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Before proving the lemmas we recall the definition of F(w), F'(w), g, and g;(w) as

Flw) = JlIwlP + Aw, w) Zgz (w+w),
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F(w) = —|wl|® + Z(w,w') + — gi(w +w'),
(w) = W+ 2 ) n}ﬁ_ﬂj( )
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9i(w) = gi(w + W) — (w, Vgi(W)).

We also recall that w, and W/, are the optimal solutions that minimi v F(w) and F’(w) over the
domain Wy, and Wy 1, respectively.

Lemma 1.

Flwy) — F(w,) <



where the first inequality follows from the fact that w41 in the minimi rer of the following opti-
mi vation problem:
2
. ~ W — W
Wil = arg min (g4 Vgi,(We) + Awp, w — wy) + u
WEWA|lw—w] < 2n
Therefore, we obtain

F(wi) = F(w.)
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(g Wi = Weat) + 3 [ VG, (wo) + dwi|* + (VF(W.) = VG, (%), we = W)
+ (=i, (W) + VGi, (%.) = VF(.) + VE(we), W = %)
as desired. O

We now turn to prove the upper bound on Ar.

Lemma 2.
Ar < 682A%T
Proof. We bound A as
T
Ar = ) VG, (W) + Aw®
t=1

IN

T
> 2|V, (W) + 222w |2
t=1

T
< ) 2NA% 42||VGi, (we) = Vi, (W.) + Vi, (w.)|? < 652A°T
t=1

where the second inequality follows (a + b)? < 2(a? + b?) and the last inequality follows from the
smoothness assumption. O

Lemma 3. With a probability 1 — 26, we have

Bp < BA? (m(ls +4/2Tn ;) and Crp < 2BA? <1n(15 + 1/2T1n(15>

The proof is based on the Berstein inequality for Martingales [1] which is restated here for com-
pleteness.

Theorem 1. (Bernstein’s inequality for martingales). Let X1, ..., X, be a bounded martingale
difference sequence with respect to the filtration F = (F;)1<i<n and with | X;|| < K. Let

1
S; = Z X;
Jj=1
be the associated martingale. Denote the sum of the conditional variances by
n
¥2 =) E[X?|Fi],

t=1

Then for all constants t, v > 0,

t2
Pr |:1:II:I-173X7H SIL' > tand E% S l/:| S exp (_W> s

and therefore,

2
Pr l‘_max S; > V2t + gKt and Ei <vy| <et
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Equipped with this theorem, we are now in a position to upper bound By and Cr as follows.

Proof. (of Lemma 3) Denote X; = (Vg;, (W,) — VF (W, ), w; — W,.). We have that the conditional
expectation of X;, given randomness in previous rounds, is E;_1[X;] = 0. We now apply Theorem 1
to the sum of martingale differences. In particular, we have, with a probability 1 — e™¢

3
By < gm NG

where

~

K = max (Vg (W.) — VF(W.),w; — W.) < 28A2

1<t<T

by

zEt 1V, (%) = VF(#.), wi = w.)2] < 2%T
Hence, with a probability 1 — ¢, we have

B < BA? (111(15 ,/2T1n>

Similar, for C, we have, with a probability 1 —

Cr < 2BA? (m(ls +1/2TIn )

Lemmad4. |W.| < 7||w — W]

Proof. We rewrite F(w) as

n

A 2 _ 1 _
Fw) = SlIwll®+Mw,w) + 5;gi(w+w)
= iHw—v~v+v"€z||2+/\<w—{fv+€fvv*v>+12n: (W —w+w)
- 3 ) " 72191
Define z = w — w. We have
Flw) = f||z—|-w||2+)\<z W) + MW, W) + Zg,
= *||Z||2+)\ Zgz ||W||2+/\< W)

~ A _
= F@) + W7+ Mw, w)
where

Flz) = *||Z||2+/\ZW Zgz

Define w, = W, — w. Evidently, W, minimi s F(w). The only difference between F(w) and
F'(w) is that they use different modulus of strong convexity A. Thus, following [2], we have

~ ~ 1—~t ~
[w. — Wl < po= Wl < (v = Dllw.]]
Hence,
WLl < AWl = ][ — Wi
which completes the proofs. O
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