SUPPLEMENTAL MATERIALS

Lemma 5. [15] If f(x) is B-strongly convex and x.
denotes the optimal solution to minyep f(x). For any
x € D, we have f(x) — f(x.) < 2G3/B.

Proof. From Assumption Al, we have ||0F(x)|]2 < Gj.

Hence
f(x) - F(x.) < Gullx — x. 2.

Moreover from the strong convexity in f(-) we have
f fx,) > P 2
()~ F(x) > ollx - w3

From the two inequalities above, we can easily verify that
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This completes the proof. O

Proof of Theorem 2

The proof of Theorem 2 is based on an important result, as
summarized in Lemma 6.

Lemm 0] Assume ||x. — x¢|| for all t. Define
Dr = o lxt—x|2and At = (; (e(x). We have
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Proof of Theorem 2 The proof below follows from tech-

niques used in Lemma 2 and Theorem 1. Since F (x) is
[3-strongly convex, we have

F(xe) ~ F () < (xe — )T VF (x) — b Jx — xel3

Combining the above inequality with the inequality in (8)

and taking summation over allt = 1,..., T, we have
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We substitute the bound in Lemma 6 into the above in-
equality with x = x*. We consider two cases. In the first

case, we assume Dt < D2/T. As a result, we have
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which together with the inequality in (23) leads to the
bound

—
(F(x¢t) — F(x")) < 2G;:D + BT.
t=1

In the second case, we assume
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where the last step uses the fact 2v/ab < a2 + b?. We thus
have
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Combing the results of the two cases, we have, with a prob-
ability 1 — L1
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where C = o+ 2G1D In 4 2G;D. Following the

same analysis, we have
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Let Ax = f(x}) — f(x.). By induction, we have
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Assume Ag < Vi |:§Lg by plugging the values of
Nk, Tk, we have
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where _we use T; > max i%E,Q and Ty >
6uc 18u°G? Ve 2 .
max =, G- and Nk = gi&s = ar(3py- This com-

pletes the proof of this theorem.



Proof of Lemma 3

To prove Lemma 3, we derive an inequality similar
to Eq. (8); the rest proof of Lemma 3 is similar to that of
Lemma 2.

Corollary 1. Given a B-strongly convex function fl{zd) =
f(x) + g(x), and a sequence {x;} defined by the update
Xt+1 = Miny %HX — (x¢ — r]g(xt))H% + ng(x). Then for
any x, we have
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Corollary 1 can be proved using techniques similar to the
ones in [9] but with extra care on the stochastic gradient.
As a consequence we have
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Proof of Lemma 4

The lemma is a corollary of results in [6] for general convex
optimization. In particular, if we consider the stochastic
composite optimization

F(x) = o(x) +9(x)

where ¢(x) is a simple function such that its proximal
mapping can be easily solved and @(x) is only accessible
through a stochastic oracle that returns a stochastic subgra-
dient g(x). To state the convergence of ORDA for general
convex problems, [6] makes the following assumptions: (i)
E[|g(x) - Eg(x)|3] < 02 and (ii

Py) — 9(x) — (y —x) ' 09(x) < Mlly —x|]2

When ||00(x)||2 < G, the first inequality holds ¢ = G and
the second inequality holds with M = 2G. Applying to the
augmented objective

F(x) = f(x) + Ale(x)]+ + 9(x)

We note that 0 = G; and M = 2(G; + AG3). Follow the
inequality (26) in the appendix of [6], we obtain that

Al - xB . 2n(0 4 M)

BIF (xrz) - Fxo)) < 202 .

g(x1) — g(x7+1)

by using the Euclidean distance V (x,y) = 3[|x — y||5 and
their notation T = 1, and noting that 1) is the inverse of their
notation €. Then the second inequality is Lemma 4 can be
proved similarly as for Lemma 2.

Proof of Theorem 3

Proof. Re M= ﬁ‘g - GE{)\) and G = 3G; + 2AG».
Let Vi = p2G? / 2K~2B | By the values of ng and Ty
we have
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Define A, = f(xX) — f(x,). We first prove the inequality
E[Ak] < Vk

by induction. It is true for K = 1 because of Lemma 5,
i > 1 and G? > G2. Now assume it is true for k and we
prove it for K+ 1. For a random variable X measurable with
respect to the randomness up to epoch kK + 1. Let Eg[X]
denote the expectation conditioned on all the randomness
up to epoch K. Following Lemma 2, we have
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Since Ak = F(x5) — f(x.) > BlIxK — x.]/3/2 by the
strong convexity, we have

Ex[Aka1] < 1 (24)

I:2|r] G2  E[BA(] -
E[Aks1] < K K
e B RYa v
2NuUG? Vi Vi n Vie _ Vk
VT VTkB 4 4 2

where we use the fact Ne/v/Tk = Vi/(8UG?) and Ty =
32U2G?/(ViB). Thus, we get
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BF (e ) = F(x.) = BlAwaa] < Viws = g

Note that the total number of epochs satisfies

F— .
(Tk+1)=16(2K —1)+kf <T
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By some reformulations, we complete the proof of this the-

orem. O

Proof of Lemma 6

The proof of Lemma 6 is based on the Bernstein Inequality
for Martingales [4]. We present its main result below for
completeness.



Theorem 4. [Bernstein Inequality for Martingales] Let
Xi,...,Xn be a bounded martingale difference sequence
with respect to the filtration 7 = (Fj)i<i<n and with
X[ < K. Let
1
Si = X;j
j=1

be the associated martingale. Denote the sum of the condi-
tional variances by
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Then for all constants t, v > 0,
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