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Thus, if α � 2, we have
TX
t=1

�
ft(xt) + kxt � xt�1k

�
(8),(23)

� 2

α

TX
t=1

ft(ut) +

TX
t=1

kut � ut�1k+

TX
t=1

�
1� 2

α

�
ft(ut)

�
TX
t=1

�
ft(ut) + kut � ut�1k

�
(24)

which implies the naive algorithm is 1-competitive. Otherwise, we have
TX
t=1

�
ft(xt) + kxt � xt�1k

�
(23)

� 2

α

TX
t=1

ft(ut) +

TX
t=1

kut � ut�1k �
2

α

TX
t=1

�
ft(ut) + kut � ut�1k

�
.

(25)

We complete the proof by combining (24) and (25).

A.2 Proof of Theorem 2

We will make use of the following basic inequality of squared `2-norm [Goel et al., 2019, Lemma
12].

kx + yk2 � (1 + ρ)kxk2 +

�
1 +

1

ρ

�
kyk2, 8ρ > 0. (26)

When t � 2, we have

ft(xt) +
1

2
kxt � xt�1k2

(26)

� ft(xt) +
1 + ρ

2
kut � ut�1k2 +

1

2

�
1 +

1

ρ

�
kxt � xt�1 � ut + ut�1k2

(26)

� ft(xt) +
1 + ρ

2
kut � ut�1k2 +

�
1 +

1

ρ

��
kut � xtk2 + kut�1 � xt�1k2

�
(9)

�ft(xt) +
1 + ρ

2
kut � ut�1k2 +

2

λ

�
1 +

1

ρ

��
ft(ut)� ft(xt) + ft�1(ut�1)� ft�1(xt�1)

�
.

For t = 1, we have

f1(x1) +
1

2
kx1 � x0k2

(26),(9)

� f1(x1) +
1 + ρ

2
ku1 � u0k2 +

2

λ

�
1 +

1

ρ

��
f1(u1)� f1(x1)

�
.

Summing over all the iterations, we have
TX
t=1

�
ft(xt) +

1

2
kxt � xt�1k2

�

�
TX
t=1

ft(xt) +
1 + ρ

2

TX
t=1

kut � ut�1k2 +
2

λ

�
1 +

1

ρ

� TX
t=1

�
ft(ut)� ft(xt)

�
+

2

λ

�
1 +

1

ρ

� TX
t=2

�
ft�1(ut�1)� ft�1(xt�1)

�
�

TX
t=1

ft(xt) +
1 + ρ

2

TX
t=1

kut � ut�1k2 +
4

λ

�
1 +

1

ρ

� TX
t=1

�
ft(ut)� ft(xt)

�
=

4

λ

�
1 +

1

ρ

� TX
t=1

ft(ut) +
1 + ρ

2

TX
t=1

kut � ut�1k2 +

�
1� 4

λ

�
1 +

1

ρ

�� TX
t=1

ft(xt).

(27)
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First, we consider the case that

1� 4

λ

�
1 +

1

ρ

�
� 0, λ

4
� 1 +

1

ρ
(28)

and have
TX
t=1

�
ft(xt) +

1

2
kxt � xt�1k2

�
(27),(28)

� 4

λ

�
1 +

1

ρ

� TX
t=1

ft(ut) +
1 + ρ

2

TX
t=1

kut � ut�1k2

�max

�
4

λ

�
1 +

1

ρ

�
, 1 + ρ

� TX
t=1

�
ft(ut) +

1

2
kut � ut�1k2

�
.

To minimize the competitive ratio, we set

4

λ

�
1 +

1

ρ

�
= 1 + ρ) ρ =

4

λ

and obtain
TX
t=1

�
ft(xt) +

1

2
kxt � xt�1k2

�
�
�

1 +
4

λ

� TX
t=1

�
ft(ut) +

1

2
kut � ut�1k2

�
. (29)

Next, we study the case that

1� 4

λ

�
1 +

1

ρ

�
� 0, λ

4
� 1 +

1

ρ

which only happens when λ > 4. Then, we have
TX
t=1

�
ft(xt) +

1

2
kxt � xt�1k2

�
(8),(27)

�
TX
t=1

ft(ut) +
1 + ρ

2

TX
t=1

kut � ut�1k2.

To minimize the competitive ratio, we set ρ = 4
λ�4 , and obtain

TX
t=1

�
ft(xt) +

1

2
kxt � xt�1k2

�
� λ

λ� 4

TX
t=1

�
ft(ut) +

1

2
kut � ut�1k2

�
which is worse than (29). So, we keep (29) as the final result.

A.3 Proof of Theorem 3

Since ft(�) is convex, the objective function of (10) is γ-strongly convex. From the quadratic growth
property of strongly convex functions [Hazan and Kale, 2011], we have

ft(xt) +
γ

2
kxt � xt�1k2 +

γ

2
ku� xtk2 � ft(u) +

γ

2
ku� xt�1k2, 8u 2 X . (30)

Similar to previous studies [Bansal et al., 2015], the analysis uses an amortized local competitiveness
argument, using the potential function ckxt�utk2. We proceed to bound ft(xt) + 1

2kxt�xt�1k2 +

ckxt � utk2 � ckxt�1 � ut�1k2, and have

ft(xt) +
1

2
kxt � xt�1k2 + ckxt � utk2 � ckxt�1 � ut�1k2

(26)

� ft(xt) +
1

2
kxt � xt�1k2 + c

�
2kxt � vtk2 + 2kvt � utk2

�
� ckxt�1 � ut�1k2

(9)

�
�

1 +
4c

λ

�
ft(xt) +

1

2
kxt � xt�1k2 +

4c

λ
ft(ut)� ckxt�1 � ut�1k2

=

�
1 +

4c

λ

��
ft(xt) +

λ

2(λ+ 4c)
kxt � xt�1k2

�
+

4c

λ
ft(ut)� ckxt�1 � ut�1k2.
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Suppose
λ

λ+ 4c
� γ, (31)

we have

ft(xt) +
1

2
kxt � xt�1k2 + ckxt � utk2 � ckxt�1 � ut�1k2

�
�

1 +
4c

λ

��
ft(xt) +

γ

2
kxt � xt�1k2

�
+

4c

λ
ft(ut)� ckxt�1 � ut�1k2

(30)

�
�

1 +
4c

λ

��
ft(ut) +

γ

2
kut � xt�1k2 �

γ

2
kut � xtk2

�
+

4c

λ
ft(ut)� ckxt�1 � ut�1k2

=

�
1 +

8c

λ

�
ft(ut) +

γ(λ+ 4c)

2λ
kut � xt�1k2 �

γ(λ+ 4c)

2λ
kut � xtk2 � ckxt�1 � ut�1k2.

Summing over all the iterations and assuming x0 = u0, we have
TX
t=1

�
ft(xt) +

1

2
kxt � xt�1k2

�
+ ckxT � uT k2

�
�

1 +
8c

λ

� TX
t=1

ft(ut) +
γ(λ+ 4c)

2λ

TX
t=1

kut � xt�1k2

� γ(λ+ 4c)

2λ

TX
t=1

kut � xtk2 � c
TX
t=1

kxt�1 � ut�1k2

�
�

1 +
8c

λ

� TX
t=1

ft(ut) +
γ(λ+ 4c)

2λ

TX
t=1

kut � xt�1k2 �
�
γ(λ+ 4c)

2λ
+ c

� TX
t=1

kxt�1 � ut�1k2

(26)

�
�

1 +
8c

λ

� TX
t=1

ft(ut) +
γ(λ+ 4c)

2λ

TX
t=1

kut � xt�1k2

�
�
γ(λ+ 4c)

2λ
+ c

� TX
t=1

�
1

1 + ρ
kxt�1 � utk2 �

1

ρ
kut � ut�1k2

�

�
�

1 +
8c

λ

� TX
t=1

ft(ut) +

�
γ(λ+ 4c)

2λ
+ c

�
1

ρ

TX
t=1

kut � ut�1k2

�max

�
1 +

8c

λ
,

�
γ(λ+ 4c)

2λ
+ c

�
2

ρ

� TX
t=1

�
ft(ut) +

1

2
kut � ut�1k2

�
where in the penultimate inequality we assume

γ(λ+ 4c)

2λ
�
�
γ(λ+ 4c)

2λ
+ c

�
1

1 + ρ
, γ(λ+ 4c)

2λ
� c

ρ
. (32)

Next, we minimize the competitive ratio under the constraints in (31) and (32), which can be
summarized as

λ

λ+ 4c
� γ � λ

λ+ 4c

2c

ρ
.

We first set c = ρ
2 and γ = λ

λ+4c , and obtain

TX
t=1

�
ft(xt) +

1

2
kxt � xt�1k2

�
� max

�
1 +

4ρ

λ
, 1 +

1

ρ

� TX
t=1

�
ft(ut) +

1

2
kut � ut�1k2

�
.

Then, we set

1 +
4ρ

λ
= 1 +

1

ρ
) ρ =

p
λ

2
.
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As a result, the competitive ratio is

1 +
1

ρ
= 1 +

2p
λ
,

and the parameter is

γ =
λ

λ+ 4c
=

λ

λ+ 2ρ
=

λ

λ+
p
λ
.

A.4 Proof of Theorem 4

The analysis is similar to the proof of Theorem 3 of Zhang et al. [2018a]. In the analysis, we
need to specify the behavior of the meta-algorithm and expert-algorithm at t = 0. To simplify the
presentation, we set

x0 = 0, and xη0 = 0, 8η 2 H. (33)

First, we bound the dynamic regret with switching cost of the meta-algorithm w.r.t. all experts
simultaneously.

Lemma 1 Under Assumptions 2 and 3, and settingβ = 2
(2G+1)D

q
2

5T , we have

TX
t=1

�
st(xt)+kxt�xt�1k

�
�

TX
t=1

�
st(x

η
t )+kxηt�xηt�1k

�
� (2G+1)D

r
5T

8

�
ln

1

wη1
+ 1

�
(34)

for eachη 2 H.

Next, we bound the dynamic regret with switching cost of each expert w.r.t. any comparator sequence
u0,u1, . . . ,uT 2 X .

Lemma 2 Under Assumptions 2 and 3, we have

TX
t=1

�
st(x

η
t ) + kxηt �xηt�1k

�
�

TX
t=1

st(ut) �
D2

2η
+
D

η

TX
t=1

kut�ut�1k+ ηT

�
G2

2
+G

�
. (35)

Then, we show that for any sequence of comparators u0,u1, . . . ,uT 2 X there exists an ηk 2 H
such that the R.H.S. of (35) is almost minimal. If we minimize the R.H.S. of (35) exactly, the optimal
step size is

η�(PT ) =

s
D2 + 2DPT
T (G2 + 2G)

. (36)

From Assumption 3, we have the following bound of the path-length

0 � PT =

TX
t=1

kut � ut�1k
(12)

� TD. (37)

Thus s
D2

T (G2 + 2G)
� η�(PT ) �

s
D2 + 2TD2

T (G2 + 2G)
.

From our construction ofH in (17), it is easy to verify that

minH =

s
D2

T (G2 + 2G)
, and maxH �

s
D2 + 2TD2

T (G2 + 2G)
.

As a result, for any possible value of PT , there exists a step size ηk 2 H with k defined in (19), such
that

ηk = 2k�1

s
D2

T (G2 + 2G)
� η�(PT ) � 2ηk. (38)
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Plugging ηk into (35), the dynamic regret with switching cost of expert Eηk is given by
TX
t=1

�
st(x

ηk
t ) + kxηk

t � xηk
t�1k

�
�

TX
t=1

st(ut)

�D
2

2ηk
+
D

ηk

TX
t=1

kut � ut�1k+ ηkT

�
G2

2
+G

�
(38)

� D2

η�(PT )
+

2D

η�(PT )

TX
t=1

kut � ut�1k+ η�(PT )T

�
G2

2
+G

�
(36)
=

3

2

p
T (G2 + 2G)(D2 + 2DPT ).

(39)

From (13), we know the initial weight of expert Eηk is

wηk
1 =

C

k(k + 1)
� 1

k(k + 1)
� 1

(k + 1)2
.

Combining with (34), we obtain the relative performance of the meta-algorithm w.r.t. expert Eηk :
TX
t=1

�
st(xt)+kxt�xt�1k

�
�

TX
t=1

�
st(x

ηk
t )+kxηk

t �xηk
t�1k

�
� (2G+1)D

r
5T

8
[1 + 2 ln(k + 1)] .

(40)

From (39) and (40), we derive the following upper bound for dynamic regret with switching cost
TX
t=1

�
st(xt) + kxt � xt�1k

�
�

TX
t=1

st(ut)

�3

2

p
T (G2 + 2G)(D2 + 2DPT ) + (2G+ 1)D

r
5T

8
[1 + 2 ln(k + 1)] .

(41)

Finally, from Assumption 1, we have

ft(xt)� ft(ut) � hrft(xt),xt � uti
(16)
= st(xt)� st(ut). (42)

We complete the proof by combining (41) and (42).

A.5 Proof of Theorem 5

The analysis is similar to that of Theorem 4. The difference is that we need to take into account the
lookahead property of the meta-algorithm and the expert-algorithm.

First, we bound the dynamic regret with switching cost of the meta-algorithm w.r.t. all experts
simultaneously.

Lemma 3 Under Assumption 3, and settingβ = 1
D

q
2
T , we have

TX
t=1

�
st(xt) + kxt � xt�1k

�
�

TX
t=1

�
st(x

η
t ) + kxηt � xηt�1k

�
� D

r
T

2

�
ln

1

wη0
+ 1

�
(43)

for eachη 2 H.

Combining Lemma 3 with Assumption 1, we have
TX
t=1

�
ft(xt) + kxt � xt�1k

�
�

TX
t=1

�
ft(x

η
t ) + kxηt � xηt�1k

� (42),(43)

� D

r
T

2

�
ln

1

wη0
+ 1

�
(44)

for each η 2 H.

Next, we bound the dynamic regret with switching cost of each expert w.r.t. any comparator sequence
u0,u1, . . . ,uT 2 X .
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Lemma 4 Under Assumptions 1 and 3, we have

TX
t=1

�
ft(x

η
t ) + kxηt � xηt�1k

�
�

TX
t=1

ft(ut) �
D2

2η
+
D

η

TX
t=1

kut � ut�1k+
ηT

2
. (45)

The rest of the proof is almost identical to that of Theorem 4. We will show that for any sequence
of comparators u0,u1, . . . ,uT 2 X there exists an ηk 2 H such that the R.H.S. of (45) is almost
minimal. If we minimize the R.H.S. of (45) exactly, the optimal step size is

η�(PT ) =

r
D2 + 2DPT

T
. (46)

From (37), we know that r
D2

T
� η�(PT ) �

r
D2 + 2TD2

T
.

From our construction ofH in (22), it is easy to verify that

minH =

r
D2

T
, and maxH �

r
D2 + 2TD2

T
.

As a result, for any possible value of PT , there exists a step size ηk 2 H with k defined in (19), such

2+ 2

t

�

(PT ) r



1. the sum of the hitting cost and the switching cost ofA is at least3γd4 = 3D
p
d

8 ;
2. there exist a �xed pointu whose hitting cost is0.

We consider two cases: τ < D and τ � D. When τ < D, from Lemma 5 with d = T , we know that
the dynamic regret with switching cost w.r.t. a fixed point u is at least 
(D

p
T ).

Next, we consider the case τ � D. Without loss of generality, we assume bτ/Dc divides T . Then,
we partition T into bτ/Dc successive stages, each of which contains T/bτ/Dc rounds. Applying
Lemma 5 to each stage, we conclude that there exists a sequence of convex functions f1(�), . . . , fT (�)
over the domain [� D

2
p
d
, D

2
p
d
]d where d = T/bτ/Dc in the lookahead setting such that

1. the sum of the hitting cost and the switching cost of any online algorithm is at least

bτ/Dc � 3D

8

s
T

bτ/Dc
=

3D

8

r
T
j τ
D

k
= 
(

p
TDτ);

2. there exists a sequence of points u1, . . . ,uT whose hitting cost is 0 and switching cost (i.e.,
path-length) is at most

D
j τ
D

k
� τ

since they switch at most bτ/Dc � 1 times.

Thus, the dynamic regret with switching cost w.r.t. u1, . . . ,uT is at least

3D

8

r
T
j τ
D

k
� τ = 
(

p
TDτ).

We complete the proof by combining the results of the above two cases.

B Proof of supporting lemmas

We provide the proof of all the supporting lemmas.

B.1 Proof of Lemma 1

Based on the prediction rule of the meta-algorithm, we upper bound the switching cost when t � 2
as follows:

kxt � xt�1k =


X
η2H

wηt xηt �
X
η2H

wηt�1xηt�1

 =


X
η2H

wηt (xηt � x)�
X
η2H

wηt�1(xηt�1 � x)


�


X
η2H

wηt (xηt � x)�
X
η2H

wηt (xηt�1 � x)

+


X
η2H

wηt (xηt�1 � x)�
X
η2H

wηt�1(xηt�1 � x)


=


X
η2H

wηt (xηt � xηt�1)

+


X
η2H

(wηt � w
η
t�1)(xηt�1 � x)


�
X
η2H

wηt
xηt � xηt�1

+
X
η2H
jwηt � w

η
t�1j

xηt�1 � x


(12)

�
X
η2H

wηt
xηt � xηt�1

+D
X
η2H
jwηt � w

η
t�1j =

X
η2H

wηt
xηt � xηt�1

+Dkwt �wt�1k1

(50)

where x is an arbitrary point in X , and wt = (wηt )η2H 2 RN . When t = 1, from (33), we have

kx1 � x0k = kx1k =


X
η2H

wη1xη1

 �
X
η2H

wη1 kx
η
1k =

X
η2H

wη1 kx
η
1 � xη0k . (51)
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Then, the relative loss of the meta-algorithm w.r.t. expert Eη can be decomposed as
TX
t=1

�
st(xt) + kxt � xt�1k

�
�

TX
t=1

�
st(x

η
t ) + kxηt � xηt�1k

�
(16),(50),(51)

�
TX
t=1

0@X
η2H

wηt
xηt � xηt�1

� �hrft(xt),xηt � xti+ kxηt � xηt�1k
�1A

+D

TX
t=2

kwt �wt�1k1

(15)
=

TX
t=1

0@X
η2H

wηt `t(x
η
t )� `t(xηt )

1A
| {z }

:=A

+D

TX
t=2

kwt �wt�1k1.

(52)

We proceed to bound A and kwt �wt�1k1 in (52). Notice that A is the regret of the meta-algorithm
w.r.t. expert Eη . From Assumptions 2 and 3, we have

jhrft(xt),xηt � xtij � krft(xt)kkxηt � xtk
(11),(12)

� GD.

Thus, we have
�GD � `t(xηt ) � (G+ 1)D, 8η 2 H. (53)

According to the standard analysis of Hedge [Zhang et al., 2018a, Lemma 1] and (53), we have
TX
t=1

0@X
η2H

wηt `t(x
η
t )� `t(xηt )

1A � 1

β
ln

1

wη1
+
βT (2G+ 1)2D2

8
. (54)

Next, we bound kwt �wt�1k1, which measures the stability of the meta-algorithm, i.e., the change
of coefficients between successive rounds. Because the Hedge algorithm is translation invariant, we
can subtract D/2 from `t(x

η
t ) such that
j`t(xηt )�D/2j � (G+ 1/2)D, 8η 2 H. (55)

It is well-known that Hedge can be treated as a special case of “Follow-the-Regularized-Leader” with
entropic regularization [Shalev-Shwartz, 2011]

R(w) =
X
i

wi logwi

over the probability simplex, and R(�) is 1-strongly convex w.r.t. the `1-norm. In other words, we
have

wt+1 = argmin
w2�

*
� 1

β
log(w1) +

tX
i=1

gi,w

+
+

1

β
R(w), 8t � 1

where � � RN is the probability simplex, and gi = [`i(x
η
i )�D/2]η2H 2 RN . From the stability

property of Follow-the-Regularized-Leader [Duchi et al., 2012, Lemma 2], we have

kwt �wt�1k1 � βkgt�1k1
(55)

� β(G+ 1/2)D, 8t � 2.

Then
TX
t=2

kwt �wt�1k1 �
β(T � 1)(2G+ 1)D

2
. (56)

Substituting (54) and (56) into (52), we have
TX
t=1

�
st(xt) + kxt � xt�1k

�
�

TX
t=1

�
st(x

η
t ) + kxηt � xηt�1k

�
� 1

β
ln

1

wη1
+
βT (2G+ 1)2D2

8
+
β(T � 1)(2G+ 1)D2

2
� 1

β
ln

1

wη1
+

5βT (2G+ 1)2D2

8
.

We complete the proof by setting β = 2
(2G+1)D

q
2

5T .
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B.2 Proof of Lemma 2

First, we bound the dynamic regret of the expert-algorithm. Define

�xηt+1 = xηt � ηrft(xt).
Following the analysis of Ader [Zhang et al., 2018a, Theorems 1 and 6], we have

st(x
η
t )� st(ut)

(16)
= hrft(xt),xηt � uti =

1

η
hxηt � �xηt+1,x

η
t � uti

=
1

2η

�
kxηt � utk22 � k�x

η
t+1 � utk22 + kxηt � �xηt+1k22

�
=

1

2η

�
kxηt � utk22 � k�x

η
t+1 � utk22

�
+
η

2
krft(xt)k22

(11)

� 1

2η

�
kxηt � utk22 � k�x

η
t+1 � utk22

�
+
η

2
G2

� 1

2η

�
kxηt � utk22 � kx

η
t+1 � utk22

�
+
η

2
G2

=
1

2η

�
kxηt � utk22 � kx

η
t+1 � ut+1k22 + kxηt+1 � ut+1k22 � kx

η
t+1 � utk22

�
+
η

2
G2

=
1

2η

�
kxηt � utk22 � kx

η
t+1 � ut+1k22 + (xηt+1 � ut+1 + xηt+1 � ut)

>(ut � ut+1)
�

+
η

2
G2

� 1

2η

�
kxηt � utk22 � kx

η
t+1 � ut+1k22 +

�
kxηt+1 � ut+1k+ kxηt+1 � utk

�
kut � ut+1k

�
+
η

2
G2

(12)

� 1

2η

�
kxηt � utk22 � kx

η
t+1 � ut+1k22

�
+
D

η
kut � ut+1k+

η

2
G2.

Summing the above inequality over all iterations, we have
TX
t=1

(st(x
η
t )� st(ut)) �

1

2η
kxη1 � u1k22 +

D

η

TX
t=1

kut+1 � utk+
ηT

2
G2

(12)

� 1

2η
D2 +

D

η

TX
t=1

kut+1 � utk+
ηT

2
G2.

(57)

Since (57) holds when uT+1 = uT , we have
TX
t=1

(st(x
η
t )� st(ut)) �

1

2η
D2 +

D

η

TX
t=1

kut � ut�1k+
ηT

2
G2. (58)

Next, we bound the switching cost of the expert-algorithm. To this end, we have
TX
t=1

kxηt � xηt�1k =

T�1X
t=0

kxηt+1 � xηt k �
T�1X
t=0

k�xηt+1 � xηt k =

T�1X
t=0

kηrft(xt)k
(11)

� ηTG. (59)

We complete the proof by combining (58) with (59).

B.3 Proof of Lemma 3

We reuse the first part of the proof of Lemma 1, and start from (52). To bound A, we need to analyze
the behavior of the lookahead Hedge. To this end, we prove the following lemma.

Lemma 6 The meta-algorithm in Algorithm 3 satis�es

TX
t=1

0@X
η2H

wηt `t(x
η
t )� `t(xηt )

1A � 1

β
ln

1

wη0
� 1

2β

TX
t=1

kwt �wt�1k21 (60)

for anyη 2 H.
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Substituting (60) into (52), we have
TX
t=1

�
st(xt) + kxt � xt�1k

�
�

TX
t=1

�
st(x

η
t ) + kxηt � xηt�1k

�
� 1

β
ln

1

wη0
� 1

2β

TX
t=1

kwt �wt�1k21 +D

TX
t=2

kwt �wt�1k1

� 1

β
ln

1

wη0
� 1

2β

TX
t=1

kwt �wt�1k21 +

TX
t=2

�
1

2β
kwt �wt�1k21 +

βD2

2

�

� 1

β
ln

1

wη0
+
βTD2

2
= D

r
T

2

�
ln

1

wη0
+ 1

�
(61)

where we set β = 1
D

q
2
T .

B.4 Proof of Lemma 6

To simplify the notation, we define

W0 =
X
η2H

wη0 = 1, Lηt =

tX
i=1

`i(x
η
i ), and Wt =

X
η2H

wη0e
�βL�

t , 8t � 1.

From the updating rule in (20), it is easy to verify that

wηt =
wη0e

�βL�
t

Wt
, 8t � 1. (62)

First, we have

lnWT = ln

0@X
η2H

wη0e
�βL�

T

1A � ln

�
max
η2H

wη0e
�βL�

T

�
= �βmin

η2H

�
LηT +

1

β
ln

1

wη0

�
. (63)

Next, we bound the related quantity ln(Wt/Wt�1) as follows. For any η 2 H, we have

ln

�
Wt

Wt�1

�
(62)
= ln

 
wη0e

�βL�
t

wηt

wηt�1

wη0e
�βL�

t � 1

!
= ln

�
wηt�1

wηt

�
� β`t(xηt ). (64)

Then, we have

ln

�
Wt

Wt�1

�
= ln

�
Wt

Wt�1

�X
η2H

wηt =
X
η2H

wηt ln

�
Wt

Wt�1

�
(64)
=
X
η2H

wηt ln

�
wηt�1

wηt

�
� β

X
η2H

wηt `t(x
η
t ) � �1

2
kwt �wt�1k21 � β

X
η2H

wηt `t(x
η
t )

(65)

where the last inequality is due to Pinsker’s inequality [Cover and Thomas, 2006, Lemma 11.6.1].
Thus

lnWT = lnW0 +

TX
t=1

ln

�
Wt

Wt�1

�
(65)
=

TX
t=1

0@�1

2
kwt �wt�1k21 � β

X
η2H

wηt `t(x
η
t )

1A . (66)

Combining (63) with (66), we obtain

�βmin
η2H

�
LηT +

1

β
ln

1

wη0

�
�

TX
t=1

0@�1

2
kwt �wt�1k21 � β

X
η2H

wηt `t(x
η
t )

1A
We complete the proof by rearranging the above inequality.
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B.5 Proof of Lemma 4

The analysis is similar to that of Theorem 10 of Chen et al. [2018], which relies on a strong condition

xηt = xηt�1 � ηrft(x
η
t ).

Note that the above equation is essentially the vanishing gradient condition of xηt when (21) is
unconstrained. In contrast, we only make use of the first-order optimality criterion of xηt [Boyd and
Vandenberghe, 2004], i.e.,�

rft(xηt ) +
1

η
(xηt � xηt�1),y � xηt

�
� 0, 8y 2 X (67)

which is much weaker.

From the convexity of ft(�), we have

ft(x
η
t )� ft(ut)

�hrft(xηt ),xηt � uti
(67)

� 1

η
hxηt � xηt�1,ut � xηt i =

1

2η

�
kxηt�1 � utk2 � kxηt � utk2 � kxηt � xηt�1k2

�
=

1

2η

�
kxηt�1 � ut�1k2 � kxηt � utk2 + kxηt�1 � utk2 � kxηt�1 � ut�1k2 � kxηt � xηt�1k2

�
=

1

2η

�
kxηt�1 � ut�1k2 � kxηt � utk2 + hxηt�1 � ut + xηt�1 � ut�1,ut�1 � uti � kxηt � xηt�1k2

�
� 1

2η

�
kxηt�1 � ut�1k2 � kxηt � utk2 +

�
kxηt�1 � utk+ kxηt�1 � ut�1k

�
kut � ut�1k

�
� 1

2η
kxηt � xηt�1k2

(12)

� 1

2η

�
kxηt�1 � ut�1k2 � kxηt � utk2

�
+
D

η
kut � ut�1k �

1

2η
kxηt � xηt�1k2.

Summing the above inequality over all iterations, we have

TX
t=1

(ft(x
η
t )� ft(ut)) �

1

2η
kxη0 � u0k22 +

D

η

TX
t=1

kut � ut�1k �
1

2η

TX
t=1

kxηt � xηt�1k2

(12)

� 1

2η
D2 +

D

η

TX
t=1

kut � ut�1k �
1

2η

TX
t=1

kxηt � xηt�1k2.

(68)

Then, the dynamic regret with switching cost can be upper bounded as follows

TX
t=1

�
ft(x

η
t ) + kxηt � xηt�1k � ft(ut)

�
(68)

� 1

2η
D2 +

D

η

TX
t=1

kut � ut�1k �
1

2η

TX
t=1

kxηt � xηt�1k2 +

TX
t=1

kxηt � xηt�1k

� 1

2η
D2 +

D

η

TX
t=1

kut � ut�1k �
1

2η

TX
t=1

kxηt � xηt�1k2 +

TX
t=1

�
1

2η
kxηt � xηt�1k2 +

η

2

�

=
1

2η
D2 +

D

η

TX
t=1

kut � ut�1k+
ηT

2
.
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