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Abstract

In this paper, we consider the problem of linear regression with heavy-tailed
distributions. Different from previous studies that use the squared loss to measure
the performance, we choose the absolute loss, which is capable of estimating the
conditional median. To address the challenge that both the input and output could
be heavy-tailed, we propose a truncated minimization problem, and demonstrate
that it enjoys an Õ(

√
d/n) excess risk, where d is the dimensionality and n is the

number of samples. Compared with traditional work on `1-regression, the main
advantage of our result is that we achieve a high-probability risk bound without
exponential moment conditions on the input and output. Furthermore, if the input
is bounded, we show that the classical empirical risk minimization is competent
for `1-regression even when the output is heavy-tailed.

1 Introduction

Linear regression used to be a mainstay of statistics, and remains one of our most important tools
for data analysis [Hastie et al., 2009]. Let T = {(x1, y1), . . . , (xn, yn)} ⊆ Rd × R



empirical risk is no longer a good approximation of the risk [Catoni, 2012], which inspires recent
studies on learning with heavy-tailed losses [Audibert and Catoni, 2011, Hsu and Sabato, 2014,
Brownlees et al., 2015]. In particular, for linear regression with squared loss, i.e., `2-regression,
Audibert and Catoni [2011] develop a truncated min-max estimator, and establish an O(d/n) excess
risk that holds with high probability even when the input and output are heavy-tailed. This result is a
great breakthrough as it extends the scope of linear regression, but is limited to the squared loss.

The motivation of squared loss is to estimate the conditional mean of y given x. Besides the squared
loss, there also exist other losses for regression. For example, if we are interested in the conditional
median, then absolute loss would be a natural choice [Hastie et al., 2009]. Furthermore, absolute loss
is more robust in that it is resistant to outliers in the data [Peter J. Rousseeuw, 1987]. In this paper, we
target linear regression with absolute loss, namely `1-regression. Inspired by the truncation function
of Audibert and Catoni [2011], we propose a truncated minimization problem to support heavy-tailed
distributions. Theoretical analysis shows that our method achieves an Õ(

√
d/n) excess risk, which

holds with high probability. Our theoretical guarantee requires very mild assumptions, and is derived
from standard techniques—the covering number and concentration inequalities. Furthermore, we
show that if the input is bounded, the classical ERM is sufficient even when the output is heavy-tailed.

We highlight the contributions of this paper as follows.

• We propose a truncated minimization problem for `1-regression, which is more simple than
the truncated min-max formulation of Audibert and Catoni [2011] for `2-regression.

• This is the first time an Õ(
√
d/n) excess risk is established for `1-regression under the

condition that both the input and output could be heavy-tailed. Although Brownlees et al.
[2015] develop a general theorem for heavy-tailed losses, when applied to `1-regression, it
requires the input to be bounded.

• When the input is bounded, we prove that the classical ERM achieves an O(D/
√
n) excess

risk for `1-regression, where D is the maximum norm of the input, and does not require any
assumption on the output.

Finally, we note that although this paper focuses on `1-regression, the idea of truncated minimization
and our analysis can be directly extended to Lipschitz losses [Alquier et al., 2017] that satisfy

|`(x>w, y)− `(x>w′, y)| ≤ |x>w − x>w′|, ∀w,w′ ∈ W.

Many popular losses for classification, including hinge loss and logistic loss, are Lipschitz losses. We
will provide detailed investigations in an extended paper.

2 Related Work

In this section, we review the recent work on learning with heavy-tailed losses. A distribution F is
heavy-tailed if and only if [Foss et al., 2013]∫

e�xdF (x) =∞, ∀λ > 0.

There exist studies that try to equip ERM with theoretical guarantees under heavy-tailed distributions.
However, these theories need additional assumptions, such as the small-ball assumption [Mendelson,
2014, 2015] and the Bernstein’s condition [Dinh et al., 2016, Alquier et al., 2017], and do not always
hold with high probability. In the following, we only discuss alternatives of ERM.

2.1 Truncation based Approaches

Our truncated method follows the line of research stemmed from Catoni [2012]. In his seminal work,
Catoni [2012] considers the estimation of the mean and variance of a real random variable from
independent and identically distributed (i.i.d.) samples. Let x1, . . . , xn ∈ R be i.i.d. samples drawn
from some unknown probability distribution P. Catoni [2012] builds the estimator θ̂ of the mean as
the solution of the equation

n∑
i=1

ψ
[
α(xi − θ̂)

]
= 0 (1)
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where α > 0 is a positive parameter, and ψ(·) : R 7→ R is a truncation function that is non-decreasing
and satisfies

− log

(
1− x+

x2

2

)
≤ ψ(x) ≤ log

(
1 + x+

x2

2

)
. (2)

By choosing α =
√

2/nν, where ν is the variance of the random variable, Catoni [2012] demonstrates
that with high probability, the deviation of θ̂ from the mean is upper bounded by O(

√
ν/n). Thus,

(1) can be applied to heavy-tailed distributions, as long as the variance is finite.

Audibert and Catoni [2011] extend the robust estimator of Catoni [2012] to linear regression with
squared loss. Specifically, they consider the `2-norm regularized `2-regression (i.e., ridge regression),
and propose the following min-max estimator

min
w∈W

max
u∈W

λ
(
‖w‖2 − ‖u‖2

)
+

1

αn

n∑
i=1

ψ
[
α(yi − x>i w)2 − α(yi − x>i u)2

]
(3)

where ‖ · ‖ denotes the `2-norm of vectors and ψ(·) is the truncation function defined as

ψ(x) =


− log

(
1− x+

x2

2

)
, 0 ≤ x ≤ 1;

log(2), x ≥ 1;

−ψ(−x), x ≤ 0.

(4)

Let (ŵ, û) be the optimal solution to (3). With a suitable choice of α, Audibert and Catoni [2011]
have proved that the following risk bound

R‘2
(ŵ) + λ‖ŵ‖2 − min

w∈W

{
R‘2

(w) + λ‖w‖2
}

= O

(
d

n

)
holds with high probability even when neither the input nor the output has exponential moments.

In a subsequent work, Brownlees et al. [2015] apply the robust estimator of Catoni [2012] to the
general problem of learning with heavy-tailed losses. Let x be a random variable taking values in
some measurable spaceX andF be a set of nonnegative functions defined onX . Given n independent
random variables x1, . . . ,xn, all distributed as x, Brownlees et al. [2015] propose to use the robust
estimator in (1) to estimate the mean of each function f ∈ F , and choose the one that minimizes the
estimator. Formally, the optimization problem is given by

min
f∈F

µ̂f

s. t.
1

nα

n∑
i=1

ψ
[
α(f(xi)− µ̂f )

]
= 0

where ψ(·) is defined as

ψ(x) =


log

(
1 + x+

x2

2

)
, x ≥ 0;

− log

(
1− x+

x2

2

)
, x ≤ 0.

(5)

Based on the generic chaining method [Talagrand, 2005], Brownlees et al. [2015] develop performance
bounds of the above problem. However, the theoretical guarantees rely on the condition that the
function space F is bounded in terms of certain distance. When applying their results to `1-regression,
the linear function needs to be bounded, which means the input vector must be bounded [Brownlees
et al., 2015, Section 4.1.1]. When applying to `2-regression, the input also needs to be bounded and
the theoretical guarantee is no longer a high-probability bound [Brownlees et al., 2015, Section 4.1.2].

2.2 Median-of-means Approaches

Another way to deal with heavy-tailed distributions is the median-of-means estimator [Nemirovski
and Yudin, 1983, Alon et al., 1999, Bubeck et al., 2013, Minsker, 2015]. The basic idea is to divide
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the data into several groups, calculate the sample mean within each group, and take the median of
these means. Recently, Hsu and Sabato [2014, 2016] generalize the median-of-means estimator
to arbitrary metric spaces, and apply it to the minimization of smooth and strongly convex losses.
Specifically, for `2-regression with heavy-tailed distributions, a high-probability Õ(d/n) excess
risk is established, under slightly stronger assumptions than those of Audibert and Catoni [2011].
For regression problem, Lugosi and Mendelson [2016] introduce a new procedure, the so-called
median-of-means tournament, which achieves the optimal tradeoff between accuracy and confidence
under minimal assumptions. The setting of Lugosi and Mendelson [2016] is general in the sense that
the function space could be any convex class of functions, not necessary linear, but the performance
is only measured by the squared loss.

Compared with truncation based approaches, the advantage of median-of-means approaches is that
they do not require prior knowledge of distributional properties. However, the current theoretical
results of median-of-means are restricted to the squared loss or strongly convex losses, and thus
cannot be applied to `1-regression considered in this paper.

3 Our Results

In this section, we first present our truncated minimization problem, then discuss its theoretical
guarantee, and finally study the special setting of bounded inputs.

3.1 Our Formulation

Inspired by the truncated min-max estimator of Audibert and Catoni [2011], we propose the following
truncated minimization problem for `1-regression with heavy-tailed distributions:

min
w∈W

1

nα

n∑
i=1

ψ
(
α|yi − x>i w|

)
(6)

where the truncation function ψ(·) is non-decreasing and satisfies (2), and α > 0 is a parameter
whose value will be determined later. Note that we can choose (4) or (5) as the truncation function.

Compared with the min-max problem in (3), our minimization problem in (6) is more simple.
Although (6) is still a non-convex problem, it has a special structure that can be exploited. Becauseψ(·)
is non-decreasing, it is easy to verify that each individual function ψ(α|yi − x>i w|) is quasiconvex.
Thus, our problem is to minimize the sum of quasiconvex functions. From the recent developments
of quasiconvex optimization [Hazan et al., 2015], we may apply (stochastic) normalized gradient
descent (NGD) to solve (6). This paper focuses on the statistical property of (6), and we leave the
design of efficient optimization procedures as a future work.

3.2 Theoretical Guarantees

LetW be a subset of a Hilbert spaceH, and ‖ · ‖ be the norm associated with the inner product ofH.
We introduce assumptions that used in our analysis.

Assumption 1 The domainW is totally bounded such that for any ε > 0, there exists a finite ε-net
ofW .1

Assumption 2 The expectation of the squared norm of x is bounded, that is,

E(x;y)∼P
[
‖x‖2

]
<∞.

Assumption 3 The `2-risk of all w ∈ W is bounded, that is,

sup
w∈W

R‘2
(w) = sup

w∈W
E(x;y)∼P

[
(y − x>w)2

]
<∞.

1A subsetN ⊆ K is called an ε-net of K if for every w ∈ K one can find a ew ∈ N so that ‖w − ew‖ ≤ ε.
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Remark 1 We have the following comments regarding our assumptions.

• Although Assumption 1 requires the domainW is bounded, the input and output could be
unbounded, which allows us to model heavy-tailed distributions.

• Because our goal is to bound the `1-risk, which is the first-order moment, it is natural
to require higher-order moment conditions. Thus, in Assumptions 2 and 3, we introduce
second-order moment conditions on inputs and outputs. Our assumptions support heavy-
tailed distributions in the sense that commonly used heavy-tailed distributions, such as the
Pareto distribution (with parameter α > 2) and the log-normal distribution, have finite
second-order moment.

• By Jensen’s inequality, we have (E[‖x‖])2 ≤ E[‖x‖2]. Thus, Assumption 2 implies E[‖x‖]
is bounded.

• Given Assumptions 1 and 2, Assumption 3 can be relaxed as the `2-risk of the optimal
solution w∗ is bounded. To see this, we have

R‘2
(w) ≤2R‘2

(w∗) + 2(w −w∗)
>E
[
xx>

]
(w −w∗)

≤2R‘2
(w∗) + 2‖w −w∗‖2

∥∥E
[
xx>

]∥∥
2

where ‖ · ‖2 is the spectral norm of matrices. First, Assumption 1 implies ‖w − w∗‖ is
bounded. Second, Assumption 2 implies the spectral norm of E[xx>] is also bounded, that
is, ∥∥E

[
xx>

]∥∥
2
≤ E

[∥∥xx>
∥∥

2

]
= E

[
‖x‖2

]
<∞.

Thus, R‘2
(w) is bounded as long as R‘2

(w∗) is bounded and Assumptions 1 and 2 hold.

To present our theoretical guarantee, we introduce the notation of the covering number. The minimal
cardinality of the ε-net ofW is called the covering number and denoted by N(W, ε). Let ŵ be a
solution to (6), and w∗ ∈ argminw∈W R‘1

(w) be an optimal solution that minimizes the `1-risk.
We have the following excess risk bound.

Theorem 1 Let 0 < δ < 1/2. Under Assumptions 1, 2 and 3, with probability at least 1− 2δ, we
have

R‘1
(ŵ)−R‘1

(w∗) ≤ 2εE[‖x‖] + αε2E
[
‖x‖2

]
+

3α

2
sup
w∈W

R‘2
(w) +

1

nα
log

N(W, ε)

δ2

for any ε > 0. Furthermore, by setting

α =

√
1

n
log

N(W, ε)

δ2
,

we have

R‘1
(ŵ)−R‘1

(w∗) ≤ 2εE[‖x‖] +

√
1

n
log

N(W, ε)

δ2

(
ε2E

[
‖x‖2

]
+

3

2
sup
w∈W

R‘2
(w) + 1

)
.

Remark 2 Note that Theorem 1 is very general in the sense that it can be applied to infinite
dimensional Hilbert spaces, provided the domainW has a finite covering number [Cucker and Smale,
2002]. In contrast, the result of Audibert and Catoni [2011] is limited to finite spaces. The difference
is caused by the different techniques used in the analysis: While Audibert and Catoni [2011] employ
the PAC-Bayesian analysis, we make use of the covering number and standard concentrations.

To reveal the order of the excess risk, we need to specify the value of the covering number. To this
end, we consider the special case thatW is a bounded subset of Euclidean space, and introduce the
following condition.

Assumption 4 The domainW is a subset of Rd and its radius is bounded by B, that is,

‖w‖ ≤ B, ∀w ∈ W ⊆ Rd. (7)

Let Br ⊆ Rd be a ball centered at origin with radius r, and N (Br, ε) be its ε-net with minimal
cardinality, denoted by N(Br, ε). According to a standard volume comparison argument [Pisier,
1989], we have

logN
(
B1, ε

)
≤ d log

3

ε
⇒ logN

(
Br, ε

)
≤ d log

3r

ε
.
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SinceW ⊆ BB , we have

logN(W, ε) ≤ logN
(
BB ,

ε

2

)
≤ d log

6B

ε
where the first inequality is because the covering numbers are (almost) increasing by inclusion [Plan
and Vershynin, 2013, (3.2)]. Then, we have the following corollary by setting ε = 1/n.

Corollary 2 Let 0 < δ < 1/2, and set

α =

√
1

n
log

N(W, 1/n)

δ2
.

Under Assumptions 2, 3 and 4, with probability at least 1− 2δ, we have
R‘1(ŵ)−R‘1(w∗)

≤ 2

n
E[‖x‖] +

√
1

n

(
d log(6nB) + log

1

δ2

)(
1

n2
E
[
‖x‖2

]
+

3

2
sup
w∈W

R‘2
(w) + 1

)

=O

(√
d log n

n

)
.

Remark 3 Ignoring the logarithmic factor, Corollary 2 shows an Õ(
√
d/n) excess risk that holds

with high probability. From the above discussions, we see that the square root dependence on d
comes from the upper bound of the covering number. If the domainW has additional structures (e.g.,
sparse), the covering number may have a smaller dependence on d, and as a result, the dependence
on d could be improved.

3.3 Bounded Inputs

If we only allow the output to be heavy-tailed and the input is bounded, the problem becomes much
easier. Although both our method and the algorithm of Brownlees et al. [2015] are applicable, at least
in theory, there is no need to resort to sophisticated methods. In fact, a careful analysis shows that the
classical ERM is sufficient in this case.

We introduce the following assumption.

Assumption 5 The norm of the random vector x ∈ Rd is upper bounded by a constant D, that is,
‖x‖ ≤ D, ∀(x, y) ∼ P. (8)

Then, we have the following risk bound for ERM.

Theorem 3 Let

�w ∈ argmin
w∈W

1

n

n∑
i=1

|yi − x>i w|

be a solution returned by ERM. Under Assumptions 4 and 5, with probability at least 1− δ, we have



4.1 Proof of Theorem 1

To simplify notations, define

R̂ ◦‘1
(w) =

1

nα

n∑
i=1

ψ
(
α|yi − x>i w|

)
.

From the optimality of ŵ, we have

1

nα

n∑
i=1

ψ
(
α|yi − x>i ŵ|

)
︸ ︷︷ ︸

R̂ψ�`1
(ŵ)

≤ 1

nα

n∑
i=1

ψ
(
α|yi − x>i w∗|

)
︸ ︷︷ ︸

R̂ψ�`1
(w�)

. (9)

Next, we will discuss how to upper bound R̂ ◦‘1(w∗) by R‘1(w∗) and lower bound R̂ ◦‘1(ŵ) by
R‘1(ŵ).

Because w∗ is independent from samples (x1, y1), . . . , (xn, yn), it is easy to relate R̂ ◦‘1(w∗) with
R‘1(w∗) by the standard concentration techniques. To this end, we have the following lemma.

Lemma 1 With probability at least 1− δ, we have

R̂ ◦‘1
(w∗) ≤ R‘1

(w∗) +
α

2
R‘2

(w∗) +
1

nα
log

1

δ
.

Lower bounding R̂ ◦‘1
(ŵ) is more involved because ŵ depends on the sample. To this end, we

combine the covering number and concentration inequalities to develop the following lemma.

Lemma 2 With probability at least 1− δ, we have

R‘1(ŵ) ≤ R̂ ◦‘1(ŵ) + 2εE[‖x‖] + α sup
w∈W

R‘2(w) + αε2E
[
‖x‖2

]
+

1

nα
log

N(W, ε)

δ

for any ε > 0.

Then, Theorem 1 is a direct consequence of (9), Lemmas 1 and 2, and the union bound.

4.2 Proof of Lemma 1

First, note that our truncation function ψ satisfies

ψ(x) ≤ log

(
1 + x+

x2

2

)
, ∀x ∈ R. (10)

Then, we have

E
[
exp

(
nαR̂ ◦‘1

(w∗)
)]

= E

[
exp

(
n∑
i=1

ψ
(
α|yi − x>i w∗|

))]
(10)
≤E

[
n∏
i=1

(
1 + α|yi − x>i w∗|+

α2(yi − x>i w∗)
2

2

)]

=

(
E

[
1 + α|y − x>w∗|+

α2|y − x>w∗|2

2

])n
=

(
1 + αR‘1

(w∗) +
α2

2
R‘2

(w∗)

)n
1+x≤ex
≤ exp

(
n

[
αR‘1(w∗) +

α2

2
R‘2(w∗)

])
.

(11)
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By Chernoff’s method [Lugosi, 2009], we have

P

{
nαR̂ ◦‘1

(w∗) ≥ n
[
αR‘1

(w∗) +
α2

2
R‘2

(w∗)

]
+ log

1

δ

}
= P

{
exp

(
nαR̂ ◦‘1

(w∗)
)
≥ exp

(
n

[
αR‘1

(w∗) +
α2

2
R‘2

(w∗)

]
+ log

1

δ

)}

≤
E
[
exp

(
nαR̂ ◦‘1

(w∗)
)]

exp
(
n
[
αR‘1(w∗) + �2

2 R‘2(w∗)
]

+ log 1
�

) (11)
≤ δ

which completes the proof.

4.3 Proof of Lemma 2

LetN (W, ε) be an ε-net ofW with minimal cardinality N(W, ε). From the definition of ε-net, there
must exist a w̃ ∈ N (W, ε) such that ‖ŵ − w̃‖ ≤ ε. So, we have

|yi − x>i ŵ| ≥ |yi − x>i w̃| − |x>i (w̃ − ŵ)| ≥ |yi − x>i w̃| − ε‖xi‖. (12)

Since ψ(·) is non-decreasing, we have

R̂ ◦‘1
(ŵ) =

1

nα

n∑
i=1

ψ
(
α|yi − x>i ŵ|

) (12)
≥ 1

nα

n∑
i=1

ψ
(
α|yi − x>i w̃| − αε‖xi‖

)
. (13)

To proceed, we develop the following lemma to lower bound the last term in (13).

Lemma 3 With probability at least 1− δ, for all w̃ ∈ N (W, ε), we have

1

nα

n∑
i=1

ψ
(
α|yi − x>i w̃| − αε‖xi‖

)
≥R‘1(w̃)−

[
εE[‖x‖] + α sup

w∈W
R‘2(w) + αε2E

[
‖x‖2

]
+

1

nα
log

N(W, ε)

δ

]
.

(14)

Substituting (14) into (13), with probability at least 1− δ, we have

R̂ ◦‘1
(ŵ)

≥R‘1(w̃)−
[
εE[‖x‖] + α sup

w∈W
R‘2(w) + αε2E

[
‖x‖2

]
+

1

nα
log

N(W, ε)

δ

]
≥R‘1

(ŵ)−
[
2εE[‖x‖] + α sup

w∈W
R‘2

(w) + αε2E
[
‖x‖2

]
+

1

nα
log

N(W, ε)

δ

]
where the last step is due to the following inequality

R‘1(ŵ) = E
[
|y − x>ŵ|

]
≤ E

[
|y − x>w̃|+ |x>(w̃ − ŵ)|

]
≤ R‘1(w̃) + εE[‖x‖].

4.4 Proof of Lemma 3

We first consider a fixed w̃ ∈ N (W, ε) ⊆ W . The proof is similar to that of Lemma 1. Recall that
the truncation function ψ(·) satisfies

ψ(x) ≥ − log

(
1− x+

x2

2

)
, ∀x ∈ R. (15)
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Then, we have

E

[
exp

(
−

n∑
i=1

ψ
(
α|yi − x>i w̃| − αε‖xi‖

))]
(15)
≤E

[
n∏
i=1

(
1− α|yi − x>i w̃|+ αε‖xi‖+

α2
(
|yi − x>i w̃| − ε‖xi‖

)2

2

)]

=

(
E

[
1− α|y − x>w̃|+ αε‖x‖+

α2
(
|y − x>w̃| − ε‖x‖

)2

2

])n

=

(
1− αR‘1

(w̃) + αεE[‖x‖] +
α2

2
E
[(
|y − x>w̃| − ε‖x‖

)2
])n

≤ exp
[
n
(
− αR‘1

(w̃) + αεE[‖x‖] + α2R‘2
(w̃) + α2ε2E

[
‖x‖2

] )]
.

(16)

where the last step is due to the basic inequalities 1 + x ≤ ex and (a+ b)2 ≤ 2a2 + 2b2.

By Chernoff’s method [Lugosi, 2009], we have

P

{
−

n∑
i=1

ψ
(
α|yi − x>i w̃| − αε‖xi‖

)
≥

n
(
− αR‘1(w̃) + αεE[‖x‖] + α2R‘2(w̃) + α2ε2E

[
‖x‖2

] )
+ log

1

δ

}
= P

{
exp

(
−

n∑
i=1

ψ
(
α|yi − x>i w̃| − αε‖xi‖

))
≥

exp

[
n
(
− αR‘1

(w̃) + αεE[‖x‖] + α2R‘2
(w̃) + α2ε2E

[
‖x‖2

] )
+ log

1

δ

]}
≤

E
[
exp

(
−
∑n
i=1 ψ

(
α|yi − x>i w̃| − αε‖xi‖

))]
exp

[
n
(
− αR‘1

(w̃) + αεE[‖x‖] + α2R‘2
(w̃) + α2ε2E [‖x‖2]

)
+ log 1

�

] (16)
≤ δ.

Thus, with probability at least 1− δ, we have

− 1

nα

n∑
i=1

ψ
(
α|yi − x>i w̃| − αε‖xi‖

)
≤−R‘1

(w̃) + εE[‖x‖] + αR‘2
(w̃) + αε2E

[
‖x‖2

]
+

1

nα
log

1

δ

≤−R‘1
(w̃) + εE[‖x‖] + α sup

w∈W
R‘2

(w) + αε2E
[
‖x‖2

]
+

1

nα
log

1

δ
.

We complete the proof by taking the union bound over all w̃ ∈ N (W, ε).

5 Conclusion and Future Work

In this paper, we consider `1-regression with heavy-tailed distributions, and propose a truncated
minimization problem. Under mild assumptions, we prove that our method enjoys an Õ(

√
d/n)

excess risk, which holds with high probability. Compared with traditional work on `1-regression,
the main advantage of our result is that we establish a high-probability bound without exponential
moment conditions on the input and output. Furthermore, we demonstrate that when the input is
bounded, the classical ERM is sufficient for `1-regression.

In the future, we will develop optimization algorithms and theories for the non-convex problem in
(6). Another future work is to apply the idea of truncated minimization to other losses in machine
learning, especially Lipschitz losses.
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