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Thus, if @« 2, we have

fi0%) +kxy % 1k

t=1
@@2 X X X 2
— fe(ug) + kug u, 1k+ 1 o fe(uy) 24)
t=1 t=1 t=1

fe(Ue) +kup  ug 1k
t=1
which implies the naive algorithm is 1-competitive. Otherwise, we have

fr(Xe) + kX X 1K
=1 25)

@2 X 2
- fi(u) +  kug  up gk - fe(ug) +Kug  ug gk .

t=1 t=1 t=1
We complete the proof by combining (24) and (25).

A.2 Proof of Theorem 2|

We will make use of the following basic inequality of squared ¢2-norm [Goel et al., 2019, Lemma
12].

kx +yk? (1+ pkxk®+ 1+ 1 kyk?, 8p > 0. (26)
P
Whent 2, we have
1
Je(Xe) + Ekxt X; 1K?
1+
Je(Xe) +

1 1
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p
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.ft(xt)+ Pru, u, K2+ 1+ ku, xK+ku, 1 X 1K?
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For t = 1, we have

1 @o.@ 1+ 2 1
fi(xg) + Ekxl Xok? fi(xg) + Tpkul Uok? + X 1+ ’ fi(ul)  fi(x1) -

Summing over all the iterations, we have

1
Ji(Xe) + Ekxt X; 1K?

=1
1+, X 2 1 X
(X)) + ==P ku, u; K2+ 1+ = fe(ue)  fi(Xe)
= 2 A P
t=1 t=1 t=1
2 1 X
+ - 1+ fo 1(ug 1) fr 1(Xe 1) 27
A Py=
X 1+p X , 4 1 X
fix) + ——  kupy up 1k+ - 1+ fe(ue) (%)
_ 2 _ A P
t=1 t=1 t=1
4 1 X 14+, X 4 1 X
== 1+- fe(ug) + =P ku, u, K2+ 1 — 1+°= Je(X¢).
A t=1 2 t=1 A P t=1

16



First, we consider the case that

1 141 (28)

p

1
1+ - 0.

4 A
A P 4

and have

1
(X)) + Ekxt X; 1K?

t=1
@)@ 4 1 X 1+, X
3 1+- ft(Ut)"'Tp ku, u; 1k?
P t=1 t=1
4 1 X 1
max ~ 1l+= ,1+p fiu) + ku,  ug 1K
A P —1 2

To minimize the competitive ratio, we set

1 4
- 1+- =1+ = —
3 ; PIP=+
and obtain
1 ) 4 X 1 )
Ji(xe) + Ekxt X 1K 1+ X Je(uy) + Ekut u; 1k . (29)
t=1 t=1
Next, we study the case that
4 1
1 - 1+- 0., A 1+ =
A 1) 4 p
which only happens when A > 4. Then, we have
X 1 @@ X 1+, X
Je(x¢) + Ekxt Xy 1K fe(uy) + Tp ku, up 1K%
t=1 t=1 t=1
To minimize the competitive ratio, we set p = ﬁ, and obtain
X 1 ) A 1 )
Je(xe) + Ekxt X; 1k N 4 fe(ue) + Ekut u; 1k

t=1 t=1
which is worse than [29). So, we keep (29) as the final result.

A.3 Proof of Theorem 3|

Since f;( ) is convex, the objective function of is y-strongly convex. From the quadratic growth
property of strongly convex functions [Hazan and Kale, 2011], we have

Fi(x,) + %kxt x; 1K2 + %ku x:K2  fi(u) + %ku x; K%, 8u2X.  (30)
Similar to previous studies [Bansal et al., [2015]], the analysis uses an amortized local competitiveness

argument, using the potential function ckx;  u,k?. We proceed to bound f;(X;) + %kxt X; 1k?+
ckx;  uk?  ckx; 1 u; 1kZ, and have

1
ft(Xt) + Ekxt X¢ 1k2 + ckXt utkz ckXt 1 U; 1k2

1
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) 4c 1 4c
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4c A 4c
— 1+T ft(Xt)+kat x; 1k? +Xft(ut) ckx; 1 up 1K
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Suppose

A
31
N+ac 3D
we have
1
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Summing over all the iterations and assuming Xo = Ug, we have
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where in the penultimate inequality we assume
+ 4 +4 1 +4
1A+4g (A +4g _ Qa9 e (32)
2\ 2\ 1+p 2\ p

Next, we minimize the competitive ratio under the constraints in (31) and (32, which can be

summarized as

A A %
A+de | Nwdep
We first set c = & and v = /\+ 7> and obtain
1 4 1 X 1
fe(Xe) + Zkxy  x¢ 1K? max 1+ 2 1+= f(uy) + =ku,
_ 2 A o 2
t=1 t=1
Then, we set N
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As a result, the competitive ratio is

1+-=1+ EZE,
p A
and the parameter is
A A A
7_A+4c_>\+2p_)\+|X'

A.4 Proof of Theoremd

The analysis is similar to the proof of Theorem 3 of [Zhang et al.| [2018af]. In the analysis, we
need to specify the behavior of the meta-algorithm and expert-algorithm at ¢ = 0. To simplify the
presentation, we set

Xo =0, and X} =0, 8n 2 H. (33)

First, we bound the dynamic regret with switching cost of the meta-algorithm w.r.t. all experts
simultaneously.

a_
Lemma 1 Under AssumptiorH 2 arHi 3, and settiher ﬁ £, we have

| g

5T 1

X
si(X¢)+kx; X; 1k s () +kxy xi ok (2G+1)D 5 In—+1 (34)
w

t=1 t=1 1

for eachn 2 H.

Next, we bound the dynamic regret with switching cost of each expert w.r.t. any comparator sequence
Ug,Uq,...,Ur 2 X.

Lemma 2 Under Assumptioris 2 and 3, we have

p2 pX G?
St(X?) + kX? X:] lk St(ut) T + — kUt Uy 1k+ 77T 7 +G . (35)
t=1 t=1 T =
Then, we show that for any sequence of comparators Ug, U1, ...,Ur 2 X there exists an 7, 2 H

such that the R.H.S. of (33)) is almost minimal. If we minimize the R.H.S. of (33)) exactly, the optimal

step size 18 s

D2 +2DPp

n (P = G20y

(36)

From Assumption[3] we have the following bound of the path-length

X @2
0 PT = kut U j_k TD. (37)

Thus s, s,
D2 ) (ppy | DRraTD?
T@G2z+26) YT T(G2 +2G)’

From our construction of H in (I7), it is easy to verify that
s 0000 =
. D2 D2 +2TD?
mnH=—————— d maxH — -
TGz +2G) " (G2 +2G)

As a result, for any possible value of Pr, there exists a step size 7 2 H with k defined in , such
that s
2k 1 D2

(G2 +2G) n (Pr) 2n. (38)

Nk =
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Plugging 7, into (33)), the dynamic regret with switching cost of expert E”* is given by

s () + kxd o xi* ok s¢(Uy)
t=1 t=1
p?2 pX G?
27"‘7 kut u; 1k+’l7]€T 7+G
M Mk, (39)
D? 2p X G2

+ ku; u; 1k+n (Pr)T — +G
w e e ke T

P
g T(GZ + 2G)(D? + 2D Py).

From (T3], we know the initial weight of expert E"* is
. C 1 1
w = .
k(k+1) k(k+1) (k+1)?

Combining with (34), we obtain the relative performance of the meta-algorithm w.r.t. expert £ :
| gE—

X
se(X)+kxe X, 1K s (XP)+kx® Xk (2G+1)D %[1+2In(k+l)].
t=1 t=1

(40)
From (39) and (@0), we derive the following upper bound for dynamic regret with switching cost

s¢(Xe) + kX X 1K s¢(uy)
=1 t=1 - (41)
gp

T(G? +2G)(D?2 +2DPr) + 2G+1)D S?T [1+2In(k +1)].
Finally, from Assumption[I] we have

. (8
fe(Xe)  fe(Ue)  hrfu(Xe),Xe g st(Xe)  se(Uy). (42)
We complete the proof by combining (1)) and (#2).

A.5 Proof of Theorem[3

The analysis is similar to that of Theorem[d] The difference is that we need to take into account the
lookahead property of the meta-algorithm and the expert-algorithm.

First, we bound the dynamic regret with switching cost of the meta-algorithm w.r.t. all experts
simultaneously.

a_
Lemma 3 Under AssumptioH& and setting= 5 Z, we have

| g
, T 1
s¢(Xe) + kx;  X; 1k se(xy) +kxi  x] 1k D 7 In— +1 (43)
t=1 t=1 wo
for eachn 2 H.
Combining Lemma [3| with Assumption|[I] we have
| g
42),¢13) T 1
fi(xe) +kx; Xy 1k [0 +kx x) ok D 7 In— +1 (44)
w
t=1 t=1 0

for eachn 2 H.

Next, we bound the dynamic regret with switching cost of each expert w.r.t. any comparator sequence
Ug,Uq,...,Ur 2 X.
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Lemma 4 Under Assumptiori§ 1 afd 3, we have

p2 pX T
FOXD) + k! X!k flu) —+=7 ku, up kL @9)
t=1 t=1 2 n t=1 2

The rest of the proof is almost identical to that of Theorem[d] We will show that for any sequence
of comparators Ug, U1, ...,Ur 2 X there exists an 7, 2 H such that the R.H.S. of is almost
minimal. If we minimize the R.H.S. of (#3)) exactly, the optimal step size is

— @@
D2+ 2DPp

n (Pr) = T

(46)

From (37)), we know that r

—
D? D2 + 2TD?
7 1) T

From our construction of H in (22)), it is easy to verify that
"' " 2
D D2 +2TD
—, and maxH _.
T’ T

As a result, for any possible value of Py, there exists a step size 7, 2 H with k defined in (I9), such

minH =

(Pr) r



P
1. the sum of the hitting cost and the switching cost i at Ieastsjl—d = 3D8 d.
2. there exist a xed pointi whose hitting cost i8.

We consider two cases: 7 < Dand 7 D. When 7 < D, from Lemmaw'tng =T, we know that
the dynamic regret with switching cost w.r.t. a fixed point U is at least (D T)).

Next, we consider the case 7 D. Without loss of generality, we assume b7 /Dc divides T Then,
we partition 7T into bt /Dc successive stages, each of which contains 7'/b7/Dc rounds. Applying
Lemmato each stage, we conclude that there exists a sequence of convex functions f1(),..., fr()
over the domain [ %, ?Bg]d where d = T'/br/Dc in the lookahead setting such that

1. the sum of the hitting cost and the switching cost of any online algorithm is at least
s

r -
g 8 br/Dc_ 8 D s
2. there exists a sequence of points Uy, . . ., Up whose hitting cost is 0 and switching cost (i.e.,
path-length) is at most j_k
D % T
since they switch at most br/Dc 1 times.
Thus, the dynamic regret with switching cost w.r.t. Uy, ..., U is at least
r_ -
3D Ik P—
- I 5 7= ( IDn,

We complete the proof by combining the results of the above two cases.

B Proof of supporting lemmas
We provide the proof of all the supporting lemmas.

B.1 Proof of Lemmalll

Based on the prediction rule of the meta-algorithm, we upper bound the switching cost whent 2
as follows:

X < X X
kx; x; 1k= wy Xy wi Xy, = wl Xy  X) wl (X 1 X)
n2H n2H n2H n2H
wi (X{  X) wi(x{ ¢ X) + wi(X{ 1 X) wy (X 1 X)
n2H n2H n2H n2H

>
= w (X} x{ 1) + (w!  w! DX 1 X)

n2H n2H
wl XX+ jwl o owl ) X)X
n2H n2H
= n n n 20 : n = n n
w X} x}, +D jw!  wy! qj= wy X7 xy ; +Dkwy w1k
n2H n2H n2H

(50
where X is an arbitrary point in X, and W; = (w{),21 2 RN. When t = 1, from , we have
>

kx;  Xok = kx1k = wix] wi kx7k = wi kx{  xgk. (51)
n2H n2H n2H
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Then, the relative loss of the meta-algorithm w.r.t. expert £ can be decomposed as

si(xy) +kx; X 1K s (<) +kxi Xk
=14 =1 1
@)@, G K X
G.ee @ Wl x!' x7, hrfo(xe), X! xi+kx! x7 kA
t=1 n2H
< (52)
+ D kw;, w; 1k
g2 1
X X X
@7 wWin(x!) L(XNA+D T kw, Wy k.
t=1 n2H t=2
| {z }
=A

We proceed to bound A and kw;  w; 1k; in . Notice that A is the regret of the meta-algorithm
w.r.t. expert E". From Assumptions[2]and 3] we have

(11),¢12)
Jhrfi(xe), X7 xeij ki fi(x¢)kkxy xtk..GD.

Thus, we have
GD  0,(x! (G+1)D, 8n 2 H. (53)
According to the sta118ard analysis of Hedge [Zhang et al.,[2018a, Lemma 1] and (53)), we have
.
208 , 1. 1 BTG +1)2D?
@ Wl (x) L(xHA 3 In— + u
_ Wy 8
t=1 n2H

(54)

Next, we bound kw;  w; 1k, which measures the stability of the meta-algorithm, i.e., the change
of coefficients between successive rounds. Because the Hedge algorithm is translation invariant, we
can subtract D /2 from £;(x}) such that

i(x}y DJ2j (G+1/2)D, 8n2H. (55)
It is well-known that Hedge can be treated as a special case of “Follow-the-Regularized-Leader” with
entropic regularization [Shalev-Shwartz, [2011]]

R(w) = w; log w;
over the probability simplex, and R( ) is 1-strongly convex w.r.t. the ¢1-norm. In other words, we
have * +
1 X 1
W41 = argmin — log(wy) + g, W +—-R(w), 8 1

w2 B i=1 B
where R¥ is the probability simplex, and g; = [¢;(X]) D/2],2n 2 R". From the stability
property of Follow-the-Regularized-Leader [Duchi et al., 2012, Lemma 2], we have

(55)
kw;  w; 1ky  Bkg: 1ka .6(G+1/2)D, 8t 2.
Then

X T 1)(G+1)D
kWt W, 1K1 ﬁ( )(2 ) .

t=2
Substituting (54) and (56) into (52), we have

(56)

se(X¢) +kx,  x; 1k se(x) +kxi x] k
t=1 t=1
212 2 212
L in L BTRG+1PD? AT DEG+HD? 1, 1 5TQG+1)?D?
B wl 8 2 3wl 8

We complete the proof by setting § = ﬁ %
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B.2 Proof of Lemmal2l

First, we bound the dynamic regret of the expert-algorithm. Define
Xier =X 0 fi(Xe).

Following the analysis of Ader [Zhang et al.,[2018al, Theorems 1 and 6], we have

(16) . 1 -
s5¢(Xt) st(ut)!hrft(xt),XZ’ utl=5hX? X, X Ui

1
= kx]  uks  kxl.,  ukd +kx? X7, K3
1 7
=5t ukd kxl,  ukd + Elkr F1(x)K2
1 , n
2 kx]  uk3  kx.,  ukd + EG2
L owr wke ke, ulkd + a2
2n ’ 2
1
:2— kX? Utk% kX;]+l Ut+1k§ + kX?_,_l Ut+1k§ kX?+1 utk% + gGZ
1
_1 o 2 n 2 n n > N ~2
~ 2 kx; uks  kxXq o UpeakS + (XL, U X0 )7 (U Ugar) + 2G
1
> kx!  uks kx7.,  Upaks+ kX, UK+ kx, o uk kup o Uk +gG2
1
1 D
2 k!  uky kXl Uk + ;kut Uprrk + ng-

Summing the above inequality over all iterations, we have

X
(s:(x7)  se(uy)) Zierlz ulk§+2 KU+ Utk"'*nTGz
n

_ _ 2
t=1 « t=1 (57)
1 D T
fDZ + — Kug+1  uk+ LGZ
2n N 2
Since holds when U741 = Up, we have
1 p X T
(<) s(U)) ~D?+= " ku, U ik+ TG (58)
_ 2n - 2
t=1 t=1
Next, we bound the switching cost of the expert-algorithm. To this end, we have
X e S P
kxi X! k= kx/,, x/k kxl,, Xx/k= knr fi(x,)k nTG. (59)
t=1 t=0 t=0 t=0

We complete the proof by combining (58) with (59).

B.3 Proof of Lemma[3

We reuse the first part of the proof of Lemmal(I] and start from (52). To bound A, we need to analyze
the behavior of the lookahead Hedge. To this end, we prove the following lemma.

Lemma 6 The m%a-algorithm in Algorith@ 3 satis es

DS 1,1 1X
@ WD) LHA  ZIn — 35
t=1 n2H B wo B t=1

foranyn 2 H.

kwe  wy 1k3 (60)
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Substituting (60) into (52)), we have

si(Xe) +kx; X 1k se(xy) +kxi  x] 1k
t=1 t=1
11 1 X
ZInh—; 25 kw, w; 1Ki+D  kw; w; 1kg
ﬁ Wo 5 t=1 t=2 (61)
1.1 1 X 1 BD?
—In— — kWt W, lk2+ 7kWt W; 1k2+ _—
7 1 1
EAT AR Z s 20 2
1,1 TD? T 1
—In— p =D = Inh—+1
B wg 2 2 0
a_
where we set 5 = % %
B.4 Proof of Lemmal6]
To simplify the notation, we define
> X X
Wo= wl=1L)= LX), andW; =  wje "l 8t 1.
n2H i=1 n2H
From the updating rule in (20}, it is easy to verify that
n, BL
n— W€ " 8t 1 62
wy Wt 9 . ( )
First, we have
1
InWyp = |n@>< wle Pl A In maxwle P = Bmin LI+ 1 In 1 (63)
0 n2H 0 n2H T ﬁ U)g ’

n2H

Next, we bound the related quantity In(W; /W, 1) as follows. For any 2 H, we have
1

W, 62 wle BLe  w) w;
In 1t @), Yo N TN (64)
Wi 1 Wy wge BLy 4 wy
Then, we have
W, W, X X W,
In Wt =1In Wt wl = w'ln Wt
t 1 t 1 oh 2H t 1 ©5)
x n > >
64D W 1 1
& wy In fin B w] (X! Ekwt Wy 1k§ B w (X!
n2H W n2H n2H

where the last inequality is due to Pinsker’s inequality [[Cover and Thomas} 2006, Lemma 11.6.1].
Thus
o 1
X W, X 1 X
INWr=InWo+ In —t @ Skw, w1 B wlLDA. (66)
t=1 t1 t=1 n2H

Combining (63) with (66), we obtain o
1

. 1, 1 X 1 29
Bmin Lj + 3 In—; @ Skw, wy KB wilt (XA
n 0 t=1 n2H

We complete the proof by rearranging the above inequality.
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B.5 Proof of Lemma/d]
The analysis is similar to that of Theorem 10 of |Chen et al.|[2018]], which relies on a strong condition
X =x{ 1 fi(x).

Note that the above equation is essentially the vanishing gradient condition of X; when @ is
unconstrained. In contrast, we only make use of the first-order optimality criterion of X [Boyd and
'Vandenberghel, 2004], i.e.,

FRO)+ S X! )y X! 0, 8y2X 67)
n

which is much weaker.

From the convexity of f;( ), we have

[ (X)) fe(uy)
hr fi(x7), X7 ugd

@1 .
“hxy xP u xPi= 2 kx?, uk® kx] uk® kx? x!K?
n 21

:% kx? ;  up 1k kx? uk®+kx? ;o uwk® kx? o up K2 kx] X K?
:% kx] 1 u; 1k? kx? uk®+hx? o ou+x! U U 1w kx? X7 K2
% kx? | u 1k? kx? uk®+ kx? ;o uk+kx! ;o up gk kup  up gk
ikx’7 X! k2
2,'7 t t 1
H kx! ;  u; 1k kx]  ugk? +%kut u; 1k 2—177kx;7 X! k2.

Summing the above inequality over all iterations, we have

) 1, 5 p X 1 X ) -
(AN ACH) %kxo Uokz"'g ku; u; 1k —  kx{  x{ gk
t=1 t=1 t=1

@ 1 p X

.—Dz += ku; u; 1k —
2n N = 2n

(68)

t=1

Then, the dynamic regret with switching cost can be upper bounded as follows

fi(x) +kx{  x? ko fi(uy)

t=1
(169)
2iD2+ D ku, u; 1k Zi kx]  x7 k*+  kx]  x} .k
n n =1 n t=1 t=1
1 p X 1 X X 1
—D?+ = ku, u, 1k — kx7 X" .,k®+ Zkx? X" K2+
2 2 t t 1 2 t t 1 2
U n t=1 n t=1 t=1 U
1 D T
:7.D2+* kut U¢ 1k+L
2n U, 2
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