
Online Frank-Wolfe with Arbitrary Delays

Yuanyu Wan1,2, Wei-Wei Tu3,4, Lijun Zhang 4,�

1School of Software Technology, Zhejiang University, Ningbo, China
2Zhejiang University-China Southern Power Grid Joint Research Centre on AI, Hangzhou, China

34Paradigm Inc., Beijing, China
4National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

wanyy@zju.edu.cn, tuweiwei@4paradigm.com, zhanglj@lamda.nju.edu.cn

Abstract

The online Frank-Wolfe (OFW) method has gained much popularity for online
convex optimization due to its projection-free property. Previous studies show that
OFW can attain anO(T3=4) regret bound for convex losses and anO(T2=3) regret
bound for strongly convex losses. However, they assume that each gradient queried
by OFW is revealed immediately, which may not hold in practice and limits the
application of OFW. To address this limitation, we propose a delayed variant of
OFW, which allows gradients to be delayed by arbitrary rounds. The main idea is
to perform an update similar to OFW after receiving any delayed gradient, and play
the latest decision for each round. Despite its simplicity, we prove that our delayed
variant of OFW is able to achieve anO(T3=4 + dT1=4) regret bound for convex
losses and anO(T2=3 + d logT) regret bound for strongly convex losses, where
d is the maximum delay. This is quite surprising since under a relatively large
amount of delay (e.g.,d = O(

p
T) for convex losses andd = O(T2=3=logT) for

strongly convex losses), the delayed variant of OFW enjoys the same regret bound
as that of the original OFW.

1 Introduction

Online convex optimization (OCO) has become a leading paradigm for online learning due to its ca-
pability to model various problems from diverse domains such as online routing, online collaborative
�ltering, and online advertisement [Hazan, 2016]. In general, it is formulated as a structured repeated
game between a player and an adversary. In each roundt, the player �rst chooses a decisionx t from
a convex decision setK � Rn , wheren is the dimensionality. Then, the adversary selects a convex
functionf t (x) : K 7! R, and the player suffers a lossf t (x t). The player aims to choose decisions
such that the regretR(T) =

P T
t =1 f t (x t) � minx 2K

P T
t =1 f t (x) is sublinear in the number of total

roundsT. Online gradient descent (OGD) is a standard method for OCO, which enjoys anO(
p

T)
regret bound for convex losses [Zinkevich, 2003] and anO(log T) regret bound for strongly convex
losses [Hazan et al., 2007]. However, it needs to compute a projection onto the decision set to ensure
the feasibility of each decision, which is computationally expensive for complex decision sets [Hazan
and Kale, 2012].

To tackle this computational issue, Hazan and Kale [2012] propose the online Frank-Wolfe (OFW)
method, which has become one of the most commonly used algorithms for OCO over complex
decision sets. The main advantage of OFW is its projection-free property: instead of performing the
projection operation, it utilizes a linear optimization step to select a feasible decision, which could be
much more ef�cient. For example, in the problem of online collaborative �ltering, the decision set

� Lijun Zhang is the corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

consists of matrices with a bounded trace norm, and the linear optimization step is at least an order
of magnitude faster than the projection operation [Hazan and Kale, 2012]. Moreover, it has been
shown that OFW achieves anO(T3=4) regret bound for convex losses [Hazan and Kale, 2012, Hazan,
2016] and anO(T2=3) regret bound for strongly convex losses [Wan and Zhang, 2021, Garber and
Kretzu, 2021], which are the best known regret bounds of projection-free methods without further
assumptions.

However, OFW requires that the gradientr f t (x t) is revealed immediately after making the decision
x t , which is not necessarily satis�ed in reality. For example, in the previously mentioned online
collaborative �ltering [Hazan and Kale, 2012], the decision is a prediction of a user-item rating matrix,
and the corresponding gradient depends on the true rating of a user on a item, which may not be
decided by the user immediately. Therefore, it is natural to consider a more practical setting, where
the gradientr f t (x t) arrives at the end of roundt + dt � 1, anddt � 1 denotes an arbitrary delay.
To handle this setting, one potential way is to combine OFW with an existing black-box technique
for converting any traditional OCO algorithm into this delayed setting [Joulani et al., 2013]. To be
precise, this black-box technique is to pool independent instances of OFW, each of which acts as a
learner in the non-delayed setting over a subsequence of rounds. In each round, a single instance will
be taken out from the pool, which makes a decision and then waits for its feedback before rejoining
the pool. If the pool is empty, a new instance of OFW will be added to it. Moreover, according
to Joulani et al. [2013], their black-box technique is able to attain a regret bound ofdR(T=d) by
combining with a traditional OCO algorithm withR(T) regret, whered is the maximum delay. As
a result, combining it with OFW will attain anO(d1=4T3=4) regret bound for convex losses and an
O(d1=3T2=3) regret bound for strongly convex losses, which magnify the regret bounds of OFW in
the non-delayed setting by a coef�cient depending the delay. Thus, it is natural to ask whether the
effect of delay can be further reduced.

In this paper, we give an af�rmative answer by developing a simple method called delayed OFW,
which is robust to a relatively large amount of delay for both convex and strongly convex losses.
Different from the black-box technique that needs to maintain multiple instances of OFW [Joulani
et al., 2013], our delayed OFW is a natural extension of OFW in the delayed setting, which updates
the decision similar to OFW after receiving any delayed gradient, and plays the latest decision for
each round. Our theoretical contributions are summarized as follows.

� First, we prove that our delayed OFW attains anO(T3=4 + dT1=4) regret bound for convex
losses, whered is the maximum delay, which matches theO(T3=4) regret bound in the
non-delayed setting as long asd does not exceedO(

p
T).

� Second, we prove that our delayed OFW attains anO(T2=3 + d logT) regret bound for
strongly convex losses, which matches theO(T2=3) regret bound in the non-delayed setting
as long asd does not exceedO(T2=3=logT).

Therefore, our regret bounds are strictly better than those achieved by combining the black-box
technique [Joulani et al., 2013] with OFW, when the term involvingd in them is not dominant.
Furthermore, simulation experiments are conducted to verify the performance of our delayed OFW.

2 Related work

In this section, we brie�y review related work on projection-free algorithms for OCO, and OCO
under delayed feedback.

2.1 Projection-free algorithms for OCO

The OFW method [Hazan and Kale, 2012, Hazan, 2016] is the �rst projection-free algorithm for
OCO, which is an online extension of the classical Frank-Wolfe method [Frank and Wolfe, 1956,
Jaggi, 2013]. For convex losses, OFW �rst chooses an arbitraryx1 2 K , and then iteratively updates
its decision by the following linear optimization step

v t 2 argmin
x 2K

hr Ft (x t); x i ; x t +1 = x t + � t (v t � x t) (1)

2

whereFt (x) is a surrogate loss function de�ned as

Ft (x) = �
tX

i =1

hr f i (x i); x i + kx � x1k2
2 (2)

and�; � t are two parameters. By setting parameters appropriately, it can attain anO(T3=4) regret
bound for convex losses.

If losses are convex and smooth, Hazan and Minasyan [2020] propose a randomized projection-free
method, which is based on a classical OCO method called follow the perturbed leader [Kalai and
Vempala, 2005], and achieve a regret bound ofO(T2=3). Recently, Wan and Zhang [2021] prove that
OFW can achieve anO(T2=3) regret bound for strongly convex losses. Speci�cally, to utilize the
strong convexity of losses, they rede�neFt (x) in (2) to

Ft (x) =
tX

i =1

� � x1k4)

regreti + k (

in Weinberger and Ordentlich [2002], it also needs to run multiple instances of a traditional OCO
algorithm, which could be prohibitively resource-intensive. Many studies [Quanrud and Khashabi,
2015, Joulani et al., 2016, Li et al., 2019, Flaspohler et al., 2021, Wan et al., 2022a] have proposed
delayed OCO algorithms, which only require the same storage and computational resources as in the
non-delayed setting, but do not consider projection-free algorithms.

3 Main results

In this section, we �rst introduce necessary preliminaries including the problem setting, de�nitions,
and assumptions. Then, we present our delayed OFW and the corresponding theoretical guarantees
for convex and strongly convex losses, respectively.

3.1 Preliminaries

We consider the problem of OCO with arbitrary delays [Joulani et al., 2013, Quanrud and Khashabi,
2015]. Similar to the standard OCO, in each roundt = 1 ; : : : ; T , the player �rst chooses a decision
x t from the decision setK, and then the adversary selects a convex functionf t (x). However, different
from the standard OCO, the gradientgt = r f t (x t) is revealed at the end of roundt + dt � 1, where
dt � 1

Algorithm 1 Delayed OFW for Convex Losses
1: Input: �
2: Initialization: choose an arbitrary vectory1 2 K and set� = 1 ; �g0 = 0
3: for t = 1 ; 2; : : : ; T do
4: Playx t = y � and querygt = r f t (x t)
5: Receive a set of delayed gradientsf gk jk 2 F t g
6: for k 2 F t do
7: Update�g� = �g� � 1 + gk and de�neF� (y) = � h�g� ; y i + ky � y1k2

2
8: Computev � 2 argminy 2K hr F� (y �); y i
9: Updatey � +1 = y � + � � (v � � y �) with � � in (4) and set� = � + 1

10: end for
11: end for

Finally, we update� = � + 1 so that� still indexes the latest intermediate decision.

The detailed procedures are summarized in Algorithm 1, which is named as delayed OFW for convex
losses. Letd = max f d1; : : : ; dT g: We establish the following theorem with respect to the regret of
Algorithm 1.

Theorem 1 For anyx � 2 K , under Assumptions 1 and 2, Algorithm 1 with� = Dp
2G(T +2) 3= 4 has

TX

t =1

f t (x t) �
TX

t =1

f t (x �) = O(T3=4 + dT1=4):

Theorem 1 shows that without knowing the value ofd, our Algorithm 1 can attain anO(T3=4 + dT1=4)
regret bound for convex losses with arbitrary delays. This bound matches theO(T3=4) regret bound
of OFW in the non-delayed setting [Hazan, 2016], as long asd does not exceedO(

p
T). Moreover,

it is better than theO(d1=4T3=4) regret bound achieved by combining the technique of Joulani et al.
[2013] and theO(T3=4) regret bound of OFW for convex losses, as long asd does not exceed
O(T2=3).

3.3 Delayed OFW for strongly convex losses

We proceed to handle� -strongly convex losses by slightly modifying Algorithm 1. Recall that in the
standard OCO without delays, the critical idea of utilizing the strong convexity of losses is to replace
the surrogate loss function in (1) by that in (3) [Wan and Zhang, 2021]. The main difference is that
the regularization term in (3) is about all historical decisions, instead of only the initial decision.

Inspired by (3), we �rst rede�neF� (y) in Algorithm 1 to

F� (y) = h�g� ; y i +
�X

i =1

�
2

ky � y i k2
2:

Second, sinceF� (y) is modi�ed, we adjust the line search rule to

� � = argmin
� 2 [0;1]

h� (v � � y �); r F� (y �)i +
�� � 2

2
kv � � y � k2

2: (5)

The detailed procedures are summarized in Algorithm 2, which is named as delayed OFW for strongly
convex losses. Then, we establish the following theorem about the regret of Algorithm 2.

Theorem 2 Suppose all losses are� -strongly convex and Assumptions 1 and 2 hold. For anyx � 2 K ,
Algorithm 2 has

TX

t =1

f t (x t) �
TX

t =1

f t (x �) = O(T2=3 + d logT):

Theorem 2 shows that our Algorithm 2 can attain anO(T2=3 + d logT) regret bound for strongly
convex losses with arbitrary delays. First, this bound is better than theO(T3=4 + dT1=4) regret bound

5

Algorithm 2 Delayed OFW for Strongly Convex Losses
1: Input: �
2: Initialization: choose an arbitrary vectory1 2 K and set� = 1 ; �g0 = 0
3: for t = 1 ; 2; : : : ; T do
4: Playx t = y � and querygt = r f t (x t)
5: Receive a set of delayed gradientsf gk jk 2 F t g
6: for k 2 F t do
7: Update�g� = �g� � 1 + gk and de�neF� (y) = h�g� ; y i +

P �
i =1

�
2 ky � y i k2

2
8: Computev � 2 argminy 2K hr F� (y �); y i
9: Updatey � +1 = y � + � � (v � � y �) with � � in (5) and set� = � + 1

10: end for
11: end for

in Theorem 1, which is established by only using the convexity condition. Second, it matches the
O(T

By using this notation,F� (y) de�ned in Algorithms 1 and 2 are respectively equivalent to

F� (y) = �
�X

i =1

hgci ; y i + ky � y1k2
2; (11)

F� (y) =
�X

i =1

hgci ; y i +
�X

i =1

�
2

ky � y i k2
2: (12)

4.2 Proof of Theorem 1

Let t0 = t + dt � 1 for anyt 2 [T]. According to the convexity off t (x), we have

f t (x t) � f t (x �) �h gt ; x t � x � i = hgt ; x t 0 � x � i + hgt ; x t � x t 0i
�h gt ; x t 0 � x � i + Gkx t � x t 0k2 = hgt ; y � t 0 � x � i + Gky � t � y � t 0k2

where the last equality is due to (6).

Let A =
P T

t =1 Gky � t � y � t 0k2. By summing overt = 1 ; : : : ; T , we have
TX

t =1

f t (x t) �
TX

t =1

f t (x �) �
TX

t =1

hgt ; x t � x � i �
TX

t =1

hgt ; y � t 0 � x � i + A: (13)

Then, we bound the �rst term in the right side of (13) as follows
TX

t =1

hgt ; y � t 0 � x � i =
T + d� 1X

t = s

X

i 2F t

hgi ; y � i + d i � 1 � x � i

=
T + d� 1X

t = s

X

i 2F t

hgi ; y � t � x � i =
T + d� 1X

t = s

� t +1 � 1X

i = � t

hgci ; y � t � x � i

=
T + d� 1X

t = s

� t +1 � 1X

i = � t

(hgci ; y i � x � i + hgci ; y � t � y i i)

=
TX

t =1

hgct ; y t � x � i +
T + d� 1X

t = s

� t +1 � 1X

i = � t

hgci ; y � t � y i i

(14)

where the �rst equality is due to (9), the second equality is due toi + di � 1 = t for anyi 2 F t , the
third equality is due to (10), and the last equality is due to (7) and (8).

Then, letB =
P T

t =1 hgct ; y t � x � i andC =
P T + d� 1

t = s

P � t +1 � 1
i = � t

Gky � t � y i k2. By combining (13),
(14), andhgci ; y � t � y i i � Gky � t � y i k2, we have

TX

t =1

f t (x t) �
TX

t =1

f t (x �) � A + B + C: (15)

Next, we proceed to bound termsA, B , andC. Speci�cally, we �rst establish the following bound
for the sum of termsA andC by carefully analyzing the distanceky � t � y � t 0k2 in the termA and
the distanceky � t � y i k2 in the termC.

Lemma 1 Let y �
t = argmin y 2K Ft � 1(y) for any t 2 [T + 1] , whereFt (y) is de�ned in (11).

Suppose Assumption 1 and 2 hold, and there exist some constants > 0 and0 < � � 1 such that
Ft � 1(y t) � Ft � 1(y �

t) � (t + 2) � � for anyt 2 [T + 1] . Algorithm 1 ensures

A + C � 3dGD + 4Gd
p

 +
8G

p

2 � �
T1� �= 2 +

3�G 2dT
2

whereA =
P T

t =1 Gky � t � y � t 0k2 andC =
P T + d� 1

t = s

P � t +1 � 1
i = � t

Gky � t � y i k2.

Note that Lemma 1 introduces an assumption abouty t andFt � 1(y). According to our Algorithm
1, y t is actually generated by approximately minimizingFt � 1(y) with a linear optimization step.
Therefore, by following the analysis of the original OFW [Hazan, 2016], we show that this assumption
can be satis�ed with = 8D 2 and� = 1=2.

7

Lemma 2 Lety �
t = argmin y 2K Ft � 1(y) for anyt 2 [T + 1] , whereFt (y) is de�ned in (11). Under

Assumptions 1 and 2, for anyt 2 [T + 1] , Algorithm 1 with� = Dp
2G(T +2) 3= 4 has

Ft � 1(y t) � Ft � 1(y �
t) �

8D 2
p

t + 2
:

Then, by combining� = Dp
2G(T +2) 3= 4 with Lemmas 1 and 2, we have

A + C � (3 + 8
p

2)GDd +
32

p
2GD
3

T3=4 +
3GDdT 1=4

2
p

2
= O(T3=4 + dT1=4): (16)

Furthermore, by following the analysis of the original OFW [Hazan, 2016], we establish an upper
bound for the termB .

Lemma 3 Under Assumptions 1 and 2, for anyx � 2 K , Algorithm 1 with� = Dp
2G(T +2) 3= 4 ensures

TX

t =1

hgct ; y t � x � i �
11

p
2GD (T + 2) 3=4

3
+

GDT 1=4
p

2
:

Finally, by combining (15), (16), and Lemma 3, we complete this proof.

4.3 Proof of Theorem 2

Sincef t (x) is � -strongly convex, we have
TX

t =1

f t (x t) �
TX

t =1

f t (x �) �
TX

t =1

hgt ; x t � x � i �
TX

t =1

�
2

kx t � x � k2
2: (17)

Then, we note that the �rst term in the right side of (17) can be bounded by reusing (13) and (14).
Speci�cally, we have

TX

t =1

f t (x t) �
TX

t =1

f t (x �) � A + C +
TX

t =1

hgct ; y t � x � i �
TX

t =1

�
2

kx t � x � k2
2 (18)

where termsA andC are de�ned in the proof of Theorem 1.

Next, we consider the last term in the right side of (18). For anyy t ; x t ; x � 2 K , we have

ky t � x � k2
2 = ky t � x t k2

2 + kx t � x � k2
2 + 2hy t � x t ; x t � x � i

� 3Dky t � x t k2 + kx t � x � k2
2

where the last inequality is due to2hy t � x t ; x t � x � i � 2ky t � x t k2kx t � x � k2 and Assumption 2.

Let B 0 =
P T

t =1 hgct ; y t � x � i �
P T

t =1
�
2 ky t � x � k2

2 andE =
P T

t =1
3�D

2 ky t � y � t k2. By combining
the above inequality and (6) with (18), we have

TX

t =1

[f t (x t) � f t (x �)] � A + C + B 0+ E: (19)

Then, we proceed to establish upper bounds for termsA, C, andE by carefully analyzing the distance
ky � t � y � t 0k2 in the termA, the distanceky � t � y i k2 in the termC, and the distanceky t � y � t k2
in the termE.

Lemma 4 Lety �
t = argmin y 2K Ft � 1(y) for anyt = 2 ; : : : ; T + 1 , whereFt (y) is de�ned in (12).

Suppose Assumption 1 and 2 hold, all losses are� -strongly convex, and there exist some constants
 > 0 and 0 � � < 1 such thatFt � 1(y t) � Ft � 1(y �

t) � (t � 1)� for any t = 2 ; : : : ; T + 1 .
Algorithm 1 ensures

E � 3dD
p

2� +
6D

p
2�

1 + �
T (1+ �)=2 + 3 �dD 2 + 3D(G + �D)d ln T;

A + C � 3dGD +
4G(G + �D)d(1 + ln T)

�
+ 4dG

r
2
�

+

r
2
�

8G
1 + �

T (1+ �)=2;

8

whereA =
P T

t =1 Gky � t � y � t 0k2, C =
P T + d� 1

t = s

P � t +1 � 1
i = � t

Gky � t � y i k2, andE =
P T

t =1
3�D

2 ky t �
y � t k2.

Note that Lemma 4 also introduces an assumption abouty t andFt � 1(y). According to our Algorithm
2, y t is actually generated by approximately minimizingFt � 1(y) with a linear optimization step.
Therefore, by following the analysis of OFW for strongly convex losses [Wan and Zhang, 2021], we
show that this assumption is satis�ed with = 16(G + 2 �D)2=� and� = 1=3.

Lemma 5 Lety �
t = argmin y 2K Ft � 1(y) for anyt = 2 ; : : : ; T + 1 , whereFt (y) is de�ned in (12).

Suppose Assumption 1 and 2 hold, and all losses are� -strongly convex. For anyt = 2 ; : : : ; T + 1 ,
Algorithm 2 has

Ft � 1(y t) � Ft � 1(y �
t) �

16(G + 2 �D)2(t � 1)1=3

�
:

By combining Lemmas 4 and 5, we have

A + C + E = O
�

T (1+ �)=2 + d logT
�

= O(T2=3 + d logT): (20)

Furthermore, by following the analysis of OFW for strongly convex losses [Wan and Zhang, 2021],
we establish an upper bound for the third term in (19).

Lemma 6 Suppose Assumption 1 and 2 hold, and all losses are� -strongly convex. For anyx � 2 K ,
Algorithm 2 ensures

B 0 �
6
p

2(G + 2 �D)2T2=3

�
+

2(G + 2 �D)2 ln T
�

+ (G + �D)D

whereB 0 =
P T

t =1

(a) Differentd (b) d = 501

Figure 1: Comparisons of our DOFW and DOFWsc against BOLD-OFW and BOLD-OFWsc.

and BOLD-OFWsc will maintain several instances of OFW for convex and strongly convex losses,
respectively. Note that in the non-delayed case withd = 1 our delayed OFW actually reduces to the
original OFW. Therefore, our Theorems 1 and 2 can also be utilized to choose the parameters for each
instance of OFW maintained in BOLD-OFW and BOLD-OFWsc. To be precise, in BOLD-OFW, we
set� = Dp

2G(T=d+2) 3= 4 for each instance of OFW for convex losses, since the total rounds of each

instance is roughlyT=d. In BOLD-OFWsc, we only need to set� = 2 for each instance of OFW
for strongly convex losses. Moreover, for our delayed OFW and each instance of OFW, the initial
decision is set to1=50, where1 denotes the all-ones vector.

Fig. 1(a) shows the total loss ofT rounds for each algorithm under different values of the maximum
delayd. First, whend = 1 , the total loss of our DOFW is the same as that of BOLD-OFW and the
total loss of our DOFWsc is the same as that of BOLD-OFWsc, which is reasonable because in this
case DOFW and BOLD-OFW reduce to the original OFW for convex losses, and DOFWsc and BOLD-
OFWsc reduce to the original OFW for strongly convex losses. Second, ford = 51; 101; 151; : : : ; 501,
our DOFW and DOFWsc are better than BOLD-OFW and BOLD-OFWsc respectively, which clearly
veri�es the advantage of our algorithms in the delayed setting. It is worthy to notice thatd = 501
is larger thanT2=3. Moreover, for our DOFW and DOFWsc, whend increases from1 to 501, the
growth of the total loss is very slow, which is consistent with the dependence of our regret bounds on
d. Fig. 1(b) shows the cumulative loss for each algorithm whend = 501. As the number of iterations
increases, the cumulative loss of BOLD-OFW and BOLD-OFWsc increase much faster than that of
our algorithms.

6 Conclusion and future work

In this paper, we propose delayed OFW for OCO with arbitrary delays. For convex losses, we show
that it attains anO(T3=4 + dT1=4) regret bound, which matches theO(T3=4) regret bound of OFW in
the non-delayed setting, as long asd does not exceedO(

p
T). When losses are strongly convex, we

further prove that it can attain anO(T2=3 + d logT) regret bound, which matches theO(T2=3) regret
bound of OFW in the non-delayed setting, as long asd does not exceedO(T2=3=logT). Simulation
experiments demonstrate the performance of delayed OFW in the delayed setting.

This paper only extends the classical OFW to the delayed setting. In the future, we will investigate
how to develop delayed variants for other projection-free online algorithms.

Acknowledgments

This work was partially supported by NSFC (61921006, 62122037), and JiangsuSF (BK20200064).

10

References

Stephen Boyd and Lieven Vandenberghe.Convex Optimization. Cambridge University Press, 2004.

Lin Chen, Mingrui Zhang, and Amin Karbasi. Projection-free bandit convex optimization. In
Proceedings of the 22nd International Conference on Arti�cial Intelligence and Statistics, pages
2047–2056, 2019.

Genevieve E Flaspohler, Francesco Orabona, Judah Cohen, Soukayna Mouatadid, Miruna Oprescu,
Paulo Orenstein, and Lester Mackey. Online learning with optimism and delay. InProceedings of
the 38th International Conference on Machine Learning, pages 3363–3373, 2021.

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming.Naval Research
Logistics Quarterly, 3(1–2):95–110, 1956.

Dan Garber and Elad Hazan. A linearly convergent conditional gradient algorithm with applications
to online and stochastic optimization.SIAM Journal on Optimization, 26(3):1493–1528, 2016.

Dan Garber and Ben Kretzu. Improved regret bounds for projection-free bandit convex optimization.
In Proceedings of the 23rd International Conference on Arti�cial Intelligence and Statistics, pages
2196–2206, 2020.

Dan Garber and Ben Kretzu. Revisiting projection-free online learning: the strongly convex case. In
Proceedings of the 24th International Conference on Arti�cial Intelligence and Statistics, pages
3592–3600, 2021.

Dan Garber and Ben Kretzu. New projection-free algorithms for online convex optimization with
adaptive regret guarantees. InProceedings of 35th Conference on Learning Theory, pages 2326–
2359, 2022.

Elad Hazan. Introduction to online convex optimization.Foundations and Trends in Optimization, 2
(3–4):157–325, 2016.

Elad Hazan and Satyen Kale. Projection-free online learning. InProceedings of the 29th International
Conference on Machine Learning, pages 1843–1850, 2012.

Elad Hazan and Edgar Minasyan. Faster projection-free online learning. InProceedings of the 33rd
Annual Conference on Learning Theory, pages 1877–1893, 2020.

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex
optimization.Machine Learning, 69(2):169–192, 2007.

Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. InProceedings of
the 30th International Conference on Machine Learning, pages 427–435, 2013.

Pooria Joulani, András György, and Csaba Szepesvári. Online learning under delayed feedback. In
Proceedings of the 30th International Conference on Machine Learning, pages 1453–1461, 2013.

Zakaria Mhammedi. Ef�cient projection-free online convex optimization with membership oracle. In
Proceedings of 35th Conference on Learning Theory, pages 5314–5390, 2022.

Kent Quanrud and Daniel Khashabi. Online learning with adversarial delays. InAdvances in Neural
Information Processing Systems 28, pages 1270–1278, 2015.

Shai Shalev-Shwartz. Online learning and online convex optimization.Foundations and Trends in
Machine Learning, 4(2):107–194, 2011.

Yuanyu Wan and Lijun Zhang. Projection-free online learning over strongly convex sets. In
Proceedings of the 35th AAAI Conference on Arti�cial Intelligence, pages 10076–10084, 2021.

Yuanyu Wan, Wei-Wei Tu, and Lijun Zhang. Projection-free distributed online convex optimization
with O(

p
T) communication complexity. InProceedings of the 37th International Conference on

Machine Learning, pages 9818–9828, 2020.

Yuanyu Wan, Wei-Wei Tu, and Lijun Zhang. Online strongly convex optimization with unknown
delays.Machine Learning, 111(3):871–893, 2022a.

Yuanyu Wan, Guanghui Wang, Wei-Wei Tu, and Lijun Zhang. Projection-free distributed online
learning with sublinear communication complexity.Journal of Machine Learning Research, 23
(172):1–53, 2022b.

Marcelo J. Weinberger and Erik Ordentlich. On delayed prediction of individual sequences.IEEE
Transactions on Information Theory, 48(7):1959–1976, 2002.

Wenpeng Zhang, Peilin Zhao, Wenwu Zhu, Steven C. H. Hoi, and Tong Zhang. Projection-free
distributed online learning in networks. InProceedings of the 34th International Conference on
Machine Learning, pages 4054–4062, 2017.

Martin Zinkevich. Online convex programming and generalized in�nitesimal gradient ascent. In
Proceedings of the 20th International Conference on Machine Learning, pages 928–936, 2003.

12

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately re�ect the paper's
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A] This work

is mostly theoretical and the societal impacts discussion is not applicable.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you're

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identi�able

information or offensive content? [N/A] Only synthetic data are used in this work,
which do not contain personally identi�able information and offensive content.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

	Introduction

