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round t, these meta-algorithms maintain O(log t) instances of the black-box. So the complexities of these
strongly adaptive algorithms are increasing with a factor of O(log t). Moreover, the strongly adaptive
regret can be decomposed as the sum of the meta regret caused by the meta-algorithm and the black-box
regret. While the black-box regret could be bounded by O(

√
τ ) for any length τ , the best meta regret

bound is O(
√

τ logT ) established by Jun et al. [5], which has an additional factor
√
logT .

Because of the ability to cope with changing environments, strongly adaptive algorithms are more
appropriate for real-world applications than traditional online algorithms. However, in many real-world
applications, the scale of data grows continuously and explosively, which means even logarithmic factors
O(

√
logT ) and O(log T ) cannot be ignored. Therefore, their increasing complexities and the gap between

their bounds and the optimal one are unacceptable, which significantly limits their applications. To tackle
this limitation, this paper aims to improve strongly adaptive algorithms by utilizing prior information of
environments. In many applications, the occurrence of environmental changes is related to other regular
events, and is knowable to the learner. For example, in moving tag detection [18, 19], the sensors used
to collect data are regularly expired and replaced by new ones, which causes the environment change
regularly. In recommender systems, the environment change could be mainly caused by the change of
the purchasing behaviors of customers. According to previous studies [20–22], the purchasing behaviors
of customers could change regularly under the impact of their life stages. Without loss of generality, we
assume a lower bound τ1 and an upper bound τ2 on how long the environment changes are given as the
prior information of applications. Our proposed algorithm only focuses on the performance over time
intervals with length in [τ1, τ2], instead of every interval.

Specifically, by utilizing this prior information, we propose a new meta-algorithm for strongly adaptive
online learning, which consists of two parts:

• A refined set of intervals, which is carefully designed to reduce the number of instances;
• A simple weighting method, which can cooperate with our refined set of intervals.
Compared with existing meta-algorithms, we only maintain O(log (τ2/τ1)) instead of O(log t) instances

of the black-box in each round t, and reduce the meta regret bound from O(
√

τ log T ) to O(
√

τ log (τ2/τ1))
for any focused interval with length τ . Combining with appropriate black-boxes, we establish the following
bounds:

• SAR(T, τ) = O(
√

τ log(τ2/τ1) +
√

τ logN) for LEA where N is the number of experts, which is
better than the O(

√
τ logT +

√
τ logN) bound in the previous work [5];

• SAR(T, τ) = O(
√

τ log(τ2/τ1)+GD
√

τ ) for OCO where D is the diameter of X and G is the bound
of any ‖∇ft(x)‖2, which is better than the O(

√
τ logT + GD

√
τ ) bound in the previous work [5].

Moreover, our meta regret and strongly adaptive regret for LEA also have problem-dependent bounds,
which could be much tighter when the loss of the competitor is small. Similarly, when the loss functions
are smooth, we can further improve our strongly adaptive regret bound for OCO to a problem-dependent
one. To verify the efficiency and effectiveness of our algorithm, we conduct numerical experiments on
LEA and OCO, respectively. The results demonstrate that our algorithm outperforms the state-of-the-art
algorithm.

2 Related work

In this section, we only review related work in strongly adaptive regret for brevity. More related work in
static regret can be found in surveys of online learning [23–25].

To measure the performance of the learner in changing environments, the pioneering work [26] proposed
adaptive regret, which is an extension of static regret and defined as

AR(T ) = max
[q,s]⊆[T ]

(

s
∑

t=q

ft(xt)− min
x∈X

s
∑

t=q

ft(x)

)

, (2)

where [T ] = {1, . . . , T }. Accordingly, Hazan and Seshadhri [26] proposed two meta-algorithms named as
follow the leading history (FLH) with O(T ) complexity and advanced follow the leading history (AFLH)
with O(log T ) complexity to minimize the adaptive regret AR(T ). For general convex functions, with an

approximate black-box, FLH and AFLH have adaptive regret bounds O(
√

T logT ) and O(
√

T log3 T ),
respectively. Note that these bounds depend on T instead of the length of intervals, which makes no
sense for intervals with small length such as O(

√
T ).
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Table 1 Comparison of strongly adaptive algorithms for LEA and general OCO, where previous regret bounds hold for any τ ∈ [T ]

and our bounds hold for τ ∈ [τ1, τ2]

Ref. SAR(T, τ) for LEA SAR(T, τ) for OCO Number of the instances

[4] O(
√

τ log T +
√

τ log N) O(
√

τ log T + GD
√

τ) O(log t)

[5, 34] O(
√

τ log T +
√

τ log N) O(
√

τ log T + GD
√

τ) O(log t)

[37] O(
√

τ log T +
√

τ log N) O(
√

τ log T + GD
√

τ) O(log2 t)

[38] O(
√

τ log T +
√

τ log N) O(
√

τ log T + GD
√

τ) O(log T ), O(log2 t)

This work O(
√

τ log(τ2/τ1) +
√

τ log N) O(
√

τ log(τ2/τ1) + GD
√

τ) O(log (τ2/τ1))

To overcome this limitation, Daniely et al. [4] proposed strongly adaptive regret SAR(T, τ) defined
in (1) and argued that an algorithm is strongly adaptive if for every environment, it has SAR(T, τ) =
O(poly(logT )R(τ)), where R(τ) is the minimax regret bound for time intervals with length τ and R(τ) =
O (

√
τ ) for general convex functions [27]. Compared with adaptive regret, strongly adaptive regret is a

refined measure, because it emphasizes the dependency on the interval length, which is meaningful even
for intervals with small length. For general convex functions, Daniely et al. [4] proposed the first strongly
adaptive meta-algorithm and established a meta regret bound as O(

√
τ logT ). The two key parts of the

meta-algorithm are:
• The geometric covering (GC) intervals defined as J =

⋃

j∈N∪{0} Jj , where Jj = {[i·2j , (i+1)·2j−1] :

i ∈ N};
• The weighting method, which is an extension of multiplicative weights (MW) [28] in the sleeping

expert setting [29].
According to the definition and illustration of J shown in Figure 1, it is easy to verify that any time t

is contained by at most O(log t) intervals, which is equal to the number of instances of the black-box. By
respectively choosing MW and online gradient descent [2] as the black-box, Daniely et al. [4] established
SAR(T, τ) = O(

√
τ logT +

√
τ logN) for LEA and SAR(T, τ) = O(

√
τ logT + GD

√
τ ) for OCO. Later,

Jun et al. [5] proposed a new meta-algorithm named coin betting for changing environment (CBCE) by
replacing MW with coin betting (CB) [30], which reduces the meta regret bound to O(

√
τ logT ) and

could accordingly improve the strongly adaptive regret bound for both LEA and OCO. Recently, Zhang
et al. [31] utilized the smoothness of loss functions to improve the strongly adaptive regret bound for
OCO to a problem-dependent bound by choosing AdaNormalHedge [32] and scale-free online gradient
descent (SOGD) [33] as the weighting method and the black-box, respectively.

However, the number of instances maintained by all the previous methods increases at least as O(log t),
which is unacceptable, especially for real-world applications where T could go to infinity. To accelerate
these algorithms, Wang et al. [34] proposed a series of algorithms that reduce the number of gradient
evaluations from O(log t) to 1 by carefully designing surrogate losses [35]. Although their algorithms
are much more efficient than previous strongly adaptive algorithms when the evaluation of gradients is
expensive, they only partially overcame the limitation of complexity because the number of the instances
is still O(log t). Moreover, for general convex functions, the factor

√
logT in the strongly adaptive regret

bounds of previous algorithms [5, 34] also limits their applications.
We also note that strongly adaptive algorithms for exponentially concave and strongly convex functions

have been proposed by Hazan and Seshadhri [26] and Zhang et al. [36] respectively. Recently, Zhang et
al. [37] further proposed a universal algorithm to minimize the strongly adaptive regret for different
types of convex functions. Although their algorithm enjoys the same strongly adaptive regret as that
of CBCE [5], it needs to maintain O(log2 t) instances in each round t. Moreover, Zhang et al. [38] have
proposed two algorithms to simultaneously minimize the strongly adaptive regret and dynamic regret,
where the latter is another performance measure for changing environments [2]. However, in each round
t, the first algorithm needs to maintain O(log T ) instances, and the second algorithm needs to maintain
O(log2 t) instances. In this paper, we focus on general convex functions and the strongly adaptive regret.
To facilitate comparisons, the strongly adaptive regret and the computational complexity of different
strongly adaptive algorithms for LEA and general OCO are summarized in Table 1 [4, 5, 34, 37, 38].

3 Main results

In this section, we present our algorithm for changing environments and the corresponding theoretical
results.
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Figure 1 Illustration of GC intervals, where each interval is denoted by [ ].
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Figure 2 The refined set of intervals where τ1 = 4 and τ2 = 16.

3.1 Algorithms

From previous studies [4,5], we know that strongly adaptive algorithms are composed of a set of intervals,
which decides the starting and ending time of instances of the black-box, and a weighting method that
weights these instances according to their performance in history. To ensure the performance on time
intervals with length in [τ1, τ2], we propose a new strongly adaptive algorithm with a refined set of
intervals and a simple weighting method, as explained below.

The set of intervals I. To ensure the optimal performance on every interval, the key property of
GC intervals J is that any interval can be partitioned into a finite sequence of disjoint and consecutive
intervals in J (Lemma 5 of Daniely et al. [4]). Because we only focus on intervals with length in [τ1, τ2],
it is reasonable to remove unnecessary intervals from J while keeping a similar property for focused
intervals. Specifically, we define a smaller set of intervals

I =
⋃

j=⌈log τ1⌉,...,⌈log τ2⌉
Ij , (3)

where Ij = {[i · 2j + 1, (i + 1) · 2j] : i ∈ N ∪ {0}}.
Comparing GC intervals J with our I, the most obvious difference is that the length of intervals in

I is bounded in [2⌈log τ1⌉, 2⌈log τ2⌉], instead of being unbounded in J . Furthermore, because the absence
of intervals shorter than τ1 affects the partition of intervals, our I only ensures that any focused interval
can be contained by two disjoint and consecutive intervals in it. Figure 2 gives an illustration of our I
with τ1 = 4, τ2 = 16. We maintain an instance BI of the black-box B during each time interval I ∈ I and
define the active set at time t as

Active(t) = {I ∈ I : t ∈ I} . (4)

In each round t = 1, . . . , T , each instance BI , ∀I ∈ Active(t) is working to generate a decision. To
aggregate decisions from active instances, we regard these instances as experts and utilize appropriate
methods to weight these experts.

The weighting method. To cooperate with GC intervals, AdaNormalHedge [32], CB [30], and
MW [28] have been extended to the sleeping expert setting by Zhang et al. [31], Jun et al. [5], and
Daniely et al. [4
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In the t-th round, AdaNormalHedge sets and normalizes the weight of expert i as

xt(i) ∝ ct(i) = W
(

Gi
t−1, Si

t−1

)

, (7)

where Gi
t−1 =

∑t−1
k=1(〈ℓk,xk〉 − ℓk(i)) is the regret with respect to expert i over the first t − 1 iterations

and Si
t−1 =

∑t−1
k=1 |〈ℓk,xk〉 − ℓk(i)| is the cumulative magnitude of the instantaneous regret over the first

t − 1 iterations. For brevity, we define g̃t(i) = 〈ℓt,xt〉 − ℓt(i).
According to the definition of potential function (5), it is easy to derive an upper bound of Gi

t as

Gi
t 6

√

3Si
t lnΦ(G

i
t, Si

t). However, because our I only ensures that any focused interval can be contained
by two disjoint and consecutive intervals in it, to cooperate with I, we need to bound the absolute value
of Gi

t. To this end, we redefine the potential function (5) with slight modifications as

Φ(x, y) = exp

(

x2

3y

)

, (8)

where Φ(0, 0) = 1 and |Gi
t| =

√

3Si
t lnΦ(G

i
t, Si

t). The weight function with respect to the new potential
function is still defined as (6) and the weight of each expert i is still set as ct(i) = W (Gi

t−1, Si
t−1).

However, with the new potential function, the value of ct(i) could be negative, which motivates the

following two modifications. First, to ensure xt ∈ ∆N where ∆N = {x :
∑N

i=1 x(i) = 1}, the normalized

weight is redefined as xt(i) ∝ [ct(i)]+. Second, to ensure
∑N

i=1 g̃t(i)ct(i) 6 0 that is essential for upper
bounding Φ(Gi

t, Si
t), we redefine

g̃t(i) =

{

〈ℓt,xt〉 − ℓt(i), ct(i) > 0,

[〈ℓt,xt〉 − ℓt(i)]+, ct(i) 6 0,
(9)

and recall Gi
t−1 =

∑t−1
k=1 g̃k(i), Si

t−1 =
∑t−1

k=1 |g̃k(i)|. We call this new algorithm as modified AdaNor-
malHedge and summarize its detailed procedures in Algorithm 1, where the superscript I is used to
distinguish its instances on different intervals.

Algorithm 1 Modified AdaNormalHedge

1: Input: Active interval I = [q, s], number of experts N .

2: for t = q, . . . , s do

3: cI
t (i) = W (

∑t−1
k=q

g̃I
k(i),

∑t−1
k=q

|g̃I
k(i)|) and xI

t (i) ∝ [cI
t (i)]+, ∀i ∈ [N ];

4: Receive loss vector ℓt ∈ [0, 1]N ;

5: ∀i ∈ [N ], g̃I
t (i) =

{

〈ℓt,xI
t 〉 − ℓt(i), c

I
t (i) > 0,

[〈ℓt,xI
t 〉 − ℓt(i)]+, c

I
t (i) 6 0;

6: end for

Based on the modified AdaNormalHedge, we proposed our weighting method that can aggregate de-
cisions from active instances of the black-box. The potential function and the corresponding weight
function are still defined as (8) and (6), respectively. To calculate the weight wI

t of each decision xI
t

generated by instance BI , we further define

RI
t =

t
∑

k=1

I[k∈I]r̃
I
k, CI

t =

t
∑

k=1

I[k∈I]|r̃I
k|, r̃I

k =

{

fk(xk)− fk(x
I
k), wI

k > 0,

[fk(xk)− fk(x
I
k)]+, wI

k 6 0,
(10)

for I ∈ I, where I[k∈I] = 1 if k ∈ I, and I[k∈I] = 0 if k /∈ I. Then, in each round t, ∀I ∈ Active(t),
the weight is calculated as wI

t = W (RI
t−1, CI

t−1) and normalized as pI
t ∝ [wI

t ]+. Finally, the decision of
meta-algorithm is calculated as

xt =
∑

I∈Active(t)

pI
tx

I
t . (11)

The detailed procedures of our meta-algorithm are summarized in Algorithm 2 and this algorithm is
called strongly adaptive online learning over partial intervals (SAOL-PI).

Remark. With our refined I, any time t is contained in only one interval in each Ij
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Algorithm 2 Strongly adaptive online learning over partial intervals

1: Input: A black-box algorithm B, prior information τ1, τ2.

2: I
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Assumption 3. The gradient satisfies ‖∇ft(x)‖2 6 G for any x ∈ X and t.

Under Assumptions 1–3, we bound the regret of SOGD in Lemma 2.

Lemma 2. Under Assumptions 1–3, for any I ∈ I, [q, s] ⊆ I and x ∈ X , Algorithm 3 with δ > 0,
α = D/

√
2 satisfies

s
∑

t=q

ft(x
I
t )− ft(x) 6

√
2D
√

δ + G2|I|. (15)

Then, combining Theorem 1 and Lemma 2, we can obtain Corollary 2.

Corollary 2. Let c = 3 ln(2τ
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Corollary 3. Let c = 3 ln(2τ2(3+ln(1+2τ2))/τ1) and c̃(x) = 3 ln(N(3+ln(1+x))/2). Under the setting
of LEA, for any x ∈ ∆N and I = [q, s] with length |I| ∈ [τ1, τ2], our Algorithm 2 using Algorithm 1 as
its black-box satisfies

s
∑

t=q

ft(x
I
t )−

s
∑

t=q

ft(x) 6 a(I) + b(I)

√

√

√

√

s
∑

t=q′

ft(x), (21)

where q′ = b q−1
2j c · 2j + 1, j = dlog |I|e, a(I) = 4c + 8

√

2cc̃(2j) + 4c̃(2j) and b(I) = 4
√
2c + 4

√

c̃(2j).

Remark. We first note that a(I) = O(log(τ2/τ1) + logN) and b(I) = O(
√

log(τ2/τ1) +
√
logN)

where we treat the double logarithmic factors as constant following [32]. Therefore, the upper bound in
Corollary 3 is on the order of

O



(
√

log(τ2/τ1) +
√

logN)

√

√

√

√

s
∑

t=q′

ft(x)



 . (22)

Because of s − q′ + 1 6 2j+1 6 4|I|, we have
√

∑s
t=q′ ft(x) 6

√

∑s
t=q′ 1 = O(

√

|I|), which means that

the above upper bound is comparable to the upper bound in Corollary 1 in the worst case. Moreover,

when the loss of the competitor is small,
√

∑s
t=q′ ft(x), which is a relaxation of

√

∑s
t=q ft(x), could be

much smaller than O(
√

|I|) in Corollary 1.

To achieve a problem-dependent regret bound for OCO, inspired by previous studies [31,39], we further
introduce Assumption 4 about the smoothness of the loss functions.

Assumption 4. For any t, the loss function ft is H-smooth, that is, for all x,x′ ∈ X

‖∇ft(x)−∇ft(x
′)‖2 6 H‖x− x′‖2. (23)

Then, we bound the regret of Algorithm 3 in Lemma 4.

Lemma 4. Under Assumptions 1, 2 and 4, for any I ∈ I, [q, s] ⊆ I, and x ∈ X , Algorithm 3 with
δ > 0, α = D/

√
2 satisfies

s
∑

t=q

ft(x
I
t )−

s
∑

t=q

ft(x) 6 8HD2 + D

√

√

√

√2δ + 8H

s
∑

t=1

I[t∈I]ft(x). (24)

Combining (19) with (24), we can obtain the following regret bound.

Corollary 4. Let c = 3 ln(2τ2(3 + ln(1 + 2τ2))/τ1). Under Assumptions 1, 2 and 4, for any x ∈ X
and I = [q, s] with length |I| ∈ [τ1, τ2], our Algorithm 2 using Algorithm 3 with δ > 0, α = D/

√
2 as its

black-box satisfies

s
∑

t=q

ft(x
I
t )−

s
∑

t=q

ft(x) 6 ã(I) + b̃(I)

√

√

√

√

s
∑

t=q′

ft(x), (25)

where q′ = b q−1
2j c · 2j + 1, j = dlog |I|e, ã(I) = 6c + 56HD2 + 6D

√
2δ and b̃(I) = 4

√
2c + 4

√
HD2.

Remark. Similar as a(I) and b(I) in Corollary 3, we note that ã(I) = O(log(τ2/τ1) + HD2) and

b̃(I) = O(
√

log(τ2/τ1) +
√

HD2). Therefore, the upper bound in Corollary 4 is on the order of

O



(
√

log(τ2/τ1) +
√

HD2)

√

√

√

√

s
∑

t=q′

ft(x)



 , (26)

which is comparable to the upper bound in Corollary 2 in the worst case and could be much tighter when
the loss of the competitor is small.
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4 Theoretical analysis

Due to the limitation of space, we only provide the proof of Theorems 1 and 2, and the omitted proofs
can be found in the supplementary material.

4.1 Proof of Theorems 1 and 2

We first introduce an essential lemma about the property of our potential function (8), which is a variant
of Lemma 5 in Luo and Schapire [32].

Lemma 5. For any I ∈ I and t ∈ I, Algorithm 2 has

Φ(RI
t , CI

t ) 6 Φ(RI
t−1, CI

t−1) + wI
t r̃I

t +
|r̃I

t |
2(CI

t−1 + 1)
. (27)

For any I ∈ I, there must be an integer i > 0 such that I ⊆ [i · 2⌈log τ2⌉ + 1, (i + 1) · 2⌈log τ2⌉], due
to the definition of I. Therefore, we define I ′ = {I ′ ∈ I : I ′ ⊆ [t1, t2]}, where t1 = i · 2⌈log τ2⌉ + 1 and
t2 = (i + 1) · 2⌈log τ2⌉. Repeatedly applying Lemma 5, for any k ∈ I, we have

∑

I′=[q′,s′]∈I′

Φ(RI′

k∧s′ , CI′

k∧s′)

6
∑

I′=[q′,s′]∈I′

(

Φ(RI′

k∧s′−1, CI′

k∧s′−1) + wI′

k∧s′ r̃I′

k∧s′ +
|r̃I′

k∧s′ |
2(CI′

k∧s′−1 + 1)

)

6 |I ′|+
k
∑

t=t1

∑

I′∈I′

I[t∈I′]r̃
I′

t wI′

t +
∑

I′=[q′,s′]∈I′

k∧s′

∑

i=q′

|r̃I′

i |
2(CI′

i−1 + 1)

6 |I ′|+
k
∑

t=t1

∑

I′∈I′

I[t∈I′]r̃
I′

t wI′

t +
∑

I′=[q′,s′]∈I′

s′

∑

i=q′

|r̃I′

i |
2(CI′

i−1 + 1)
, (28)

where k ∧ s′ = min(k, s′). It is easy to verify that

|I ′| =
⌈log τ2⌉
∑

j=⌈log τ1⌉

2⌈log τ2⌉

2j
= 2⌈log τ2⌉−⌈log τ1⌉+1 − 1 6

4τ2
τ1

. (29)

Moreover, because of pI′

t ∝ [wI′

t ]+, for any t ∈ [t1, t2], we have

∑

I′∈I′

I[t∈I′]r̃
I′

t wI′

t

=
∑

I′∈I′:I[t∈I′]w
I′

t >0

[wI′

t ]+(ft(xt)− ft(x
I′

t )) +
∑

I′∈I′:I[t∈I′]w
I′

t 60

I[t∈I′]w
I′

t [ft(xt)− ft(x
I′

t )]+

6





∑

I′∈Active(t)

[wI′

t ]+





∑

I′∈I′:I[t∈I′]w
I′

t >0

pI′

t (ft(xt)− ft(x
I′

t )) 6 0, (30)

where the last inequality is due to Active(t) ⊆ I ′, xt =
∑

I′∈Active(t) pI′

t xI′

t and Jensen’s inequality. To

bound the last term in (28), we further introduce Lemma 6.

Lemma 6 (Lemma 14 of Gaillard et al. [40]). Let a0 > 0 and a1, . . . , am ∈ [0, 1] be real numbers and
let f : (0,+∞) 7→ [0,+∞) be a nonincreasing function. Then

m
∑

i=1

aif





i−1
∑

j=0

aj



 6 f(a0) +

∫

∑

m
j=0 aj

a0

f(x)dx. (31)
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Applying Lemma 6 with f(x) = 1/x, for any I ′ = [q′, s′] ∈ I ′, we have

s′

∑

i=q′

|r̃I′

i |
(CI′

i−1 + 1)
6 1 +

∫ 1+CI′

s′

1

1

x
dx = 1 + ln(1 + CI′

s′ ). (32)

Substituting (29), (30) and (32) into (28), we have

∑

I′=[q′,s′]∈I′

Φ(RI′

k∧s′ , CI′

k∧s′) 6
4τ2
τ1

+
1

2

∑

I′=[q′,s′]∈I′

(1 + ln(1 + CI′

s′ ))

6
4τ2(3 + ln(1 + t2 − t1 + 1))

2τ1

6
2τ2(3 + ln(1 + 2τ2))

τ1
= exp(c/3), (33)

where c = 3 ln(2τ2(3 + ln(1 + 2τ2))/τ1). According to the definition and I ∈ I ′, we further have

|RI
k| =

√

3CI
k lnΦ(RI

k, CI
k ) 6

√

3CI
k ln

∑

I′=[q′,s′]∈I′

Φ(RI′

k∧s′ , CI′

k∧s′) 6
√

cCI
k . (34)

Then, for any [q, s] ⊆ I, we have

s
∑

t=q

ft(xt)−
s
∑

t=q

ft(x
I
t ) 6

s
∑

t=q

r̃I
t =

s
∑

t=1

I[t∈I]r̃
I
t −

q−1
∑

t=1

I[t∈I]r̃
I
t

6 |RI
s − RI

q−1| 6 |RI
s |+ |RI

q−1| 6 2
√

cCI
s . (35)

It is easy to obtain (12) in Theorem 1 due to CI
s 6 |I|.

For brevity, let LI
k =

∑k
t=1 I[t∈I]ft(x

I
t ) for any k ∈ I. To prove (19) in Theorem 2, we note that for

any k ∈ I,

CI
k =

k
∑

t=1

I[t∈I]|r̃I
t | =

k
∑

t=1

I[t∈I](r̃
I
t + 2[−r̃I

t ]+)

= RI
k + 2

k
∑

t=1

I[t∈I][−r̃I
t ]+ 6 RI

k + 2LI
k, (36)

where the last inequality is due to [−r̃I
t ]+ = ft(x

I
t ) − ft(xt) 6 ft(x

I
t ) when r̃I

t < 0 and [−r̃I
t ]+ = 0 6

ft(x
I
t ) when r̃I

t > 0. Plugging the above inequality into (34) and taking square on both sides, we have
(RI

k)
2 6 cRI

k + 2cLI
k which implies that

|RI
k| 6

c +
√

c2 + 8cLI
k

2
6 c +

√

2cLI
k. (37)

Replacing the last inequality in (35) with the above inequality, we have

s
∑

t=q

ft(xt)−
s
∑

t=q

ft(x
I
t ) 6 |RI

s|+ |RI
q−1| 6 2c + 2

√

2cLI
s. (38)

4.2 Proof of Lemma 5

Lemma 5 can be derived by following the proof of Lemma 5 in Luo and Schapire [32] with slight modifi-
cations to deal with our potential function (8). We include this proof for completeness.
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It is easy to derive that

Φ(RI
t−1 + r, CI

t−1 + |r|) = exp

(

(RI
t−1 + r)2

3
(

CI
t−1 + |r|

)

)

(39)

as a function of r is convex on r ∈ [−1, 0] and r ∈ [0, 1] respectively, due to

(RI
t−1 + r)2

CI
t−1 + |r| = (CI

t−1 + r) +
(RI

t−1 − CI
t−1)

2

CI
t−1 + r

+ 2(RI
t−1 − CI

t−1), (40)

when r ∈ [0, 1] and

(RI
t−1 + r)2

CI
t−1 + |r| = (CI

t−1 − r) +
(RI

t−1 + CI
t−1)

2

CI
t−1 − r

− 2(RI
t−1 + CI

t−1), (41)

when r ∈ [−1, 0].
Furthermore, we define a function h(r) .97I

−1)
I
−1)r|)
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