�

2

TX

t=1

kx� xt+1k2
2.

Corollary 1 can be proved using techniques similar to the
ones in [9] but with extra care on the stochastic gradient.
As a consequence we have
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Proof of Lemma 4

The lemma is a corollary of results in [6] for general convex
optimization. In particular, if we consider the stochastic
composite optimization

F (x) = �(x) + g(x)

where g(x) is a simple function such that its proximal
mapping can be easily solved and �(x) is only accessible
through a stochastic oracle that returns a stochastic subgra-
dient g(x). To state the convergence of ORDA for general
convex problems, [6] makes the following assumptions: (i)
E[kg(x)� Eg(x)k2

2]  �2 and (ii)

�(y)� �(x)� (y � x)

>@�(x)  Mky � xk2

When k@�(x)k2  G, the first inequality holds � = G and
the second inequality holds with M = 2G. Applying to the
augmented objective

F (x) = f(x) + �[c(x)]+ + g(x)

We note that � = G1 and M = 2(G1 + �G2). Follow the
inequality (26) in the appendix of [6], we obtain that
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by using the Euclidean distance V (x,y) = 1
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2 and
their notation ⌧ = 1, and noting that ⌘ is the inverse of their
notation c. Then the second inequality is Lemma 4 can be
proved similarly as for Lemma 2.

Proof of Theorem 3

Proof. Recall µ = ⇢/(⇢ � G1/�) and G = 3G1 + 2�G2.
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Define �k =

ˆf(xk
1)� ˆf(x⇤). We first prove the inequality

E[�k]  Vk

by induction. It is true for k = 1 because of Lemma 5,
µ > 1 and G2 > G2

1. Now assume it is true for k and we
prove it for k+1. For a random variable X measurable with
respect to the randomness up to epoch k + 1. Let Ek[X]

denote the expectation conditioned on all the randomness
up to epoch k. Following Lemma 2, we have
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1) � f(x⇤) � �kxk

1 � x⇤k2
2/2 by the

strong convexity, we have
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Note that the total number of epochs satisfies
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By some reformulations, we complete the proof of this the-
orem.

Proof of Lemma 6

The proof of Lemma 6 is based on the Bernstein Inequality
for Martingales [4]. We present its main result below for
completeness.



Theorem 4. [Bernstein Inequality for Martingales] Let
X1, . . . , Xn be a bounded martingale difference sequence
with respect to the filtration F = (Fi)1in and with
kXik  K. Let
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tional variances by
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