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negative matrix factorization (RNMF) is proposed in

this paper. We assume that some entries of the data

matrix may be arbitrarily corrupted, but the corruption

is sparse. RNMF decomposes the non-negative data ma-

trix as the summation of one sparse error matrix and the

product of two non-negative matrices. An e�cient iter-

ative approach is developed to solve the optimization

problem of RNMF. We presen t experimental results on

two face databases to verify the e�ectiveness of the pro-

posed method.

Keywords robust non-negative matrix factorization
(RNMF), convex optimization, dimensionality reduction

1 Introduction

In real world applications as diverse as information re-
trieval, remote sensing, biology and economics, one is
often confronted with high-dimensional data. Because of
the curse of dimensionality, procedures that are analyti-
cally or computationally manageable in low-dimensional
spaces can become completely impractical in high di-
mensions [1]. For example, nearest neighbor methods
usually break down when applied to high-dimensional
data, because the neighborhoods are no longer local [2].
As a result, dimensionality reduction [3] has become an
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essential data preprocessing step in most data mining
applications.

During the past decades, various techniques of ma-
trix factorization have been used to find the low-
dimensional structure hidden in the original data. The
most famous matrix factorization based dimensionality
reduction methods include principal component analy-
sis (PCA) [4], latent semantic indexing (LSI) [5] and
non-negative matrix factorization (NMF) [6]. Let X =
[x1, x2, . . . ,xm] ∈ R

n×m be the data matrix consisting
of n features and m samples. All three methods construct
approximate factorizations of the form:

X ≈WH , (1)

where W ∈ R
n×r and H ∈ R

r×m. The columns of W is
regarded as basis vectors, and the columns of H give the
new low-dimensional representations for the m samples.
As can be seen, all three methods learn to represent each
sample as a linear combination of the basis vectors.

In PCA and LSI, the columns of W are constrained
to be orthonormal, and the matrix H is obtained by
projecting the data samples onto the subspace spanned
by the columns of W , i.e., H = W TX. PCA, which is
based on eigen decomposition, reduces the dimensional-
ity of the data by finding a few orthonormal projections
(columns in W ) such that the variance of the projected
data is maximized. In fact, it turns out that these pro-
jections are just the leading eigenvectors of the data’s co-
variance matrix, which are called principal components.
Different from PCA, LSI is based on singular value de-
composition (SVD) [7]. LSI projects the data samples
onto a low-dimensional space using the left singular vec-
tors of X. Also, it can be proved that the product WH

is the best low-rank approximation to X.
One drawback of PCA and LSI is that the negative

values appeared in the projections make the factoriza-
tion hard to interpret. When working in the domains
where data are naturally non-negative, we would like to
find non-negative basis vectors and represent the sam-
ples as non-negative combinations of these basis vec-
tors. NMF [6] is such a technique for factorizing the
non-negative data matrix X as the product of two non-
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negative matrices. The non-negative constraints lead to
a parts-based representation because they allow only ad-
ditive, not subtractive, combinations. Compared with
PCA and LSI, the results of NMF are more consis-
tent with human intuition. And NMF has been success-
fully applied to document clustering [8], face recognition
[9,10] and microarray analysis [11,12].

In NMF, the two matrices W and H are found by
minimizing the approximation error subject to the non-
negative constraints. Traditionally, the approximation
error is measured by the square Euclidean distance or
the generalized Kullback-Leibler divergence between X

and WH [13]. These two cost functions are optimal if
the approximation error is caused by Gaussian noise or
Poisson noise [14]. However, in reality, it is very com-
mon that some entries of the data are grossly corrupted,
which violates these noise assumptions significantly. For
example, due to the sensor failure or the presence of ob-
stacles, pixels of a digital image may change violently.

Inspired by the recent studies in robust principal
component analysis [15], we propose a novel algo-
rithm named Robust non-negative matrix factorization
(RNMF). In RNMF, the errors in the data can take arbi-
trary values, but are assumed to be sparse. Specifically,
we introduce an error matrix S to explicitly capture the
sparse corruption. The non-negative data matrix X is
then decomposed as WH + S, where W and H are
constrained to be non-negative, and S is required to be
sparse. An iterative approach is introduced to efficiently
compute a solution by solving a sequence of convex op-
timization problems. Experiments on two face data sets
have demonstrated the advantages of RNMF.

The rest of the paper is organized as follows. In Sect.
2, we provide a brief description of the related work. Our
proposed RNMF is introduced in Sect. 3. In Sect. 4, we
develop an efficient iterative approach to solve the opti-
mization problem. Experiments are presented in Sect. 5.
Finally, we provide some concluding remarks and sug-
gestions for future work in Sect. 6.

2 Related work

In this section, we give a brief review of three most fa-
mous matrix factorization based dimensionality reduc-
tion methods.

2.1 PCA

PCA [4] can be defined in terms of the orthogonal
projections that maximize the variance in the pro-
jected subspace. Given a set of n-dimensional samples
x1, x2, . . . ,xm, we first consider the projection onto a
one-dimensional space using an n-dimensional vector w.

Let x̄ be the sample mean. The optimization problem of
PCA is given by

max
w

wTCw

s.t. wTw = 1, (2)

where C is the data covariance matrix defined by

C =
1
m

m∑

i=1

(xi − x

i

−

x
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To find an approximate factorization, we need to de-
fine cost functions that quantify the quality of the ap-
proximation. The two most popular cost functions are:

1) The square Euclidean distance between X and
WH , i.e.,

‖X −WH‖2F =
n∑

i=1

m∑

j=1

‖Xij − (WH)ij‖2. (7)

2) The generalized Kullback-Leibler divergence be-
tween X and WH , i.e.,

D(X‖WH)

=
n∑

i=1

m∑

j=1

(
Xij log

Xij

(WH)ij
−Xij + (WH)ij

)
. (8)

Both of the two cost functions can be solved by multi-
plicative algorithms [13]. The update rules for the square
Euclidean distance are given by

Hij ← (W TX)ij

(W TWH)ij
Hij , Wij ← (XHT)ij

(WHHT)ij
Wij .

(9)
And the update rules for the divergence are as follows

Hij ←
∑

k WkiXkj/(WH)kj∑
k Wki

Hij , (10)

Wij ←
∑

k HjkXik/(WH)ik∑
k Hjk

Wij . (11)

3 RNMF

3.1 Motivation

The two widely adopted cost functions of NMF (the
square Euclidean distance and the generalized Kullback-
Leibler divergence) are optimal for Gaussian noise and
Poisson noise, respectively [14]. However, in many app-
lications such as image processing and remote sensing,
the errors in the data may be arbitrarily large. The tra-
ditional NMF will break down under this case, since the
error assumptions are violated significantly.

3.2 Objective

Motivated by the recent studies in robust principal
component analysis [15], we propose a novel algorithm
named RNMF to handle the case with gross errors. We
assume that some entries of the data matrix may be ar-
bitrarily corrupted, but the corruption is sparse. Specifi-
cally, we introduce an error matrix S ∈ R

n×m to explic-
itly capture the sparse corruption. The goal of RNMF is
to approximate the non-negative matrix X as

X ≈WH + S, (12)

where W ∈ R
n×r and H ∈ R

r×m are constrained to be
non-negative, and S ∈ R

n×m is required to be sparse.
Due to the presence of S, W and H are protected from
the corruption. Thus, the above decomposition is more
robust than the traditional NMF.

The optimal W , H and S can be found by minimizing
the approximation error. Thus, we also need to define a
suitable cost function to measure the approximation er-
ror. The two cost functions of traditional NMF can be
applied here. In this paper, we choose the square Eu-
clidean distance between X and WH + S as our cost
function, due to its simplicity. Then, the objective func-
tion of RNMF is given by

‖X −WH − S‖2F =
n∑

i=1

m∑

j=1

‖Xij − (WH)ij − Sij‖2.

(13)
Let ‖ · ‖0 be the matrix �0-norm which counts the num-
ber of nonzero elements in its argument. To enforce the
sparsity, we add an �0-norm constraint on S:

‖S‖0 � v, (14)

where v is the parameter that specifies the maximum
number of nonzero elements in S. Finally, we obtain the
following optimization problem:

min
W ,H,S

‖X −WH − S‖2F
s.t. W � 0, H � 0, ‖S‖0 � v. (15)

Since the �0-norm is difficult to solve, we replace the
�0-norm constraint with a �1-norm regularizer, which has
been a standard technique for sparse solution. Then, the
optimization problem (15) is reformulated as

min
W ,H,S

‖X −WH − S‖2F + λ‖S‖1
s.t. W � 0, H � 0,

(16)

where ‖S‖1 =
∑n

i=1

∑m
j=1 |Sij | and λ > 0 is the regu-

larization parameters, which controls the sparsity of S.

4 Optimization

In the following, we introduce an iterative approach
based on the coordinate descent to solve problem (16).
The values of W , H and S are updated individually,
while holding the other variables constant. Problem (16)
is not convex in W , H and S jointly, but convex in them
separately. Thus, a local optimal solution can be found
by solving a sequence of convex optimization problems.

4.1 Optimize H and W for fixed S

The optimization problems for updating W and H are
in the form of non-negative quadratic programming,
which can be solved by multiplicative updates [16].
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First, we show how to update H , given the values of
W and S. Let J denote the objective function in Eq.
(16). For the fixed W and S, the part of J that involves
H is

‖X −WH − S‖2F
= ‖S −X + WH‖2F
= Tr

[(
(S −X)T + HTW T

)
(S −X + WH)

]

= Tr(HTW TWH) + 2Tr
(
(S −X)TWH

)

+Tr
(
(S −X)T(S −X)

)
. (17)

Dropping the last constant term Tr
(
(S−X)T(S−X)

)
,

we obtain the following convex problem for updating H :

min
H

Tr(HTW TWH) + 2Tr
(
(S −X)TWH

)

s.t. H � 0. (18)

Theorme 1 Consider the following non-negative
quadratic programming problem:

min
v

1
2
vTAv + bTv

s.t. v � 0, (19)

where A is a symmetric positive semidefinite matrix.
Let A+ and A− denote the non-negative matrices with
elements:

A+
ij =

{
Aij , if Aij � 0,

0, otherwise,
and A−

ij =

{
|Aij |, if Aij < 0,

0, otherwise.
(20)

It has been proved that the optimal solution of prob-
lem (19) can be obtained by the following multiplicative
updates [16]:

vi ←
[
−bi +

√
b2

i + 4(A+v)i(A−v)i

2(A+v)i

]
vi. (21)

The above update is guaranteed to decrease the value
of the objective function at each iteration. Moreover, if
the initial value of v is non-negative, its value stays non-
negative in all the iterations.

Theorem 1 can be directly applied to solving our opti-
mization problem (18). W TW in Eq. (18) corresponds
to the matrix A in problem (19). Since the value of W

stays non-negative in our optimization procedures, we
have

A+ = A = W TW , and A− = 0. (22)

Following Theorem 1, the update rule for H is given by

Hij ←
⎡

⎣

∣∣∣
(
W T(S −X)

)
ij

∣∣∣− (
W T(S −X)

)
ij

2(W TWH)ij

⎤

⎦ Hij .

(23)

By reversing the roles of H and W , we can derive the
following update rule for W :

Wij ←
⎡

⎣

∣∣∣
(
(S −X)HT

)
ij

∣∣∣− (
(S −X)HT

)
ij

2(WHHT)ij

⎤

⎦Wij .

(24)

4.2 Optimize S for fixed H and W

The convex optimization problem for updating S can be
solved efficiently via the soft-thresholding operator [17].

For the fixed H and W , the optimization problem for
updating S is

min
S
‖X −WH − S‖2F + λ‖S‖1. (25)

Theorme 2 Define the soft-thresholding operator Tν(·)
as follows:

Tν(x) =

⎧
⎪⎨

⎪⎩

x− ν, if x > ν,

x + ν, if x < −ν,

0, otherwise,

(26)

where x ∈ R and ν > 0. This operator can be extended
to vectors and matrices by applying it element-wise.
Now, consider the following �1-minimization problem:

min
v

1
2‖x− v‖2F + ν‖v‖1. (27)

The unique solution v∗ of Eq. (27) is given by Tν(x) [17].
According to Theorem 2, the optimal solution to prob-

lem (25) is T λ
2
(X −WH). Thus, the update rule for S

is
S ← T λ

2
(X −WH). (28)

As can be seen from the above equation, if λ/2 >

maxij(X −WH)ij , all the elements in S will be zero.
Thus, RNMF is equivalent to NMF when λ is large
enough.

4.3 Algorithm

Following Theorems 1 and 2, we know that the objective
function J is nonincreasing under the three iterative up-
dating rules described in Eqs. (23), (24) and (28). Since
the objective function is bounded below, the convergence
of the algorithm is guaranteed.

Note that the solution to minimizing the objective
function J is not unique. If W and H are the solution
to J , then, WD and D−1H will also form a solution for
any positive diagonal matrix D [8]. To remove this free-
dom, we further require that the norm of each column
vector (the base) in W is one. Then, we compensate
the norms of the bases into H to keep the value of J

unaltered. The two normalization steps are as follows:
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Wij ← Wij√∑n
k=1 W 2

kj

, (29)

Hij ← Hij

√√√√
n∑

k=1

W 2
ki. (30)

The detailed algorithmic procedure is presented in Al-
gorithm 1.

Algorithm 1 Iterative algorithm for robust NMF

Input: The n × m data matrix (X), the initial values of W

and H (W0 and H0), the regularization parameter (λ), the
number of iterations (t)

Output: The final values of W , H and S

1: W ←W0

2: H←H0

3: for i = 1 to t do

4: S←X −WH

5: Sij ←

8
>>>><

>>>>:

Sij − λ

2
, if Sij >

λ

2
,

Sij +
λ

2
, if Sij < −λ

2
,

0, otherwise.

6: Wij ←

2

6
6
4

˛
˛
˛
˛

“
(S−X )HT

”

ij

˛
˛
˛
˛−

“
(S−X )HT

”

ij

2(W HHT)ij

3

7
7
5Wij

7: Hij ←

2

6
6
4

˛
˛
˛
˛

“
W T(S−X )

”

ij

˛
˛
˛
˛−

“
W T(S−X )

”

ij

2(W TW H )ij

3

7
7
5Hij

8: Wij ← Wij
qPn

k=1 W 2
kj

9: Hij ← Hij

v
u
u
t

nX

k=1

W 2
ki

10: end for

5 Experiments

In this section, we evaluate the performance of our
proposed RNMF algorithm for face clustering and face
recognition. The following three dimensionality reduc-
tion methods are compared:

1) PCA [4]
2) LSI [5]
3) RNMF
Besides, we also provide the results of the Baseline

method, which uses the original feature without dimen-
sionality reduction. Note that the iterative procedure for
solving RNMF can only find local minimum, and is sen-
sitive to the initial values of W and H . In the experi-
ments, we run Algorithm 1 ten times with different start
values and the best result in terms of the objective func-
tion of RNMF is recorded. Because RNMF is equivalent

to the traditional NMF, when λ is large enough, we do
not show the result of the traditional NMF explicitly,
since it can be inferred from that of RNMF.

5.1 Data sets

Two face images databases are used in the experiments:
the Yale face database and the AR face database.

The Yale face database1) contains 165 gray scale im-
ages of 15 individuals. There are 11 images per sub-
ject, one per different facial expression or configuration:
center-light, w/glasses, happy, left-light, w/no glasses,
normal, right-light, sad, sleepy, surprised, and wink. All
the face images are manually aligned and cropped. The
size of each cropped image is 64 × 64 pixels, with 256
gray levels per pixel. Thus, each image is represented
as a 4096-dimensional vector. To simulate the case that
the images are grossly corrupted, we randomly select 30
percent of the images in the Yale face database for cor-
ruption. These images are corrupted by superimposing
one 8× 8 white block on them. Figure 1(a) shows some
sample images from the corrupted Yale face database.

The AR face database2) was created by Aleix Mar-
tinez and Robert Benavente in the Computer Vision
Center (CVC) at the U.A.B [18]. It consists of over 3200
color images corresponding to 126 people’s faces. There
are 26 different images for each subject. Images feature
frontal view faces with different facial expressions, il-
lumination conditions, and occlusions (sun glasses and
scarf). In this paper, we use the morphed images pro-
vided by Ref. [19]. These color images are resized to
47 × 64 and converted to gray-level images. This way,
each image is represented as a 3008-dimensional vector.
Figure 2 shows some sample images from the AR face
database.

In the experiments, we pre-process the face images by
scaling features (pixel values) to [0,1] (divided by 255).

5.2 Case study

It is very interesting to see the decomposition result of
RNMF on the face database. We take the corrupted Yale
face database as an example. RNMF is applied to re-
ducing the dimensionality from 4096 to 15. That is, the
4096× 165 data matrix X is decomposed as

X ≈WH + S, (31)

where W ∈ R
4096×15, H ∈ R

15×165, and S ∈ R
4096×165.

Let H = [h1, h2, . . . ,h165] and S = [s1, s2, . . . , s165].
Then, the decomposition can be rewritten column by
column as

xi ≈Whi + si, i = 1, 2, . . . , m. (32)

1) http://cvc.yale.edu/projects/yalefaces/yalefaces.html
2) http://www2.ece.ohio-state.edu/ aleix/ARdatabase.html
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Fig. 1 Decomposition result of RNMF on the corrupted Yale face database. We apply RNMF to reducing the dimension-
ality of the faces from 4096 to 15, and the parameter λ is set to 0.3. (a) 15 sample images from the corrupted Yale face
database; (b) reconstructed faces for the 15 sample images; (c) error vectors for the 15 sample images; (d) 15 basis vectors
contained in W

Fig. 2 Sample images from the AR face database

In the following, we refer to Whi as the reconstructed
face, and si as the error vector. Figure 1 plots the decom-
position result of RNMF with the parameter λ = 0.3.
Because of limited space, we just show 15 sample faces
(Fig. 1(a)), their corresponding reconstructed faces (Fig.
1(b)), their corresponding error vectors (Fig. 1(c)), and
the 15 basis vectors contained in W (Fig. 1(d)). As
can be seen, the faces reconstructed by RNMF are quite
clear, and we can hardly find the white blocks. Further-
more, the man-made corruption is indeed captured by
the error vectors.

5.3 Face clustering

In this subsection, we show the experimental results of
face clustering.

5.3.1 Evaluation metrics

Two metrics, the accuracy (AC) and the normalized mu-
tual information (MI), are used to measure the clustering
performance [8]. Given a face image xi, let pi and qi be
the obtained cluster label and the label provided by the
database, respectively. The AC is defined as follows:

AC =
∑m

i=1 δ(qi, map(pi))
m

, (33)

where m is the total number of face images, δ(a, b) is
the delta function that equals one if a = b and equals
zero otherwise, and map(pi) is the permutation mapping
function that map each cluster label pi to the equivalent
label from the database. The best mapping can be found
by using the Kuhn-Munkres algorithm [20].

Let C denote the set of clusters provided by the
database and C′ obtained from the clustering algorithm.
Their mutual information metric MI(C, C′) is defined as
follows:

MI(C, C′) =
∑

ci∈C, c′
j∈C′

p(ci, c
′
j) log2

p(ci, c
′
j)

p(ci)p(c′j)
, (34)

where p(ci) and p(c′j) are the probabilities that a face
image arbitrarily selected from the database belongs to
the clusters ci and c′j , respectively, and p(ci, c

′
j) is the

joint probability that the arbitrarily selected face im-
age belongs to the cluster ci as well as c′j at the same
time. In our experiments, we use the normalized mutual
information MI as follows:

MI =
MI(C, C′)

max(H(C), H(C ′))
(35)
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Fig. 3 Clustering results on the corrupted Yale face database. Each dimensionality reduction algorithm is applied to
mapping the face images to a 15-dimensional subspace. Then, k-means is applied to partitioning these faces into 15 clusters.
(a) Accuracy versus value of λ; (b) normalized mutual information versus the value of λ

where H(C) and H(C ′) are the entropies of C and C′,
respectively.

5.3.2 Experimental results

The clustering experiments are performed on the cor-
rupted Yale database. First, all the face images are
mapped to a 15-dimensional subspace by each dimen-
sionality reduction algorithm (PCA, LSI, and RNMF).
Second, we use k-means to partition these faces into 15
clusters. The result of k-means in the original feature
space is referred to as Baseline since the k-means algo-
rithm can only find local minimum. In our experiments,
we apply it 50 times with different start points and the
best result in terms of its objective function is recorded.

For our RNMF, there is a regularization parameter λ,
which controls the sparsity of S. In Fig. 3, we show the
clustering performance of RNMF versus the value of λ.
As can be seen, RNMF can achieve significantly better
performance than other methods over a large range of
λ (0.1 to 0.6). As λ increases, the elements in S tend
to be zero more often than not, and hence our RNMF
actually converges to NMF. When λ is large enough, all
the elements in S will be zero. Then, the performance
of RNMF does not depend on λ any more. The perfor-
mance of PCA and SVD is similar, and better than the
Baseline.

5.4 Face recognition

We choose the first 10 subjects of the AR face database
to form an image subset, which contains 260 face images.
The face recognition experiments are performed on this
subset. As before, we reduce the dimensionality of these
images from 3008 to 15 using each dimensionality reduc-
tion algorithm, and do face recognition in the reduced
subspace. Recognition in the original 3008-dimensional

space is referred to as Baseline.
We select 3 images per subject as the training data,

and the rest are used for testing. The 1-nearest neigh-
bor (1-nn) classifier is used to classify the testing data.
50 training/testing splits are randomly generated and
the average classification accuracy over these splits is
used to evaluate the face recognition performance. Fig-
ure 4 plots the average classification accuracy versus the
value of λ. The classification accuracy of RNMF is much
better than the compared methods. On this database,
the performance of RNMF levels off at λ = 2. Note that
for face recognition, the performance of PCA and LSI is
even worse than the Baseline.

Fig. 4 Average classification accuracy versus value of λ on the
AR face database

6 Conclusions

In this paper, we propose a novel dimensionality reduc-
tion method named Robust Non-negative Matrix Factor-
ization (RNMF). RNMF allows some entries of the data
matrix to be grossly corrupted, but the corruption need
to be sparse. Experimental results on two standard face
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databases show that RNMF can significantly improve
the performance of face clustering and recognition.

There is still one open question that needs to be
addressed. That is, under what conditions can RNMF
recover the optimal W and H from the corrupted data
matrix? We will investigate this in the future.
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