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A Proof of gheore 7

For the sake of completeness, we include the proof of Theorem 1, which was proved by
Molkhtari et al. [2016]. We need the following property of gradient descent.

Le . ai Assumethatf : X — RisA-strongly convex and L-smooth, and ; = argmin,



B

B ProofofLe = a7

We first introduce the following property of strongly convex functions [Hazan and Kale, 2011].

Le a, Assume that ¥ : X - Ris A-strongly convex, and y = argmin, x (). Then, we
have

A
f(a’)_f(a' )25 P 21 s X (7
From the updating rule, we have
1
v =argmin f(u)+ f(u),yr—u +— +—u
x X 2”
According to Lemma 2, we have

f(u)+ f(u),v—u —|—i v—u?
2n
1 1 (18)
=sf(u)+ f(u),r —u —i—ﬁ P _UQ_ﬁ‘_' 2
Since T () is A-strongly convex, we have
f(u+ f(u),r —u =f(r )—g s o—u 2 (19)

On the other hand, the smoothness assumption implies

f(v)<f(u)+ f(u),v—u +% v—u 2Sf(u)+ f(u),v —u +% v—u 2. (20

Combining (18), (19), and (20), we obtain

f(V)Sf(;')—§ s —u +ﬁ sy —u 2 _ - v — 2. (21)

Applying Lemma 2 again, we have
A
) —f(r)=5 v—v 2, (22)

We complete the proof by substituting (22) into (21) and rearranging.
P
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Since f;(-) is L-smooth, we have

To(oe) —Flo) = T(oy) s — oy + Yt T8y < Teloy) ve— vy + 5 st— oy 2,

Combining with the fact

1
(o) ve— oy S%

for any o > 0, we obtain

1 L+a
ft(s’t)_ft(a’t)S% fe(sy) 24+ 5 Yty 2
Summing the above inequality overt =1,..., T, we get
T T T
1 5, L+a 9
;ft(n — Ty sz—g fils) 2+ = ; st— 5 L (23)
‘We now proceed to bound Zthl it Ty 2 'We have
T T
Z St T8 2 = 170 2 + QZ ( St T Vi—1 2 + v T 2) . 24)
t=1 t=2






For each round t, we randomly sample a vector €, R from the Gaussian distribution N o, 1).
Using &;, we create a function

fi(s)=2 »—18 2
which is both strongly convex and smooth. Notice that ;- is independent from &, and thus we can
bound the expected dynamic regret as follows:

71 =) Elfi(e) = fuls)] =2) B[ s ?+dt?] z2dTT%
—~ .

We furthermore bound S as follows

T
Spl=> B[ &—g-1 217 =2d(T - 1)1°,

Therefore, E[R;] = E[S;]. Hence, for any given algorithm A, there exists a sequence of functions
fi,..., Fp.such that 37, Fi(ie) — Foli) = Q(Sy).
L
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The proof is similar to that of Theorem 1.

We need the following property of gradient descent when applied to semi-strongly convex and
smooth functions [Necoara et al., 2015], which is analogous to Lemma 1 developed for strongly
convex functions.

Le = a 3 Assume that T(-) is L-smooth and satisfies the semi-strong convexity condition in (8).
Letv =IIx (u—n f(u)), wheren < 1/L. We have

e (v __B _
v —IIx«(v) =4/1 1/W+Bu IIx, (u) .

Since Fi(y) <= G for any t [T] and any X, we have

T T
th(.t Zmlnft th (#¢) ft 1_[x* it) S Z
t=1 =1

We now proceed to bound thl st — x;(s¢) . By the triangle inequality, we have

—Tx; (s1)]| . (26)

).

T
—1Ixs (s1)]| < .’1—Hx1*(;’1)H+Z< st~ Ix (s4) +Hfo () = Ty (1)
=1 t=2
(27
Since
vt = 1Ix (e—1—n F—1(e—1))
using Lemma 3, we have
o= T (|| = v e = T (). (28)
From (27) and (28), we have
oo — T (o) |
- T
;’1—Hx1*(3'1)H+VZ —1 = x; (s H-l-ZHth Ct) = T ()
t=2
T
1 fo(;'1)| - HX:<”>H +Pr
implying
d 1 1
; v — s (51)|| < =Pt =y —Tlx; (51)]|- (29)

We complete the prgof by substituting (29) into (26).
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For the sake of completeness, we provide the proof of Lemma 3, which can also be found in the
work of Necoara et al. [2015].
The analysis is similar to that of Lemma 1. Define
a = IIx+(u), and v = IIx«(v).

From the optimality condition of v/, we have

f(u)+ f(u),v—u +i v—u?
2n
) X 2 (30)
— C fi—u 22— ¢ —1
=f(u)+ f(u),u—u +2n u—u on v—u
From the convexity of f(;-), we have
f(u)+ f(u),u—u <f(a). 31

Com



which implies

— i, ()] = H 40 = T, af)|
1 7[3 " —1II <l 1I ’ o
<=(1- ; =- _1 —IIx+ _
_( gisg) em = e[ = o =i )
where we choose K = MTHf In4 such that
K
(1= ) <o (12 ) <1
1/n+B 1/n+B 4
From (34) and (35), we have
2 s 1 2
Z ¢ = Ix (o) || < |]s1 = Ix; (1) || +§Z .t—l_HXt*fl("t—l)H +2S,
t=1 ;2 (36)
1
<||s1 —IIx; (i) - )H2+QST

implying ,

2+

— lx; ,t)’|254ST 1_HX1*(>"1)H2-

Substituting the above 1nequa11ty into (33), we have

- HX{‘(S'l)HQ , a=0.

T
th(.t meft <*GT+2(L+G)ST+(L+G)
=1

Finally, we show that the dynamic regret can still be upper bounded by P,. From the previous
analysis, we have
H (35) 1

—1IIx- (st Fi—1 _HXt*_l(s't—l)H-

Then, we can set Y = 1/2 in Theorem 6 and obtam
T
Z ft ( ¥ t Z mll'l ft
t=1 P

H Proof of gheore ¢

Hx;(n)H-

The inequality (12) follows directly from the result in Section 2.2.X.C of Nemirovski [2004]. To
prove the rest of this theorem, we will use the following properties of self-concordant functions and
the damped Newton method [Nemirovski, 2004].

Le . ag Let T()) be a self-concordant function, and =/ 2f . Then, all points
within the Dikin ellipsoid Wy centered at , defined as Wy = {; v ox =< 1} share similar
second order structure. More specifically, for a given point ;- and for any with x = 1, we have
2f
(= 0 %) et ) (1_“) @
Define y = argmin, (7). Then, we have
A(¥)
o S 2
’ ’ X 1 _ A( ;’) (38)

where N(y) =

—1

Consider the the damped Newton method: v = u — ﬁ(u) [ 2f(u)] T(u). Then, we have

Av) < 20%(w). (39)
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We will also use the following inequality frequently
? =¥ 2ft(l t ) ;

1 -
[ ()] P [ PFma(imy)] 2

I

1 -1
2t

2ft('r"t ) [ fof—l(""t—l)]



Since A;—1(z;_;) = A—1(s4—1) < 1/4. By induction, it is easy to verify

1 .
Ai— 1(zi 1)SZJ:1""'K'K+1' (45)
Therefore,
K+1 1 K 1 1 1
AN—1(st) =N—1(zi]) = 57\t—1(zt_1) == ZK)\t 1(ze—y) = ZK)\t—l('o"t—l)- (46)
Again, using Lemma 4, we have
3 AN—1(st) (45) “6) 4 1 @44 9
i — s < i S o V-1 7T fp— t—
¥t Ft—1 t—1 1_)\t—1(s’t) 32K t— 1( “t—1 2K t—1 t—1 t—1
implying
4
T -1 t2—1 = 1K St—1 T -1 t2—1- 47)
Combining (43) with (47), we have
T 8u T
St 8y t2 ST Z Ft—1 T p—1 ?—1 +2U y2— ? +2Sp
t=2 Tt:3 (48)
1
552 t T8 %4‘2” 2T ?-FQST
t=2
where we use the fact f—ﬁ < 1/2. From (48), we have
d ) 12 1
St t—4p- Y2 1+4ST—%+4ST 49)
=2
Substituting (49) into (42), we obtain
1
th vt) — () =4Sy + (1) — fl(;’l)-l-%.
Next, we bound the dynamic regret by P,.. From (41) and (42), we immediately have
1 Z
th .t ft .t) fl(s’l)—f1(;'1)+6 St TVt (50)
t=2
To bound the last term, we have
T T
Z rt_rttgz(i’t Ft—1 t+ it :tlt)
t=2 t=2
0V _ & v_
= HZ it Ft—1 t—1+ qu ¥ 1 1+PT
t=3
T
@na2 [4 1
= 47“2 Vt—1 7 Vi—1 t_1+E+PT
t=3
T
1 1
Si; Yt T t‘i‘ﬁ-i-PT
which implies
a 1
Ft T Ve ot = 6 + 2F)T- (51)
t=2

18



Combining (50) and (51), we have

1
th o) =) < < PT+f1(.1) filen) + 55
Finally, we prove that the inequality in (41) holds. For t = 2, we have

(11),(40) 1 (12) 1
2 2 2
Y27 89 9 =2 2T V1 2 +2 1T V2 9 = 2” 2T 8 1 + == 79 36

Now, we suppose (41) is true for t = 2, ..., k. We show (41) holds for t = k + 1. We have

. —_ . 2 . —_ . 2 . 2
FEHL T kgl k1l =2 k1 T 8k k1 T2 Sk T Vb1 kel

(11).40) o, 1 @Ds , 1 1 , 1 1
= 20 sk Ty k+72 1K .’k_;’/gk‘FESi kT Vg ;C+ES%.
A A

I ProofofLe ag

By the mean value theorem for vector-valued functions, we have

fluy= f(u)- ‘r'(f.»')z/0 2(y +1t(u—y ) (u—, )dT (52)

Define 1

9(s) =~ [ Qf(u)]_ ¥

which is a convex function of ;. Then, we have
N = [ W] fu)=g( fu)

Zg (/ (o +T(u—» ))(u——-'>dT)S/019( (o +Tu—y ) (u=y))dT
(53)

—1

where the last step follows from Jensen’s inequality.

Define & = » + T(u— ;) which lies in the line segment between u and ;- . In the following, we
will provide an upper bound for

o( HE)u—r))=(u=y) 2E)[ HF@] FE)u—)

Following Lemma 4, we have

2 . 2f/. _ . S 1 2 1 2¢/ .
e R e
(54)
o2 G u—¢& 2. u—,; 2.
u ET I (1_ u— - x*)Q = (1_ S x*)Q <1, (55)
(37 ) (1—=2 u—; 2
)= (e ru=b) 0= umg o e T (TSN )
(56)
As aresult
60 [ 1— u—y x \°
o ( -2 ) 2 (o) () =)
; x* (57)
(54) 1 9
u—y i

=
(1=2u—y x-)2
We complete the proof by substituting (57) into (53).
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