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Abstract

In this paper, we study online convex optimization in dynamic environments, and
aim to bound the dynamic regret with respect to any sequence of comparators.
Existing work have shown that online gradient descent enjoys an O(

p
T (1 + PT ))





2.1 Static Regret

In static setting, online gradient descent (OGD) achieves an O(
p
T ) regret bound for general convex

functions. If the online functions have additional curvature properties, then faster rates are attaina-
ble. For strongly convex functions, the regret bound of OGD becomes O(log T ) [Shalev-Shwartz
et al., 2007]. The O(

p
T ) and O(log T ) regret bounds, for convex and strongly convex functions

respectively, are known to be minimax optimal [Abernethy et al., 2008]. For exponentially concave
functions, Online Newton Step (ONS) enjoys an O(d log T ) regret, where d is the dimensionality
[Hazan et al., 2007]. When the online functions are both smooth and convex, the regret bound could
also be improved if the cumulative loss of the optimal prediction is small [Srebro et al., 2010].

2.2 Dynamic Regret

To the best of our knowledge, there are only two studies that investigate the general dynamic regret
[Zinkevich, 2003, Hall and Willett, 2013]. While it is impossible to achieve a sublinear dynamic
regret in general, we can bound the dynamic regret in terms of certain regularity of the comparator
sequence or the function sequence. Zinkevich [2003] introduces the path-length

PT (u1, . . . ,uT ) =
TX
t=2

kut � ut�1k2 (5)

and provides an upper bound for OGD in (4). In a subsequent work, Hall and Willett [2013] propose
a variant of path-length

P 0T (u1, . . . ,uT ) =

TX
t=1

kut+1 � Φt(ut)k2 (6)

in which a sequence of dynamical models Φt(�) : X 7! X is incorporated. Then, they develop a new
method, dynamic mirror descent, which achieves an O(

p
T (1 + P 0T )) dynamic regret. When the

comparator sequence follows the dynamical models closely, P 0T could be much smaller than PT , and
thus the upper bound of Hall and Willett [2013] could be tighter than that of Zinkevich [2003].

For the restricted dynamic regret, a powerful baseline, which simply plays the minimizer of previous
round, i.e., xt+1 = argminx2X ft(x), attains an O(P �T ) dynamic regret [Yang et al., 2016], where

P �T := PT (x�1, . . . ,x
�
T ) =

TX
t=2

kx�t � x�t�1k2.

OGD also achieves the O(P �T ) dynamic regret, when the online functions are strongly convex and
smooth [Mokhtari et al., 2016], or when they are convex and smooth and all the minimizers lie in
the interior of X [Yang et al., 2016]. Another regularity of the comparator sequence is the squared
path-length

S�T := ST (x�1, . . . ,x
�
T ) =

TX
t=2

kx�t � x�t�1k22

which could be smaller than the path-length P �T when local minimizers move slowly. Zhang et al.
[2017] propose online multiple gradient descent, and establish an O(min(P �T , S

�
T )) regret bound for

(semi-)strongly convex and smooth functions.

In a recent work, Besbes et al. [2015] introduce the functional variation

FT := F (f1, . . . , fT ) =

TX
t=2

max
x2X
jft(x)� ft�1(x)j

to measure the complexity of the function sequence. Under the assumption that an upper bound
VT � FT is known beforehand, Besbes et al. [2015] develop a restarted online gradient descent, and
prove its dynamic regret is upper bounded by O(T 2=3(VT + 1)1=3) and O(log T

p
T (VT + 1)) for

convex functions and strongly convex functions, respectively. One limitation of this work is that
the bounds are not adaptive because they depend on the upper bound VT . So, even when the actual
functional variation FT is small, the regret bounds do not become better.
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One regularity that involves the gradient of functions is

DT =

TX
t=1

krft(xt)�mtk22

where m1, . . . ,mT is a predictable sequence computable by the learner [Chiang et al., 2012, Rakhlin
and Sridharan, 2013]. From the above discussions, we observe that there are different types of
regularities. As shown by Jadbabaie et al. [2015], these regularities reflect distinct aspects of the online
problem, and are not comparable in general. To take advantage of the smaller regularity, Jadbabaie
et al. [2015] develop an adaptive method whose dynamic regret is on the order of

p
DT + 1 +

minf
p

(DT + 1)P �T , (DT + 1)1=3T 1=3F
1=3
T g. However, it relies on the assumption that the learner

can calculate each regularity online.

2.3 Adaptive Regret

Another way to deal with changing environments is to minimize the adaptive regret, which is defined
as maximum static regret over any contiguous time interval [Hazan and Seshadhri, 2007]. For convex
functions and exponentially concave functions, Hazan and Seshadhri [2007] have developed efficient
algorithms that achieve O(

p
T log3 T ) and O(d log2 T ) adaptive regrets, respectively. Later, the

adaptive regret of convex functions is improved [Daniely et al., 2015, Jun et al., 2017]. The relation
between adaptive regret and restricted dynamic regret is investigated by Zhang et al. [2018b].

3 Our Methods

We first state assumptions about the online problem, then provide our motivations, including a lower
bound of the general dynamic regret, and finally present the proposed methods as well as their
theoretical guarantees. All the proofs can be found in the full paper [Zhang et al., 2018a].

3.1 Assumptions

Similar to previous studies in online learning, we introduce the following common assumptions.

Assumption 1 On domain X , the values of all functions belong to the range [a, a+ c], i.e.,
a � ft(x) � a+ c, 8x 2 X , and t 2 [T ].

Assumption 2 The gradients of all functions are bounded by G, i.e.,
max
x2X
krft(x)k2 � G, 8t 2 [T ]. (7)

Assumption 3 The domain X contains the origin 0, and its diameter is bounded by D, i.e.,
max

x;x02X
kx� x0k2 � D. (8)

Note that Assumptions 2 and 3 imply Assumption 1 with any c � GD



Thus, by choosing η = O(1/
p
T ), OGD achieves an O(

p
T (1 + PT )) dynamic regret, that is

universal. However, this upper bound is far from the Ω(
p
T (1 + PT )) lower bound indicated by the

theorem below.

Theorem 2 For any online algorithm and any τ 2 [0, TD], there exists a sequence of comparators
u1, . . . ,uT satisfying Assumption 3 and a sequence of functions f1, . . . , fT satisfying Assumption 2,
such that

PT (u1, . . . ,uT ) � τ and R(u1, . . . ,uT ) = Ω
�
G
p
T (D2 +Dτ)

�
.

Although there exist lower bounds for the restricted dynamic regret [Besbes et al., 2015, Yang et al.,
2016], to the best of our knowledge, this is the first lower bound for the general dynamic regret.

Let’s drop the universal property for the moment, and suppose we only want to compare against
a specific sequence ū1, . . . , ūT 2 X whose path-length PT =

PT
t=2 kūt � ūt�1k2 is known

beforehand. In this simple setting, we can tune the step size optimally as η� = O(
q

(1 + PT )/T )

and obtain an improved O(
q
T (1 + PT )) dynamic regret bound, which matches the lower bound in



Algorithm 1 Ader: Meta-algorithm
Require: A step size α, and a setH containing step sizes for experts

1: Activate a set of experts fE�jη 2 Hg by invoking Algorithm 2 for each step size η 2 H
2: Sort step sizes in ascending order η1 � η2 � � � � � ηN , and set w�i1 = C

i(i+1)

3: for t = 1, . . . , T do
4: Receive x�t from each expert E�
5: Output

xt =
X
�2H

w�t x
�
t

6: Observe the loss function ft(�)
7: Update the weight of each expert by

w�t+1 =
w�t e

��ft(xηt )P
�2H w

�
t e
��ft(xµt )

8: Send gradientrft(x�t ) to each expert E�
9: end for

Algorithm 2 Ader: Expert-algorithm
Require: The step size η

1: Let x�1 be any point in X
2: for t = 1, . . . , T do
3: Submit x�t to the meta-algorithm
4: Receive gradientrft(x�t ) from the meta-algorithm
5:

x�t+1 = ΠX
�
x�t � ηrft(x

�
t )
�

6: end for

to get the prediction for the next round.

Next, we specify the parameter setting and our dynamic regret. The setH is constructed in the way
such that for any possible sequence of comparators, there exists a step size that is nearly optimal. To
control the size ofH, we use a geometric series with ratio 2. The value of α is tuned such that the
upper bound is minimized. Specifically, we have the following theorem.

Theorem 3 Set

H =

(
ηi =

2i�1D

G

r
7

2T

����� i = 1, . . . , N

)
(10)

where N = d 12 log2(1 + 4T/7)e+ 1, and α =
p

8/(Tc2) in Algorithm 1. Under Assumptions 1, 2
and 3, for any comparator sequence u1, . . . ,uT 2 X , our proposed Ader method satisfies

TX
t=1

ft(xt)�
TX
t=1

ft(ut) �
3G

4

p
2T (7D2 + 4DPT ) +

c
p

2T

4
[1 + 2 ln(k + 1)]

=O
�p

T (1 + PT )
�

where

k =

�
1

2
log2

�
1 +

4PT
7D

��
+ 1. (11)

The order of the upper bound matches the Ω(
p
T (1 + PT )) lower bound in Theorem 2 exactly.

3.4 An Improved Approach

The basic approach in Section 3.3 is simple, but it has an obvious limitation: From Steps 7 and 8
in Algorithm 1, we observe that the meta-algorithm needs to query the value and gradient of ft(�)
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N times in each round, where N = O(log T ). In contrast, existing algorithms for minimizing static
regret, such as OGD, only query the gradient once per iteration. When the function is complex, the
evaluation of gradients or values could be expensive, and it is appealing to reduce the number of
queries in each round.

Surrogate Loss We introduce surrogate loss [van Erven and Koolen, 2016] to replace the original
loss function. From the first-order condition of convexity [Boyd and Vandenberghe, 2004], we have

ft(x) � ft(xt) + hrft(xt),x� xti, 8x 2 X .

Then, we define the surrogate loss in the t-th iteration as

`t(x) = hrft(xt),x� xti (12)

and use it to update the prediction. Because

ft(xt)� ft(ut) � `t(xt)� `t(ut), (13)

we conclude that the regret w.r.t. true losses ft’s is smaller than that w.r.t. surrogate losses `t’s.
Thus, it is safe to replace ft with `t. The new method, named as improved Ader, is summarized in
Algorithms 3 and 4.

Meta-algorithm The new meta-algorithm in Algorithm 3 differs from the old one in Algorithm 1
since Step 6. The new algorithm queries the gradient of ft(�) at xt, and then constructs the surrogate
loss `t(�) in (12), which is used in subsequent steps. In Step 8, the weights of experts are updated
based on `t(�), i.e.,

w�t+1 =
w�t e

��‘t(xηt )P
�2H w

�
t e
��‘t(xµt )

.

In Step 9, the gradient of `t(�) at x�t is sent to each expert E� . Because the surrogate loss is linear,

r`t(x�t ) = rft(xt), 8η 2 H.

As a result, we only need to send the samerft(xt) to all experts. From the above descriptions, it is
clear that the new algorithm only queries the gradient once in each iteration.

Expert-algorithm The new expert-algorithm in Algorithm 4 is almost the same as the previous
one in Algorithm 2. The only difference is that in Step 4, the expert receives the gradient rft(xt),
and uses it to perform gradient descent

x�t+1 = ΠX
�
x�t � ηrft(xt)

�
in Step 5.

We have the following theorem to bound the dynamic regret of the improved Ader.

Theorem 4 Use the construction ofH in (10), and set α =
p

2/(TG2D2) in Algorithm 3. Under
Assumptions 2 and 3, for any comparator sequence u1, . . . ,uT 2 X , our improved Ader method
satisfies

TX
t=1

ft(xt)�
TX
t=1

ft(ut) �
3G

4

p
2T (7D2 + 4DPT ) +

GD
p

2T

2
[1 + 2 ln(k + 1)]

=O
�p

T (1 + PT )
�

where k is defined in (11).

Similar to the basic approach, the improved Ader also achieves an O(
p
T (1 + PT )) dynamic regret,

that is universal and adaptive. The main advantage is that the improved Ader only needs to query the
gradient of the online function once in each iteration.
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Algorithm 3 Improved Ader: Meta-algorithm
Require: A step size α, and a setH containing step sizes for experts

1: Activate a set of experts fE�jη 2 Hg by invoking Algorithm 4 for each step size η 2 H
2: Sort step sizes in ascending order η1 � η2 � � � � � ηN , and set w�i1 = C

i(i+1)

3: for t = 1, . . . , T do
4: Receive x�t from each expert E�
5: Output

xt =
X
�2H

w�t x
�
t

6: Query the gradient of ft(�) at xt
7: Construct the surrogate loss `t(�) in (12)
8: Update the weight of each expert by

w�t+1 =
w�t e

��‘t(xηt )P
�2H w

�
t e
��‘t(xµt )

9: Send gradientrft(xt) to each expert E�
10: end for

Algorithm 4 Improved Ader: Expert-algorithm
Require: The step size η

1: Let x�1 be any point in X
2: for t = 1, . . . , T do
3: Submit x�t to the meta-algorithm
4: Receive gradientrft(xt) from the meta-algorithm
5:

x�t+1 = ΠX
�
x�t � ηrft(xt)

�
6: end for

3.5 Extensions

Following Hall and Willett [2013], we consider the case that the learner is given a sequence of
dynamical models Φt(�) : X 7! X , which can be used to characterize the comparators we are
interested in. Similar to Hall and Willett [2013], we assume each Φt(�) is a contraction mapping.

Assumption 4 All the dynamical models are contraction mappings, i.e.,

kΦt(x)� Φt(x
0)k2 � kx� x0k2, (14)

for all t 2 [T ], and x,x0 2 X .

Then, we choose P 0T in (6) as the regularity of a comparator sequence, which measures how much it
deviates from the given dynamics.

Algorithms For brevity, we only discuss how to incorporate the dynamical models into the basic
Ader in Section 3.3, and the extension to the improved version can be done in the same way. In fact,
we only need to modify the expert-algorithm, and the updated one is provided in Algorithm 5. To
utilize the dynamical model, after performing gradient descent, i.e.,

x̄�t+1 = ΠX
�
x�t � ηrft(x

�
t )
�

in Step 5, we apply the dynamical model to the intermediate solution x̄�t+1, i.e.,

x�t+1 = Φt(x̄
�
t+1),

and obtain the prediction for the next round. In the meta-algorithm (Algorithm 1), we only need to
replace Algorithm 2 in Step 1 with Algorithm 5, and the rest is the same. The dynamic regret of the
new algorithm is given below.
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Algorithm 5 Ader: Expert-algorithm with dynamical models
Require: The step size η, a sequence of dynamical models Φt(�)

1: Let x�1 be any point in X
2: for t = 1, . . . , T do
3: Submit x�t to the meta-algorithm
4: Receive gradientrft(x�t ) from the meta-algorithm
5:

x̄�t+1 = ΠX
�
x�t � ηrft(x

�
t )
�

6:
x�t+1 = Φt(x̄

�
t+1)

7: end for

Theorem 5 Set

H =

(
ηi =

2i�1D

G

r
1

T

����� i = 1, . . . , N

)
(15)

where N =
�
1
2 log2(1 + 2T )

�
+ 1, α =

p
8/(Tc2), and use Algorithm 5 as the expert-algorithm in

Algorithm 1. Under Assumptions 1, 2, 3 and 4, for any comparator sequence u1, . . . ,uT 2 X , our
proposed Ader method satisfies

TX
t=1

ft(xt)�
TX
t=1

ft(ut) �
3G

2

q
T (D2 + 2DP 0T ) +

c
p

2T

4
[1 + 2 ln(k + 1)]

=O

�q
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