Short Papers

A-Optimal Projection for Image Representation

 T
 , Senior Member, IEEE,
 ______,

 T
 , Senior Member, IEEE,
 ______,

 I
 , Member, IEEE,
 ______,

 I
 , Fellow, IEEE
 ______,

 tract
 , I

Abstract—

2.2 Laplacian Regularized Least Squares

$$y = \mathbf{w}^T \mathbf{x} + \epsilon, \tag{2}$$

y observation, $\mathbf{x} \in {}^{n}$ independent variable, \mathbf{w} weight vector, ϵ . D ff

$$J_{\text{sse}}(\mathbf{w}) = \sum_{i=1}^{\ell} (\mathbf{w}^T \ _i - y_i)^2.$$
(3)

f

$$\widehat{\mathbf{w}} = (XX^T)^{-1}X\mathbf{y},\tag{4}$$

$$X = (\mathbf{x}_1, \dots, \mathbf{x}_{\ell}) \qquad \mathbf{y} = (y_1, \dots, y_{\ell})^T.$$

$$\mathbf{i} \qquad \mathbf{f} \qquad \mathbf{f} \qquad \mathbf{f} \qquad \mathbf{f} \qquad \mathbf{i}$$

$$k \qquad \mathbf{f} \qquad \mathbf{x}. \qquad \mathbf{f} \qquad \mathbf{i}$$

$$S. \mathbf{A} \qquad \mathbf{f} \qquad \mathbf{f} \qquad \mathbf{f}$$

$$S_{ij} = \begin{cases} 1, & \text{if } \mathbf{x}_i \in \mathcal{N}_k(\mathbf{x}_j) \text{ or } \mathbf{x}_j \in \mathcal{N}_k(\mathbf{x}_i); \\ 0, & \text{otherwise.} \end{cases}$$
(5)

$$\min_{\mathbf{w}} \sum_{i=1}^{m} (\mathbf{w}^T \mathbf{x}_i - y_i)^2 + \frac{\lambda_1}{2} \sum_{i,j=1}^{m} (\mathbf{w}^T \mathbf{x}_i - \mathbf{w}^T \mathbf{x}_j)^2 S_{ij} + \lambda_2 \|\mathbf{w}\|^2,$$

$$\widehat{\mathbf{w}} = (XX^T + \lambda_1 XLX^T + \lambda_2 I)^{-1} X\mathbf{y},$$
(6)

L = diag(S1) - S graph Laplacian 23 1 - f

2.3 Optimal Experimental Design

C (2) (4). B
,
$$\hat{\mathbf{w}} - \mathbf{w}$$
 -
 $\sigma^2 H_{\text{SSe}}^{-1}$, H_{SSe}
f J_{SSe} (3):

$$H_{\rm sse} = \left(\frac{\partial^2 J_{\rm sse}}{\partial \mathbf{w}^2}\right) = \left(\sum_{i=1}^{\ell} {}_{i} {}_{i}^{T}\right) = XX^{T}.$$

f Optimal Experimental Design 16 optimal f size

$$f \qquad f \hat{w} - w \qquad .$$

$$f \qquad f \qquad f \qquad .$$

$$f \qquad f \qquad .$$

$$f \qquad f \qquad .$$

$$f \qquad .$$

3 A-OPTIMAL PROJECTION

, A- ,

3.1 Problem Definition

 $X = (\mathbf{x}_1, \dots$

$$\min_{A} \operatorname{Tr}((A^{T}\widetilde{X}\widetilde{X}^{T}A + \lambda_{2}I)^{-1}).$$
(12)

¢ **3.1.** The optimization problem (12) is equivalent to the following:

$$\min_{A} \operatorname{Tr} \left(\left(\widetilde{X}^{T} A A^{T} \widetilde{X} + \lambda_{2} I \right)^{-1} \right).$$
(13)

f f f С D /10.1109/ :// .2015.2439252. А f f f (13), $\gamma \|A\|_F^2$ $\|A\|_F \le \rho$ f

3.3 **Relations to Other Methods**

f

В 2.1, principal . A

$$\begin{array}{c} component \ regression \ (\ C \) \ 25 \ . \ f \ principal \\ component \ analysis \ (\ CA \) \\ f \ , \ f \ f \ \lambda_2 \ f \ (11), \end{array}$$

$$\min_{A} \operatorname{Tr}((A^T X X^T A)^{-1}).$$
(14)

f , f f *x*, 28. , f

f ,
$$v_1 \ge \dots \ge v_n \ge 0.$$
 , -
A
 $A = (\mathbf{a}_1, \dots, \mathbf{a}_k), \ \mathbf{a}_i = \sqrt{v_i} \mathbf{u}_i.$ (19)

4.2 Iterative Optimization

А

f

4.3. The optimization problem (13) is equivalent to the following optimization problem:

$$\min_{A,B} \|I - A^T \widetilde{X}B\|^2 + \lambda \|B\|^2,$$
(20)

where $A \in \mathbb{R}^{n \times k}$ and $B \in \mathbb{R}^{m \times k}$ are the two variables.

$$\begin{aligned} \frac{\partial \phi}{\partial B^T} &= 0\\ \Rightarrow B^T \widetilde{X}^T A A^T \widetilde{X} + B^T - A^T \widetilde{X} &= 0\\ \Rightarrow B &= (\widetilde{X}^T A A^T \widetilde{X} + \lambda I)^{-1} \widetilde{X}^T A. \end{aligned}$$

$$\begin{array}{cccc} B & & & & A, \\ f \phi & & A & & \vdots \end{array}$$

$$\frac{\partial \phi}{\partial A} = 0$$

$$\Rightarrow -2\frac{\partial \operatorname{Tr}(A^T \widetilde{X} B)}{\partial A} + \frac{\partial \operatorname{Tr}(A^T \widetilde{X} B B^T \widetilde{X}^T A)}{\partial A} = 0 \qquad (22)$$

$$\Rightarrow -2\widetilde{X} B + 2\widetilde{X} B B^T \widetilde{X}^T A = 0$$

$$\Rightarrow A = (\widetilde{X} B B^T \widetilde{X})^{-1} \widetilde{X} B.$$

f CA f 1) Af В . (21); 2) С 3) f A $\|A\|_F \le \rho$ f . (22), AA f ;

f

else if we control the size of A via a regularizer $\gamma ||A||_F^2$

3

2

$$A = (\widetilde{X}BB^T\widetilde{X} + \gamma I)^{-1}\widetilde{X}B.$$

5 EXPERIMENTAL RESULTS

5.1 Relevance Feedback Image Retrieval

f ff f f - f

:

$$S_{ij}^{AOP} = \begin{cases} \alpha, & \text{if } \mathbf{x}_i \in \mathbf{F}^+ \text{ and } \mathbf{x}_j \in \mathbf{F}^+; \\ 1, & \text{if } \mathbf{x}_i \in \mathcal{N}_k(\mathbf{x}_j) \text{ or } \mathbf{x}_j \in \mathcal{N}_k(\mathbf{x}_i); \\ 0, & \text{otherwise}, \end{cases}$$
(23)

$$A \qquad \begin{array}{c} f \\ A \qquad \mathbf{i} \\ \mathbf{i}$$

(21) **5.2 Data Preparation**

α

f 5,000 f 50 С f Ĺ 64-64-(C) 31 $4 \times 4 \times 4$. C . 31, f . C f f f ff f) , C f 31 f

5.3 Evaluation Settings

A

,

;

	precision-scope curve		precision r			
ff	f					-
	Nf	-				
		f		f		-
			N.		-	

f , 10 f , f

		ч <i>п</i> . —	· - /	. Г	1 - ' - ' T	- ı 		(%)			
С	В	А	А	í		С	В	А	А	í	
	99.3	99.8	99.8	99.8	99.8		38.2	70.5	61.7	52.0	66.2
С	94.0	99.3	98.3	99.8	99.3	В	38.5	58.2	45.8	35.0	43.0
D	87.8	98.7	98.5	97.2	99.3	С	39.0	60.3	47.5	27.2	48.2
	85.8	95.8	90.8	96.7	91.0	D	37.5	50.0	45.5	32.0	32.0
	83.3	95.7	70.7	88.7	66.7	С	35.3	55.5	49.8	36.5	47.3
С	73.0	94.8	93.8	89.5	94.2		40.0	58.2	46.5	40.5	42.7
D	67.5	92.5	79.5	90.0	87.5		33.5	56.5	54.8	44.3	52.8
	74.0	95.0	88.5	90.8	89.8	6	51.0	71.5	48.7	44.0	45.8
	79.2	80.3	80.3	80.3	80.3		32.2	49.5	43.3	43.2	39.8
	55.5	82.0	78.5	70.0	82.0		32.5	47.0	45.8	25.5	45.8
	53.3	82.8	59.7	58.5	67.5	В	28.5	55.0	50.3	33.5	46.3
	51.7	74.8	53.0	45.7	48.0	4 6.8	24.8	45.0	46.8	31.3	38.8
	43.5	74.8	61.0	57.0	66.8	6	32.5	52.5	45.8	40.5	42.8
С	62.0	78.8	63.3	63.0	63.3	B	21.5	42.3	36.0	18.5	36.5
А	44.3	66.8	56.3	48.5	51.2		39.0	57.0	54.5	35.37.	9699153.007

20 f (ff) f f 50 baseline 15 f Ĺ , 128f , f f . Af +1-1, , A f А Ĺ Ĺ , Ĺ 50 , A А f 43 f А 65.3, 57.7, 56.2, 49.4 f А Ĺ , . C f , A , 7.6 f А f f 50 f 300 , λ_1 λ_2 10--4 А A f λ_1 λ_2 **í** 50 Ĺ 2 Ĺ , precision-scope f ff 1 f . A 5.4 Image Retrieval Performance A f . Af f , f f 1 . A

f 1 f f f . ff . Af f

, A f f А Ĺ . A Ĺ А . Af f . A А , A Ĺ L f . B 10, (20, 50) 30 f 2. А f

f 45.7 90.1 20, f f f А Ĺ 80.7 81.3 45.7 f € .

5.5 Parameter Selection

f , λ_1 λ_2 . -f ff f 20 . 3 3. , $\lambda_2 = 10^{-4}$.3, λ_1 .3, $\lambda_1 = 10^{-4}$; λ_2 . A ,

6 **CONCLUSIONS**

.

A-, f f , f , f

ACKNOWLEDGMENTS

_

				В			f
С	(973)		2012CB31640)0,		-
	f	f	-		f	,	
				f C			
6123	33011	61125203.					

REFERENCES

- 1 , IEEE Trans. Pattern Anal. Mach. Intell., 27, . 2005. . 3, 1 f . 328 340,
- , Proc. 2 , 2008, . 433 442. 3
- D. , . . . , *IEEE Trans. Pattern Anal. Mach. Intell.*, , *IEEE Trans. Pattern Anal. Mach. Intell.*, , 2009. , C , . . , C -*Proc. 5th ACM SIGMM Int. Worksh* f . 31, . 2, . 260 274,
- , C -Proc. 5th ACM SIGMM Int. Workshop Multimedia Information , CA, A, 2003, 193 200. 4 , Retrieval, B

- Inf. Process. Syst. 16, C , A, A, 2003, . 153 160. Proc. Adv. Neural

- Inf. Process. Syst. 16, C
 , A, A, 2003, . 153 160.

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
- , C -

- , IEEE Trans. Pattern Anal. Mach. Intell., . 27, . 2, . 245 251, . 2005.