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Abstract

It is well known that the optimal convergence rate for stochastic optimization of
smooth functions is O(1=

p
T ), which is same as stochastic optimization of Lips-

chitz continuous convex functions. This is in contrast to optimizing smooth func-
tions using full gradients, which yields a convergence rate of O(1=T 2). In this
work, we consider a new setup for optimizing smooth functions, termed as Mixed
Optimization, which allows to access both a stochastic oracle and a full gradient
oracle. Our goal is to significantly improve the convergence rate of stochastic op-
timization of smooth functions by having an additional small number of accesses
to the full gradient oracle. We show that, with an O(lnT ) calls to the full gradient
oracle and an O(T ) calls to the stochastic oracle, the proposed mixed optimization
algorithm is able to achieve an optimization error of O(1=T ).

1 Introduction

Many machine learning algorithms follow the framework of empirical risk minimization, which
often can be cast into the following generic optimization problem

min
w∈W

G(w) :=
1

n

n∑
i=1

gi(w); (1)

where n is the number of training examples, gi(w) encodes the loss function related to the ith
training example (xi; yi), and W is a bounded convex domain that is introduced to regularize
the solution w 2 W (i.e., the smaller the size of W , the stronger the regularization is). In this
study, we focus on the learning problems for which the loss function gi(w) is smooth. Examples of
smooth loss functions include least square with gi(w) = (yi�⟨w;xi⟩)2 and logistic regression with
gi(w) = log (1 + exp(�yi⟨w;xi⟩)). Since the regularization is enforced through the restricted do-
main W , we did not introduce a ℓ2 regularizer �∥w∥2=2 into the optimization problem and as a
result, we do not assume the loss function to be strongly convex. We note that a small ℓ2 regularizer
does NOT improve the convergence rate of stochastic optimization. More specifically, the conver-
gence rate for stochastically optimizing a ℓ2 regularized loss function remains as O(1=

p
T ) when

� = O(1=
p

T ) [11, Theorem 1], a scenario that is often encountered in real-world applications.

A preliminary approach for solving the optimization problem in (1) is the batch gradient descent
(GD) algorithm [16]. It starts with some initial point, and iteratively updates the solution using the
equationwt+1 = ΠW(wt � �rG(wt)), where ΠW(�) is the orthogonal projection onto the convex
domain W . It has been shown that for smooth objective functions, the convergence rate of standard
GD is O(1=T ) [16], and can be improved to O(1=T 2) by an accelerated GD algorithm [15, 16, 18].
The main shortcoming of GD method is its high cost in computing the full gradient rG(wt) when
the number of training examples is large. Stochastic gradient descent (SGD) [3, 13, 21] alleviates
this limitation of GD by sampling one (or a small set of) examples and computing a stochastic
(sub)gradient at each iteration based on the sampled examples. Since the computational cost of
SGD per iteration is independent of the size of the data (i.e., n), it is usually appealing for large-
scale learning and optimization.

While SGD enjoys a high computational efficiency per iteration, it suffers from a slow convergence
rate for optimizing smooth functions. It has been shown in [14] that the effect of the stochastic noise
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Full (GD) Stochastic (SGD) Mixed Optimization
Setting Convergence Os Of Convergence Os Of Convergence Os Of

Lipschitz 1√
T

1 0 T 1√
T

T 0 — — —

Smooth 1
T 2 0 T 1√

T
T 0 1

T T log T

Table 1: The convergence rate (O), number of calls to stochastic oracle (Os), and number of calls to
full gradient oracle (Of ) for optimizing Lipschitz continuous and smooth convex functions, using
full GD, SGD, and mixed optimization methods, measured in the number of iterations T .

cannot be decreased with a better rate than O(1=
p

T ) which is significantly worse than GD that uses
the full gradients for updating the solutions and this limitation is also valid when the target function
is smooth. In addition, as we can see from Table 1, for general Lipschitz functions, SGD exhibits
the same convergence rate as that for the smooth functions, implying that smoothness is essentially
not very useful and can not be exploited in stochastic optimization. The slow convergence rate for
stochastically optimizing smooth loss functions is mostly due to the variance in stochastic gradients:
unlike the full gradient case where the norm of a gradient approaches to zero when the solution is
approaching to the optimal solution, in stochastic optimization, the norm of a stochastic gradient
is constant even when the solution is close to the optimal solution. It is the variance in stochastic
gradients that makes the convergence rate O(1=

p
T ) unimprovable in smooth setting [14, 1].

In this study, we are interested in designing an efficient algorithm that is in the same spirit of SGD
but can effectively leverage the smoothness of the loss function to achieve a significantly faster
convergence rate. To this end, we consider a new setup for optimization that allows us to interplay
between stochastic and deterministic gradient descent methods. In particular, we assume that the
optimization algorithm has an access to two oracles:

� A stochastic oracle Os that returns the loss function gi(w) and its gradient based on the
sampled training example (xi; yi)

2, and
� A full gradient oracle Of that returns the gradient rG(w) for any given solution w 2 W .

We refer to this new setting as mixed optimization in order to distinguish it from both stochastic and
full gradient optimization models. The key question we examined in this study is:

Is it possible to improve the convergence rate for stochastic optimization of smooth
functions by having a small number of calls to the full gradient oracle Of?

We give an affirmative answer to this question. We show that with an additional O(lnT ) accesses
to the full gradient oracle Of , the proposed algorithm, referred to as MIXEDGRAD, can improve
the convergence rate for stochastic optimization of smooth functions to O(1=T ), the same rate for
stochastically optimizing a strongly convex function [11, 19, 23]. MIXEDGRAD builds off on multi-
stage methods [11] and operates in epochs, but involves novel ingredients so as to obtain an O(1=T )
rate for smooth losses. In particular, we form a sequence of strongly convex objective functions to
be optimized at each epoch and decrease the amount of regularization and shrink the domain as the
algorithm proceeds. The full gradient oracle Of is only called at the beginning of each epoch.

Finally, we would like to distinguish mixed optimization from hybrid methods that use growing
sample-sizes as optimization method proceeds to gradually transform the iterates into the full gra-
dient method [9] and batch gradient with varying sample sizes [6], which unfortunately make the
iterations to be dependent to the sample size n as opposed to SGD. In contrast, MIXEDGRAD is as
an alternation of deterministic and stochastic gradient steps, with different of frequencies for each
type of steps. Our result for mixed optimization is useful for the scenario when the full gradient
of the objective function can be computed relatively efficient although it is still significantly more
expensive than computing a stochastic gradient. An example of such a scenario is distributed com-
puting where the computation of full gradients can be speeded up by having it run in parallel on
many machines with each machine containing a relatively small subset of the entire training data.
Of course, the latency due to the communication between machines will result in an additional cost
for computing the full gradient in a distributed fashion.

Outline The rest of this paper is organized as follows. We begin in Section 2 by briefly reviewing
the literature on deterministic and stochastic optimization. In Section 3, we introduce the necessary
definitions and discuss the assumptions that underlie our analysis. Section 4 describes the MIXED-
GRAD algorithm and states the main result on its convergence rate. The proof of main result is given
in Section 5. Finally, Section 6 concludes the paper and discusses few open questions.

1The convergence rate can be improved toO(1/T ) when the structure of the objective function is provided.
2We note that the stochastic oracle assumed in our study is slightly stronger than the stochastic gradient

oracle as it returns the sampled function instead of the stochastic gradient.
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2 More Related Work

Deterministic Smooth Optimization The convergence rate of gradient based methods usually
depends on the analytical properties of the objective function to be optimized. When the objective
function is strongly convex and smooth, it is well known that a simple GD method can achieve a
linear convergence rate [5]. For a non-smooth Lipschitz-continuous function, the optimal rate for
the first order method is only O(1=

p
T ) [16]. Although O(1=

p
T ) rate is not improvable in general,

several recent studies are able to improve this rate to O(1=T ) by exploiting the special structure
of the objective function [18, 17]. In the full gradient based convex optimization, smoothness is
a highly desirable property. It has been shown that a simple GD achieves a convergence rate of
O(1=T ) when the objective function is smooth, which is further can be improved to O(1=T 2) by
using the accelerated gradient methods [15, 18, 16].

Stochastic Smooth Optimization Unlike the optimization methods based on full gradients, the
smoothness assumption was not exploited by most stochastic optimization methods. In fact, it was
shown in [14] that the O(1=

p
T ) convergence rate for stochastic optimization cannot be improved

even when the objective function is smooth. This classical result is further confirmed by the recent
studies of composite bounds for the first order optimization methods [2, 12]. The smoothness of
the objective function is exploited extensively in mini-batch stochastic optimization [7, 8], where
the goal is not to improve the convergence rate but to reduce the variance in stochastic gradients
and consequentially the number of times for updating the solutions [24]. We finally note that the
smoothness assumption coupled with the strong convexity of function is beneficial in stochastic
setting and yields a geometric convergence in expectation using Stochastic Average Gradient (SAG)
and Stochastic Dual Coordinate Ascent (SDCA) algorithms proposed in [20] and [22], respectively.

3 Preliminaries

We use bold-face letters to denote vectors. For any two vectors w;w′ 2 W , we denote by ⟨w;w′⟩
the inner product between w and w′. Throughout this paper, we only consider the ℓ2-norm. We
assume the objective function G(w) defined in (1) to be the average of n convex loss functions. The
same assumption was made in [20, 22]. We assume that G(w) is minimized at somew∗ 2 W . With-
out loss of generality, we assume that W � BR, a ball of radius R. Besides convexity of individual
functions, we will also assume that each gi(w) is �-smooth as formally defined below [16].
Definition 1 (Smoothness). A differentiable loss function f(w) is said to be �-smooth with respect
to a norm ∥ � ∥, if it holds that

f(w) � f(w′) + ⟨rf(w′);w � w′⟩ + �

2
∥w � w′∥2; 8 w;w′ 2 W;

The smoothness assumption also implies that ⟨rf(w) � rf(w′);w � w′⟩ � �∥w � w′∥2 which
is equivalent to rf(w) being �-Lipschitz continuous.

In stochastic first-order optimization setting, instead of having direct access to G(w), we only have
access to a stochastic gradient oracle, which given a solution w 2 W , returns the gradient rgi(w)
where i is sampled uniformly at random from f1; 2; � � � ; ng. The goal of stochastic optimization
to use a bounded number T of oracle calls, and compute some w̄ 2 W such that the optimization
error, G(w̄) � G(w∗), is as small as possible.

In the mixed optimization model considered in this study, we first relax the stochastic oracle Os by
assuming that it will return a randomly sampled loss function gi(w), instead of the gradient rgi(w)
for a given solution w 3. Second, we assume that the learner also has an access to the full gradient
oracle Of . Our goal is to significantly improve the convergence rate of stochastic gradient descent
(SGD) by making a small number of calls to the full gradient oracle Of . In particular, we show that
by having only O(log T ) accesses to the full gradient oracle and O(T ) accesses to the stochastic
oracle, we can tolerate the noise in stochastic gradients and attain an O(1=T ) convergence rate for
optimizing smooth functions.

3The audience may feel that this relaxation of stochastic oracle could provide significantly more informa-
tion, and second order methods such as Online Newton [10] may be applied to achieve O(1/T ) convergence.
We note (i) the proposed algorithm is a first order method, and (ii) although the Online Newton method yields a
regret bound ofO(1/T ), its convergence rate for optimization can be as low asO(1/

√
T ) due to the concentra-

tion bound for Martingales. In addition, the Online Newton method is only applicable to exponential concave
function, not any smooth loss function.
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Algorithm 1 MIXEDGRAD

Input: step size �1, domain size ∆1, the number of iterations T1 for the first epoch, the number of
epoches m, regularization parameter �1, and shrinking parameter  > 1
1: Initialize w̄1 = 0
2: for k = 1; : : : ; m do
3: Construct the domain Wk = fw : w +wk 2 W; ∥w∥ � ∆kg
4: Call the full gradient oracle Of for rG(w̄k)
5: Compute gk = �kw̄k + rG(w̄k) = �kw̄k + 1

n

∑n
i=1 rgi(w̄k)

6: Initialize w1
k = 0

7: for t = 1; : : : ; Tk do
8: Call stochastic oracle Os to return a randomly selected loss function gitk(w)

9: Compute the stochastic gradient as ĝt
k = gk + rgitk(w

t
k + w̄k) � rgitk(w̄k)

10: Update the solution by

wt+1
k = argmax

w∈Wk

�k⟨w � wt
k; ĝt

k + �kw
t
k⟩ + 1

2
∥w � wt

k∥2

11: end for
12: Set w̃k+1 = 1

Tk+1

∑Tk+1
t=1 wt

k and w̄k+1 = w̄k + w̃k+1

13: Set∆k+1 = ∆k=, �k+1 = �k=, �k+1 = �k=, and Tk+1 = 2Tk
14: end for
Return w̄m+1

The analysis of the proposed algorithm relies on the strong convexity of intermediate loss functions
introduced to facilitate the optimization as given below.
Definition 2 (Strong convexity). A function f(w) is said to be �-strongly convex w.r.t a norm ∥ � ∥,
if there exists a constant � > 0 (often called the modulus of strong convexity) such that it holds

f(w) � f(w′) + ⟨rf(w′);w � w′⟩ + �

2
∥w � w′∥2; 8 w;w′ 2 W

4 Mixed Stochastic/Deterministic Gradient Descent

We now turn to describe the proposed mixed optimization algorithm and state its convergence rate.
The detailed steps of MIXEDGRAD algorithm are shown in Algorithm 1. It follows the epoch
gradient descent algorithm proposed in [11] for stochastically minimizing strongly convex functions
and divides the optimization process into m epochs, but involves novel ingredients so as to obtain an
O(1=T ) convergence rate. The key idea is to introduce a ℓ2 regularizer into the objective function to
make it strongly convex, and gradually reduce the amount of regularization over the epochs. We also
shrink the domain as the algorithm proceeds. We note that reducing the amount of regularization
over time is closely-related to the classic proximal-point algorithms. Throughout the paper, we will
use the subscript for the index of each epoch, and the superscript for the index of iterations within
each epoch. Below, we describe the key idea behind MIXEDGRAD.

Let w̄k be the solution obtained before the kth epoch, which is initialized to be 0 for the first epoch.
Instead of searching forw∗ at the kth epoch, our goal is to findw∗ � w̄k, resulting in the following
optimization problem for the kth epoch

min
w +wk ∈ W
∥w∥ ≤ ∆k

�k

2
∥w + w̄k∥2 +

1

n

n∑
i=1

gi(w + w̄k); (2)

where ∆k specifies the domain size of w and �k is the regularization parameter introduced at the
kth epoch. By introducing the ℓ2 regularizer, the objective function in (2) becomes strongly convex,
making it possible to exploit the technique for stochastic optimization of strongly convex function
in order to improve the convergence rate. The domain size ∆k and the regularization parameter �k
are initialized to be ∆1 > 0 and �1 > 0, respectively, and are reduced by a constant factor  > 1
every epoch, i.e., ∆k = ∆1=k−1 and �k = �1=k−1. By removing the constant term �k∥w̄k∥2=2
from the objective function in (2), we obtain the following optimization problem for the kth epoch

min
w∈Wk

[
Fk(w) =

�k

2
∥w∥2 + �k⟨w; w̄k⟩ + 1

n

n∑
i=1

gi(w + w̄k)

]
; (3)
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where Wk = fw : w +wk 2 W; ∥w∥ � ∆kg. We rewrite the objective function Fk(w) as

Fk(w) =
�k

2
∥w∥2 + �k⟨w; w̄k⟩ + 1

n

n∑
i=1

gi(w + w̄k



5 Convergence Analysis

Now we turn to proving the main theorem. The proof will be given in a series of lemmas and
theorems where the proof of few are given in the Appendix. The proof of main theorem is based
on induction. To this end, let ŵk

∗ be the optimal solution that minimizes Fk(w) defined in (3).
The key to our analysis is show that when ∥ŵk

∗∥ � ∆k, with a high probability, it holds that
∥ŵk+1

∗ ∥ � ∆k=, where ŵk+1
∗ is the optimal solution that minimizes Fk+1(w), as revealed by the

following theorem.
Theorem 2. Let ŵk

∗ and ŵk+1
∗ be the optimal solutions that minimize Fk(w) and Fk+1(w), re-

spectively, and w̃k+1 be the average solution obtained at the end of kth epoch of MIXEDGRAD
algorithm. Suppose ∥ŵk

∗∥ � ∆k. By setting the step size �k = 1=
(
2�

p
3Tk

)
, we have, with a

probability 1 � 2�,

∥ŵk+1
∗ ∥ � ∆k


and Fk(w̃k+1) � min

w
Fk(w) � �k∆

2
k

24

provided that � � e−9/2 and

Tk � 3008�2

�2
k

ln
1

�
:

Taking this statement as given for the moment, we proceed with the proof of Theorem 1, returning
later to establish the claim stated in Theorem 2.

Proof of Theorem 1. It is easy to check that for the first epoch, using the fact W 2 BR, we have
∥w1

∗∥ = ∥w∗∥ � R := ∆1:

Let wm
∗ be the optimal solution that minimizes Fm(w) and let ŵm+1

∗ be the optimal solution ob-
tained in the last epoch. Using Theorem 2, with a probability 1 � 2m�, we have

∥ŵm
∗ ∥ � ∆1

m−1
; Fm(w̃m+1) � Fm(ŵm

∗ ) � �m∆2
m

24
=

�1∆
2
1

23m+1

Hence by expanding the left hand side and utilizing the smoothness of individual loss functions we
get

1

n

n∑
i=1

gi(w̄m+1) � Fm(ŵm
∗ ) +

�1∆
2
1

23m+1
� �1

m−1
⟨w̃m+1; w̄m⟩

� Fm(ŵm
∗ ) +

�1∆
2
1

23m+1
+

�1∥w̄m∥∆1

2m−2

where the last step uses the fact ∥ŵm+1
∗ ∥ � ∆m = ∆11−m. Since

∥w̄m∥ �
m∑
i=1

jw̃ij �
m∑
i=1

∆i � ∆1

 � 1
� 2∆1

where in the last step holds under the condition  � 2. By combining above inequalities, we obtain
1

n

n∑
i=1

gi(w̄m+1) � Fm(ŵm
∗ ) +

�1∆
2
1

23m+1
+

2�1∆
2
1

2m−2
:

Our final goal is to relate Fm(w) to minw G(w). Since ŵm
∗ minimizes Fm(w), for any w∗ 2

argminG(w), we have

Fm(wm
∗ ) � Fm(w∗) =

1

n

n∑
i=1

gi(w∗) +
�1

2m−1

(
∥w∗ � w̄m∥2 + 2⟨w∗ � w̄m; w̄m⟩

)
: (6)

Thus, the key to bound jF(wm
∗ ) � G(w∗)j is to bound ∥w∗ � w̄m∥. To this end, after the first m

epoches, we run Algorithm 1 with full gradients. Let w̄m+1; w̄m+2; : : : be the sequence of solutions
generated by Algorithm 1 after the first m epochs. For this sequence of solutions, Theorem 2
will hold deterministically as we deploy the full gradient for updating, i.e., ∥w̃k∥ � ∆k for any
k � m + 1. Since we reduce �k exponentially, �k will approach to zero and therefore the sequence
fw̄kg∞k=m+1 will converge tow∗, one of the optimal solutions that minimize G(w). Sincew∗ is the
limit of sequence fw̄kg∞k=m+1 and ∥w̄k∥ � ∆k for any k � m + 1, we have

∥w∗ � w̄m∥ �
∞∑

i=m+1

jw̃ij �
∞∑

k=m+1

∆k � ∆1

m(1 � −1)
� 2∆1

m
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where the last step follows from the condition  � 2. Thus,

Fm(wm
∗ ) � 1

n

n∑
i=1

gi(w∗) +
�1

2m−1

(
4∆2

1

2m
+

8∆2
1

m

)

=
1

n

n∑
i=1

gi(w∗) +
2�1∆

2
1

2m−1

(
2 + −m

)
� 1

n

n∑
i=1

gi(w∗) +
5�1∆

2
1

2m−1
(7)

By combining the bounds in (6) and (7), we have, with a probability 1 � 2m�,
1

n

n∑
i=1

gi(w̄m+1) � 1

n

n∑
i=1

gi(w∗) � 5�1∆
2
1

2m−2
= O(1=T )

where

T = T1

m−1∑
k=0

2k =
T1

(
2m � 1

)
2 � 1

� T1

3
2m:

We complete the proof by plugging in the stated values for , �1 and∆1.

5.1 Proof of Theorem 2

For the convenience of discussion, we drop the subscript k for epoch just to simplify our notation.
Let � = �k, T = Tk, ∆ = ∆k, g = gk. Let w̄ = w̄k be the solution obtained before the start of
the epoch k, and let w̄′ = w̄k+1 be the solution obtained after running through the kth epoch. We
denote by F(w) and F ′(w) the objective functions Fk(w) and Fk+1(w). They are given by

F(w) =
�

2
∥w∥2 + �⟨w; w̄⟩ + 1

n

n∑
i=1

gi(w + w̄) (8)

F ′(w) =
�

2
∥w∥2 +

�


⟨w; w̄′⟩ + 1

n

n∑
i=1

gi(w + w̄′) (9)

Let ŵ∗ = ŵk
∗ and ŵ′

∗ = ŵk+1
∗ be the optimal solutions that minimize F(w) and F ′(w) over the

domain Wk and Wk+1, respectively. Under the assumption that ∥ŵ∗∥ � ∆, our goal is to show

∥ŵ′
∗∥ � ∆


; F(w̄′) � F(ŵ∗) � �∆2

24

The following lemma bounds F(wt) � F(ŵ∗) where the proof is deferred to Appendix.

Lemma 1.

F(wt) � F(ŵ∗) � ∥wt � ŵ∗∥2

2�
� ∥wt+1 � ŵ∗∥2

2�
+

�

2
∥rĝit(wt) + �wt∥2

+ ⟨g;wt � wt+1⟩

+
⟨

rF̂(ŵ∗) � rĝit(ŵ∗);wt � ŵ∗

⟩
+
⟨

�rĝit(wt) + rĝit(ŵ∗) � rF̂(ŵ∗) + rF̂(wt);wt � ŵ∗

⟩
By adding the inequality in Lemma 1 over all iterations, using the fact w̄1 = 0, we have

T∑
t=1

F(wt) � F(ŵ∗) � ∥ŵ∗∥2

2�
� ∥wT+1 � ŵ∗∥2

2�
� ⟨g;wT+1⟩

+
�

2

T∑
t=1

∥rĝit(wt) + �wt∥2

︸ ︷︷ ︸
:=AT

+
T∑

t=1

⟨rF̂(ŵ∗) � rĝit(ŵ∗);wt � ŵ∗⟩︸ ︷︷ ︸
:=BT

+
T∑

t=1

⟨
�rĝit(wt) + rĝit(ŵ∗) � rF̂(ŵ∗) + rF̂(wt);wt � ŵ∗

⟩
︸ ︷︷ ︸

:=CT

:

Since g = rF(0) and

F(wT+1) � F(0) � ⟨rF(0);wT+1⟩ + �

2
∥wT+1∥2 = ⟨g;wT+1⟩ + �

2
∥wT+1∥2

7



using the fact F(0) � F(w∗) +
β
2 ∥w∗∥2 and max(∥w∗∥; ∥wT+1∥) � ∆, we have

�⟨g;wT+1⟩ � F(0) � F(wT+1) +
�

2
∆2 � �∆2 � (F(wT+1) � F(ŵ∗))

and therefore
T+1∑
t=1

F(wt) � F(ŵ∗) � ∆2

(
1

2�
+ �

)
+

�

2
AT + BT + CT : (10)

The following lemmas bound AT , BT and CT .

Lemma 2. For AT defined above we have AT � 6�2∆2T .

The following lemma upper bounds BT and CT . The proof is based on the Bernstein’s inequality
for Martingales [4] and is given in the Appendix.
Lemma 3. With a probability 1 � 2�, we have

BT � �∆2

(
ln

1

�
+

√
2T ln

1

�

)
and CT � 2�∆2

(
ln

1

�
+

√
2T ln

1

�

)
:

Using Lemmas 2 and 3, by substituting the uppers bounds for AT , BT , and CT in (10), with a
probability 1 � 2�, we obtain

T+1∑
t=1

F(wt) � F(ŵ∗) � ∆2

(
1

2�
+ � + 6�2�T + 3� ln

1

�
+ 3�

√
2T ln

1

�

)
By choosing � = 1=[2�

p
3T ], we have

T+1∑
t=1

F(wt) � F(ŵ∗) � ∆2

(
2�

p
3T + � + 3� ln

1

�
+ 3�

√
2T ln

1

�

)
and using the fact w̃ =

∑T+1
i=1 wt=(T + 1), we have

F(w̃) � F(ŵ∗) � ∆2 5�
√
3 ln[1=�]p
T + 1

; and ∆̂2 = ∥w̃ � ŵ∗∥2 � ∆2 5�
√
3 ln[1=�]

�
p

T + 1
:

Thus, when T � [3008�2 ln 1
δ ]=�2, we have, with a probability 1 � 2�,

∆̂2 � ∆2

4
; and jF(w̃) � F(ŵ∗)j � �

24
∆2: (11)

The next lemma relates ∥ŵ′
∗∥ to ∥w̃ � ŵ∗∥.

Lemma 4. We have ∥ŵ′
∗∥ � ∥w̃ � ŵ∗∥.

Combining the bound in (11) with Lemma 4, we have ∥ŵ′
∗∥ � ∆=.

6 Conclusions and Open Questions

We presented a new paradigm of optimization, termed as mixed optimization, that aims to improve
the convergence rate of stochastic optimization by making a small number of calls to the full gradient
oracle. We proposed the MIXEDGRAD algorithm and showed that it is able to achieve an O(1=T )
convergence rate by accessing stochastic and full gradient oracles for O(T ) and O(log T ) times,
respectively. We showed that the MIXEDGRAD algorithm is able to exploit the smoothness of the
function, which is believed to be not very useful in stochastic optimization.

In the future, we would like to examine the optimality of our algorithm, namely if it is possible
to achieve a better convergence rate for stochastic optimization of smooth functions using O(lnT )
accesses to the full gradient oracle. Furthermore, to alleviate the computational cost caused by
O(log T ) accesses to the full gradient oracle, it would be interesting to empirically evaluate the
proposed algorithm in a distributed framework by distributing the individual functions among pro-
cessors to parallelize the full gradient computation at the beginning of each epoch which requires
O(log T ) communications between the processors in total. Lastly, it is very interesting to check
whether an O(1=T 2) rate could be achieved by an accelerated method in the mixed optimization
scenario, and whether linear convergence rates could be achieved in the strongly-convex case.
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