
Supplementary Material

A Proof of Lemma 1

We first note that Ft(y) is 2-strongly convex for any t = 0; : : : ; T , and Hazan and Kale [2012] have
proved that for any �-strongly convex function f(x) over K and any x ∈ K, it holds that

�

2
‖x− x∗‖22 ≤ f(x)− f(x∗) (21)

where x∗ = argminx∈K f(x).

Then, we consider the term A =
PT
t=1G‖y�t − y�t0‖2. If T ≤ 2d, we have

A =

TX
t=1

G‖y�t − y�t0‖2 ≤ TGD ≤ 2dGD (22)

where the first inequality is due to Assumption 2. If T > 2d, we have

A =

2dX
t=1

G‖y�t − y�t0 ‖2 +

TX
t=2d+1

G‖y�t − y�t0‖2

≤2dGD +

TX
t=2d+1

G(‖y�t − y∗�t‖2 + ‖y∗�t − y∗�t0‖2 + ‖y∗�t0 − y�t0‖2):

(23)

Because of (21), for any t ∈ [T + 1], we have

‖yt − y∗t ‖2 ≤
p
Ft−1(yt)− Ft−1(y∗t ) ≤

√

(t+ 2)−�=2 (24)

where the last inequality is due to Ft−1(yt)− Ft−1(y∗t ) ≤ 
(t+ 2)−�.

Moreover, for any i ≥ �t, we have

‖y∗�t − y∗i ‖22 ≤Fi−1(y∗�t)− Fi−1(y∗i )

=F�t−1(y∗�t)− F�t−1(y∗i ) +

*
�

i−1X
k=�t

gck ;y
∗
�t − y∗i

+

≤�







i−1X
k=�t

gck







2

‖y∗�t − y∗i ‖2

≤�G(i− �t)‖y∗�t − y∗i ‖2

(25)

where the first inequality is still due to (21) and the last inequality is due to Assumption 1.

Because of t′ = t+ dt − 1 ≥ t, we have �t0 ≥ �t. Then, from (25), we have

‖y∗�t − y∗�t0‖2 ≤ �G(�t0 − �t) = �G

t0−1X
k=t

|Fk|: (26)

Then, by substituting (24) and (26) into (23), if T > 2d, we have

A ≤2dGD +

TX
t=2d+1

G

0@√
(�t + 2)−�=2 + �G

t0−1X
k=t

|Fk|+
√

(�t0 + 2)−�=2

1A
≤2dGD +

TX
t=2d+1

2G
√

(�t + 2)−�=2 + �G2

TX
t=2d+1

t0−1X
k=t

|Fk|

≤2dGD +

TX
t=2d+1

2G
√

(�t − 1)−�=2 + �G2

TX
t=2d+1

t0−1X
k=t

|Fk|

(27)

where the second inequality is due to (�t + 2)−�=2 ≥ (�t0 + 2)−�=2 for �t ≤ �t0 and � > 0.

To bound the second term in the right side of (27), we introduce the following lemma.
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Lemma 7 Let �t = 1 +
Pt−1
i=1 |Fi| for any t ∈ [T + d]. If T > 2d, for 0 < � ≤ 1, we have

TX
t=2d+1

(�t − 1)−�=2 ≤ d+
2

2− �
T 1−�=2: (28)

For the third term in the right side of (27), if T > 2d, we have
TX

t=2d+1

t0−1X
k=t

|Fk| ≤
TX
t=1

t0−1X
k=t

|Fk| ≤
TX
t=1

t+d−1X
k=t

|Fk| =
d−1X
k=0

T+kX
t=1+k

|Ft|

≤
d−1X
k=0

T+d−1X
t=1

|Ft| = dT

(29)

where the second inequality is due to
t′ − 1 < t′ = t+ dt − 1 ≤ t+ d− 1:

By substituting (28) and (29) into (27) and combining with (22), we have

A ≤ 2dGD + 2Gd
√

 +

4G
√



2− �
T 1−�=2 + �G2dT: (30)

Then, for the term C =
PT+d−1
t=s

P�t+1−1
i=�t

G‖y�t − yi‖2, we have

C =

�s+1−1X
i=�s

G‖y�t − yi‖2 +

T+d−1X
t=s+1

�t+1−1X
i=�t

G‖y�t − yi‖2

≤|Fs|GD +

T+d−1X
t=s+1

�t+1−1X
i=�t

G(‖y�t − y∗�t‖2 + ‖y∗�t − y∗i ‖2 + ‖y∗i − yi‖2)

≤|Fs|GD +

T+d−1X
t=s+1

�t+1−1X
i=�t

G
�√


(�t + 2)−�=2 + �G(i− �t) +
√

(i+ 2)−�=2

�

≤|Fs|GD +

T+d−1X
t=s+1

�t+1−1X
i=�t

2G
√

(�t + 2)−�=2 + �G2

T+d−1X
t=s+1

�t+1−�t−1X
k=0

k

≤|Fs|GD +

T+d−1X
t=s+1

�t+1−1X
i=�t

2G
√

(�t − 1)−�=2 + �G2

T+d−1X
t=s

�t+1−�t−1X
k=0

k

(31)

where the first inequality is due to Assumption 2, the second inequality is due to (24) and (25), and
the third inequality is due to (�t + 2)−�=2 ≥ (i+ 2)−�=2 for �t ≤ i and � > 0.

Moreover, for any t ∈ [T + d− 1] and k ∈ Ft, since 1 ≤ dk ≤ d, we have
t− d+ 1 ≤ k = t− dk + 1 ≤ t

which implies that
|Ft| ≤ t− (t− d+ 1) + 1 = d: (32)

Then, it is easy to verify that
�t+1 − �t − 1 < �t+1 − �t = |Ft| ≤ d:

Therefore, by combining with (31), we have

C ≤dGD +

T+d−1X
t=s+1

�t+1−1X
i=�t

2G
√

(�t − 1)−�=2 + �G2

T+d−1X
t=s

|Ft|2

2

≤dGD +

T+d−1X
t=s+1

�t+1−1X
i=�t

2G
√

(�t − 1)−�=2 + �G2

T+d−1X
t=s

d|Ft|
2

=dGD +

T+d−1X
t=s+1

�t+1−1X
i=�t

2G
√

(�t − 1)−�=2 +

�G2dT

2
:

(33)

Furthermore, we introduce the following lemma.
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Lemma 8 Let �t = 1 +
Pt−1
i=1 |Fi| for any t ∈ [T + d] and s = min {t|t ∈ [T + d− 1]; |Ft| > 0}.

For 0 < � ≤ 1, we have

T+d−1X
t=s+1

�t+1−1X
i=�t

(�t − 1)−�=2 ≤ d+
2

2− �
T 1−�=2: (34)

By substituting (34) into (33), we have

C ≤ dGD + 2G
√

d+

4G
√



2− �
T 1−�=2 +

�G2dT

2
(35)

We complete the proof by combing (30) and (35).

B Proof of Lemma 2

At the beginning of this proof, we recall the standard definition for smooth functions [Boyd and
Vandenberghe, 2004].

Definition 2 A function f(x) : K → R is called �-smooth over K if for all x;y ∈ K, it holds that
f(y) ≤ f(x) + 〈∇f(x);y − x〉+ �

2 ‖y − x‖22.

It is not hard to verify that Ft(y) is 2-smooth over K for any t ∈ [T ]. This property will be utilized
in the following.

For brevity, we define ht = Ft−1(yt)−Ft−1(y∗t ) for t = 1; : : : ; T+1 and ht(yt−1) = Ft−1(yt−1)−
Ft−1(y∗t ) for t = 2; : : : ; T + 1.

For t = 1, since y1 = argminy∈K ‖y − y1‖22, we have

h1 = F0(y1)− F0(y∗1) = 0 ≤ 8D2

√
3

=
8D2

√
t+ 2

: (36)

Then, for any T + 1 ≥ t ≥ 2, we have

ht(yt−1) =Ft−1(yt−1)− Ft−1(y∗t )

=Ft−2(yt−1)− Ft−2(y∗t ) + 〈�gct�1
;yt−1 − y∗t 〉

≤Ft−2(yt−1)− Ft−2(y∗t−1) + 〈�gct�1
;yt−1 − y∗t 〉

≤ht−1 + �‖gct�1‖2‖yt−1 − y∗t ‖2
≤ht−1 + �‖gct�1

‖2‖yt−1 − y∗t−1‖2 + �‖gct�1
‖2‖y∗t−1 − y∗t ‖2

≤ht−1 + �G‖yt−1 − y∗t−1‖2 + �G‖y∗t−1 − y∗t ‖2

(37)

where the first inequality is due to y∗t−1 = argminy∈K Ft−2(y) and the last inequality is due to
Assumption 1.

Moreover, for any T + 1 ≥ t ≥ 2, we note that Ft−2(x) is also 2-strongly convex, which implies
that

‖yt−1 − y∗t−1‖2 ≤
q
Ft−2(yt−1)− Ft−2(y∗t−1) ≤

p
ht−1 (38)

where the first inequality is due to (21).

Similarly, for any T + 1 ≥ t ≥ 2

‖y∗t−1 − y∗t ‖22 ≤Ft−1(y∗t−1)− Ft−1(y∗t )

=Ft−2(y∗t−1)− Ft−2(y∗t ) + 〈�gct�1
;y∗t−1 − y∗t 〉

≤�‖gct�1
‖2‖y∗t−1 − y∗t ‖2

which implies that
‖y∗t−1 − y∗t ‖2 ≤ �‖gct�1‖2 ≤ �G: (39)

By combining (37), (38), and (39), for any T + 1 ≥ t ≥ 2, we have

ht(yt−1) ≤ ht−1 + �G
p
ht−1 + �2G2: (40)
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Then, for any T + 1 ≥ t ≥ 2, since Ft−1(y) is 2-smooth, we have

ht =Ft−1(yt)− Ft−1(y∗t )

=Ft−1(yt−1 + �t−1(vt−1 − yt−1))− Ft−1(y∗t )

≤ht(yt−1) + 〈∇Ft−1(yt−1); �t−1(vt−1 − yt−1)〉+ �2
t−1‖vt−1 − yt−1‖22:

(41)

Moreover, for any t ∈ [T ], according to Algorithm 1, we have

�t = argmin
�∈[0;1]

〈�(vt − yt);∇Ft(yt)〉+ �2‖vt − yt‖22: (42)

Therefore, for t = 2, by combining (40) and (41), we have

h2 ≤h1 + �G
p
h1 + �2G2 + 〈∇F1(y1); �1(v1 − y1)〉+ �2

1‖v1 − y1‖22

≤h1 + �G
p
h1 + �2G2 =

D2

2(T + 2)3=2
≤ 4D2 =

8D2

√
t+ 2

(43)

where the second inequality is due to (42), and the first equality is due to (36) and � = D√
2G(T+2)3/4

.

Then, for any t = 3; : : : ; T + 1, by defining �′t−1 = 2=
√
t+ 1 and assuming ht−1 ≤ 8D2

√
t+1

, we have

ht ≤ht(yt−1) + 〈∇Ft−1(yt−1); �′t−1(vt−1 − yt−1)〉+ (�′t−1)2‖vt−1 − yt−1‖22
≤ht(yt−1) + 〈∇Ft−1(yt−1); �′t−1(y∗t − yt−1)〉+ (�′t−1)2‖vt−1 − yt−1‖22
≤(1− �′t−1)ht(yt−1) + (�′t−1)2‖vt−1 − yt−1‖22
≤(1− �′t−1)(ht−1 + �G

p
ht−1 + �2G2) + (�′t−1)2D2

≤(1− �′t−1)ht−1 + �G
p
ht−1 + �2G2 + (�′t−1)2D2

≤
�

1− 2√
t+ 1

�
8D2

√
t+ 1

+
2D2

(T + 2)3=4(t+ 1)1=4
+

D2

2(T + 2)3=2
+

4D2

t+ 1

≤
�

1− 2√
t+ 1

�
8D2

√
t+ 1

+
2D2

t+ 1
+

D2

2(t+ 1)
+

4D2

t+ 1

≤
�

1− 2√
t+ 1

�
8D2

√
t+ 1

+
8D2

t+ 1

=

�
1− 1√

t+ 1

�
8D2

√
t+ 1

≤ 8D2

√
t+ 2

(44)

where the first inequality is due to (41) and (42), the second inequality is due to vt−1 ∈
argminy∈K〈∇Ft−1(yt−1);y〉, the third inequality is due to the convexity of Ft−1(y), the fourth
inequality is due to (40), and the last inequality is due to�

1− 1√
t+ 1

�
1√
t+ 1

≤ 1√
t+ 2

(45)

for any t ≥ 0.

Note that (45) can be derived by dividing (t+ 1)
√
t+ 2 into both sides of the following inequality

√
t+ 2

√
t+ 1−

√
t+ 2 ≤ (

√
t+ 1 + 1)

√
t+ 1−

√
t+ 2 ≤ t+ 1 +

√
t+ 1−

√
t+ 2 ≤ t+ 1:

By combining (36), (43), and (44), we complete this proof.

C Proof of Lemma 3

In the beginning, we define y∗t = argminy∈K Ft−1(y) for any t ∈ [T + 1], where Ft(y) =

�
Pt
i=1〈gci ;y〉+ ‖y − y1‖22.

Then, it is easy to verify that
TX
t=1

〈gct ;yt − x∗〉 =

TX
t=1

〈gct ;yt − y∗t 〉+

TX
t=1

〈gct ;y∗t − x∗〉: (46)
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Therefore, we will continue to upper bound the right side of (46). By applying Lemma 2, we have
TX
t=1

〈gct ;yt − y∗t 〉 ≤
TX
t=1

‖gct‖2‖yt − y∗t ‖2 ≤
TX
t=1

G
p
Ft−1(yt)− Ft−1(y∗t )

≤
TX
t=1

2
√

2GD

(t+ 2)1=4
≤ 8
√

2GD(T + 2)3=4

3

(47)

where the second inequality is due to (21) and Assumption 1, and the last inequality is due toPT
t=1 (t+ 2)−1=4 ≤ 4(T + 2)3=4=3.

Then, to bound
PT
t=1〈gct ;y∗t − x∗〉, we introduce the following lemma.

Lemma 9 (Lemma 6.6 of Garber and Hazan [2016]) Let {ft(y)}Tt=1 be a sequence of loss functions
and let y∗t ∈ argminy Tt



where the first inequality is due to Assumption 2.

Then, if T > 2d, we have

E =
3�D

2

2dX
t=1

‖yt − y�t‖2 +
3�D

2

TX
t=2d+1

‖yt − y�t‖2

≤3�dD2 +
3�D

2

TX
t=2d+1

�
‖yt − y∗t ‖2 + ‖y∗t − y∗�t‖2 + ‖y∗�t − y�t‖2

�
:

(50)

Because Ft−1(y) is (t− 1)�-strongly convex for any t = 2; : : : ; T + 1, we have

‖yt − y∗t ‖2 ≤

s
2(Ft−1(yt)− Ft−1(y∗t ))

(t− 1)�
≤

s
2


(t− 1)1−��
(51)

where the first inequality is due to (21) and the second inequality is due to Ft−1(yt)− Ft−1(y∗t ) ≤

(t− 1)�.

Before considering ‖y∗t − y∗�t‖2, we define ~ft(y) = 〈gct ;y〉 + �
2 ‖y − yt‖22 for any t = 1; : : : ; T .

Note that Ft(y) =
Pt
i=1

~fi(y). Moreover, for any x;y ∈ K and t = 1; : : : ; T , we have

| ~ft(x)− ~ft(y)| =
����〈gct ;x− y〉+

�

2
‖x− yt‖22 −

�

2
‖y − yt‖22

����
=

���� ct2  0 .047 -1.495 Td [(t)]TJ/F14 9.9626 Tf 3.508 h 0 Td [(;)-167(:)-166(:)-167(:)-167(;)-[(y)]TJ/F14 9.9626 Tf 6.206 0 Td [(i)]TJ/F8 9.9626 Tf 6.088 0 Td [(+)]TJ/F11 9.9626 Tf 11.1581 0 0 1 451.337 532.513 Tm38 Tf 18.316 19.2+14
�
�
2−�

=

���� t ‖2 [( 577302rst6217 -1.494 T1.495 Td [(k)]TJ/F7  -226 Tf 3.31 Td [(�)]TJ 0 -5.978 Td [(�)]TJ 0 -5.978 Td [(�)]TJ 0 -5.977 Td [(�)]TJJ/F7 6.9738 Tf 3.009 0 Td [(=1)]TJ/F14 9.9626 Tf 12.395 11.634 Td [(k)]TJ(,)-250(we)-2507 9.9626 Tf 3.82.49 Td [(;)]TJ/F57 9.9626 Tf 4.44.446 Td [(�)]TJ 0 -5.978 Td [(�)]TJ 0 -5.977 Td [(�)]TJ 0 -5.978 Td [(�)]TJ6.9738 Tf 5.71)]TJ/F14 9.9626 Tf 12.395 11.634 Td [(k)]TJ/F57 9.9626 Tf 4.981 0 Td [(y)]TJ/Tf 6.767 6.834 Td [(k)]TJ/F57 9.9626 Tf 4.981 0 Td [(x)0679.13445 -58 Tf 8.261 0 Td [(�)]TJ/F57 9.9626 Tf 9.962 0 Td [(y)]TJ/F07-6.1343538 Tfm 6.161 0 l 9.9626 Tf 3.508 J/F8 9.96264; : : :�
�
� �



where the second inequality is due to (�t − 1)1−� ≤ (t− 1)1−� for t ≥ �t > 1 and � < 1, and the
last inequality is due to Lemma 7 and 0 < 1− � ≤ 1.

By combining (49) with the above inequality, we have

E ≤3�dD2 + 3dD
p

2�
 +
6D
√

2�


1 + �
T (1+�)=2 + 3D(G+ �D)d lnT:

Then, we proceed to bound the term C =
PT+d−1
t=s

P�t+1−1
i=�t

G‖y�t − yi‖2. Similar to (31), we first
have

C ≤ |Fs|GD +

T+d−1X
t=s+1

�t+1−1X
i=�t

G(‖y�t − y∗�t‖2 + ‖y∗�t − y∗i ‖2 + ‖y∗i − yi‖2): (55)

By combining (55) with |Fs| ≤ d, (51), and (53), we have

C ≤dGD +

T+d−1X
t=s+1

�t+1−1X
i=�t

G

 s
2


(�t − 1)1−��
+

2(i− �t)(G+ �D)

(i− 1)�
+

s
2


(i− 1)1−��

!

≤dGD +

T+d−1X
t=s+1

�t+1−1X
i=�t

G

 
2

s
2


(�t − 1)1−��
+

2(i− �t)(G+ �D)

(i− 1)�

!

≤dGD + 2dG

r
2


�
+

r
2


�

4G

1 + �
T (1+�)=2 +

T+d−1X
t=s+1

�t+1−1X
i=�t

2dG(G+ �D)

(i− 1)�

(56)

where the first inequality is due to (�t − 1)1−� ≤ (i− 1)1−� for 0 < �t − 1 ≤ i− 1 and � < 1, and
the last inequality is due to Lemma 8, 0 < 1− � ≤ 1, and i− �t ≤ �t+1 − 1− �t ≤ |Ft| ≤ d.

Recall that we have defined

It =

� ∅; if |Ft| = 0;

{�t; �t + 1; : : : ; �t+1 − 1}; otherwise:
It is not hard to verify that

∪T+d−1
t=s+1 It = {|Fs|+ 1; : : : ; T}; Ii ∩ Ij = ∅;∀i 6= j: (57)

By combining (57) with (56), we have

C ≤dGD + 2dG

r
2


�
+

r
2


�

4G

1 + �
T (1+�)=2 +

TX
t=|Fs|+1

2dG(G+ �D)

(t− 1)�

≤dGD + 2dG

r
2


�
+

r
2


�

4G

1 + �
T (1+�)=2 +

TX
t=2

2dG(G+ �D)

(t− 1)�

≤dGD + 2dG

r
2


�
+

r
2


�

4G

1 + �
T (1+�)=2 +

2dG(G+ �D)(1 + lnT )

�
:

(58)

Next, we proceed to bound the term A =
PT
t=1G‖y�t −y�t0‖2. Similar to (23), if T > 2d, we have

A ≤2dGD +

TX
t=2d+1

G(‖y�t − y∗�t‖2 + ‖y∗�t − y∗�t0‖2 + ‖y∗�t0 − y�t0‖2)

≤2dGD +

TX
t=2d+1

G

 s
2


(�t − 1)1−��
+

2(�t0 − �t)(G+ �D)

(�t0 − 1)�
+

s
2




Lemma 10 Let hk =
Pk
i=1 |Fi|. If T > 2d, we have

TX
t=2d+1

t0−1X
k=t

|Fk|
hk
≤ d+ d lnT:

By applying Lemmas 7 and 10 to (59) and combining with (22), we have

A ≤2dGD + 2dG

r
2


�
+

r
2


�

4G

1 + �
T (1+�)=2 +

2G(G+ �D)d(1 + lnT )

�
: (60)

Finally, by combining (58) and (60), we complete this proof.

E Proof of Lemmas 5 and 6

Recall that F�y) defined in Algorithm 2 is equivalent to that defined in (12). Let ~fty) = 〈gct ;y〉+
�
2 ‖y−yt‖22 for any t = 1; : : : ; T , which is �-strongly convex. Moreover, as proved in (52), functions
~f1Ta50y); : : : ; ~fTy) are (G+ �D)-Lipschitz over K (see the definition of Lipschitz functions in Hazan
[2016]). Then, because of ∇ ~ftTa50ytTa51 =gct

, it is not hard to verify that decisions y1; : : : ;yT+1 in our
Algorithm 2 are actually generated by performing OFW for strongly convex losses (see Algorithm 2
in Wan and Zhang [2021] for details) on functions ~f1Ta50y); : : : ; ~fTy) . Note that when Assumption 2

h

o

l

d

s

,

a

n

d

f

u

n

c

t

i

o

n

s

~f1Ta50y); : : : ; ~fTy)

a

r

e

�

-

s

t

r

o

n

g

l

y

c

o

n

v

e

x

a

n

d

G′

-

L

i

p

s

c

h

i

t

z

,

L

e

m

m

a

6

o

f

W

a

n

and Zhang [2021] has already shown that

Ft−1Ta50ytTa51− Ft−1Ta50y∗tTa51≤ 16(G′ + �D)2(t− 1)1=3

�

for any t = 2; : : : ; T+1. Therefore, our Lemma 5 can be derived by simply substitutingG′ = G+�D
into the above inequality.
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G′-Lipschitz, Theorem 3 of Wan and Zhang [2021] has already shown that
TX
t=1

~ftTa50ytTa51−
TX
t=1

~ftTa50x∗Ta51≤6
√

2(G′ + �D)2T 2=3

�
+

2(G′ + �D)2 lnT

�
+G′D:

We notice that
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t=1

�
〈gct ;yt x∗〉 − �

2 ‖yt x∗‖22
�

=
PT
t=1

~ftyt −
PT
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~ftx∗)
. Therefore,

our Lemma 6 can be derived by simply substituting G′ = G+ �Dinto the above inequality.

F Proof of Lemma 7
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that �t = 1 +
Pt−1
i=1 |Fi| ≥ 1 +

Pd+1
i=1 |Fi| ≥ 2. Moreover, for any i ≥ 2 and (i+ 1)d ≥ t ≥ id+ 1,
since all gradients queried at rounds 1; : : : ; (i− 1)d+ 1must arrive before round id+ 1, we have

�t = 1 +

t−1X
i=1

|Fi| ≥ (i− 1)d+ 2: (61)

Then, we have
TX
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(�t−1)−�=2 =

bT=dcdX
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≤d+
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d1−�=2 (bT=dc)1−�=2 ≤ d+

2

2− �
T 1−�=2
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where the first inequality is due to (�t − 1)−�=2 ≤ 1 for � > 0 and �t ≥ 2, and the second inequality
is due to (61) and � > 0.

G Proof of Lemma 8

Because of �t = 1 +
Pt−1
i=1 |Fi|, we have

T+d−1X
t=s+1

�t
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