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Before proving the lemmas we recall the definition of F(w), F ′(w), g, and ĝi(w) as:

F(w) =
λ

2
∥w∥2 + λ⟨w, w̄⟩+ 1

n

n∑
i=1

gi(w + w̄),

F ′(w) =
λ

2γ
∥w∥2 +

λ

γ
⟨w, w̄′⟩+ 1

n

n∑
i=1

gi(w + w̄′),

g = λw̄ +
1

n

n∑
i=1

∇gi(w̄),

ĝi(w) = gi(w + w̄)− ⟨w,∇gi(w̄)⟩.

We also recall that ŵ∗ and ŵ′
∗ are the optimal solutions that minimize F(w) and F ′(w) over the

domain Wk and Wk+1, respectively.

Lemma 1.

F(wt)−F(ŵ∗) ≤
∥wt − ŵ∗∥2



where the first inequality follows from the fact that wt+1 in the minimizer of the following opti-
mization problem:

wt+1 = argmin
w∈W∧∥w− �w∥≤∆

⟨g +∇ĝit(wt) + λwt,w −wt⟩+
∥w −wt∥2

2η
.

Therefore, we obtain
F(wt)−F(ŵ∗)

≤ ∥wt − ŵ∗∥2

2η
− ∥wt+1 − ŵ∗∥2

2η
− λ

2
∥wt − ŵ∗∥2

+⟨g,wt −wt+1⟩+
η

2
∥∇ĝit(wt) + λwt∥2

+
⟨
∇F̂(ŵ∗)−∇ĝit(ŵ∗),wt − ŵ∗

⟩
+
⟨
−∇ĝit(wt) +∇ĝit(ŵ∗)−∇F̂(ŵ∗) +∇F̂(wt),wt − ŵ∗

⟩
,

as desired.

We now turn to prove the upper bound on AT .
Lemma 2.

AT ≤ 6β2∆2T

Proof. We bound AT as

AT =

T∑
t=1

∥∇ĝit(wt) + λwt∥2

≤
T∑

t=1

2∥∇ĝit(wt)∥2 + 2λ2∥wt∥2

≤
T∑

t=1

2λ2∆2 + 2∥∇ĝit(wt)−∇ĝit(ŵ∗) +∇ĝit(ŵ∗)∥2 ≤ 6β2∆2T

where the second inequality follows (a+ b)2 ≤ 2(a2 + b2) and the last inequality follows from the
smoothness assumption.

Lemma 3. With a probability 1− 2δ, we have

BT ≤ β∆2

(
ln

1

δ
+

√
2T ln

1

δ

)
and CT ≤ 2β∆2

(
ln

1

δ
+

√
2T ln

1

δ

)

The proof is based on the Berstein inequality for Martingales [1] which is restated here for com-
pleteness.
Theorem 1. (Bernstein’s inequality for martingales). Let X1, . . . , Xn be a bounded martingale
difference sequence with respect to the filtration F = (Fi)1≤i≤n and with ∥Xi∥ ≤ K. Let

Si =

i∑
j=1

Xj

be the associated martingale. Denote the sum of the conditional variances by

Σ2
n =

n∑
t=1

E
[
X2

t |Ft−1

]
,

Then for all constants t, ν > 0,

Pr

[
max

i=1,...,n
Si > t and Σ2

n ≤ ν

]
≤ exp

(
− t2

2(ν +Kt/3)

)
,

and therefore,

Pr

[
max

i=1,...,n
Si >

√
2νt+

√
2

3
Kt and Σ2

n ≤ ν

]
≤ e−t.
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Equipped with this theorem, we are now in a position to upper bound BT and CT as follows.

Proof. (of Lemma 3) DenoteXt = ⟨∇ĝit(ŵ∗)−∇F̂(ŵ∗),wt− ŵ∗⟩. We have that the conditional
expectation ofXt, given randomness in previous rounds, isEt−1[Xt] = 0. We now apply Theorem 1
to the sum of martingale differences. In particular, we have, with a probability 1− e−t,

BT ≤
√
2

3
Kt+

√
2Σt

where

K = max
1≤t≤T

⟨∇ĝit(ŵ∗)−∇F̂(ŵ∗),wt − ŵ∗⟩ ≤ 2β∆2

Σ =
T∑

t=1

Et

[
|⟨∇ĝit(ŵ∗)−∇F̂(ŵ∗),wt − ŵ∗⟩|2

]
≤ β2∆4T

Hence, with a probability 1− δ, we have

BT ≤ β∆2

(
ln

1

δ
+

√
2T ln

1

δ

)
Similar, for CT , we have, with a probability 1− δ,

CT ≤ 2β∆2

(
ln

1

δ
+

√
2T ln

1

δ

)

Lemma 4. ∥ŵ′
∗∥ ≤ γ∥w̃ − ŵ∗∥.

Proof. We rewrite F(w) as

F(w) =
λ

2
∥w∥2 + λ⟨w, w̄⟩+ 1

n

n∑
i=1

gi(w + w̄)

=
λ

2
∥w − w̃ + w̃∥2 + λ⟨w − w̃ + w̃, w̄⟩+ 1

n

n∑
i=1

gi(w − w̃ + w̄′)

Define z = w − w̃. We have

F(w) =
λ

2
∥z+ w̃∥2 + λ⟨z, w̄⟩+ λ⟨w̃, w̄⟩+ 1

n

n∑
i=1

gi(z+ w̄′)

=
λ

2
∥z∥2 + λ⟨z, w̄′⟩+ 1

n

n∑
i=1

gi(z+ w̄′) +
λ

2
∥w̃∥2 + λ⟨w̃, w̄⟩

= F̃(z) +
λ

2
∥w̃∥2 + λ⟨w̃, w̄⟩

where

F̃(z) =
λ

2
∥z∥2 + λ⟨z, w̄′⟩+ 1

n

n∑
i=1

gi(z+ w̄′)

Define w̃∗ = ŵ∗ − w̃. Evidently, w̃∗ minimizes F̃(w). The only difference between F̃(w) and
F ′(w) is that they use different modulus of strong convexity λ. Thus, following [2], we have

∥w̃∗ − ŵ′
∗∥ ≤ 1− γ−1

γ−1
∥w̃∗∥ ≤ (γ − 1)∥w̃∗∥

Hence,
∥ŵ′

∗∥ ≤ γ∥w̃∗∥ = γ∥ŵ∗ − w̃∥
which completes the proofs.
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