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ABSTRACT
In the big data era, with the increasing amount of multi-media data,
approximate nearest neighbor (ANN) search has been an impor-
tant but challenging problem. As a widely applied large-scale ANN
search method, hashing has made great progress, and achieved sub-
linear search time with low memory space. However, the advances
in hashing are based on the availability of large and representative
datasets, which often contain sensitive information. Typically, the
privacy of this individually sensitive information is compromised.
In this paper, we tackle this valuable yet challenging problem and
formulate a task termed as private hashing, which takes into account
both searching performance and privacy protection. Specifically,
we propose a novel noise mechanism, i.e., Random Flipping, and
two private hashing algorithms, i.e., PHashing and PITQ, with the
refined analysis within the framework of differential privacy, since
differential privacy is a well-established technique to measure the
privacy leakage of an algorithm. Random Flipping targets binary
scenarios and leverages the “Imperceptible Lying” idea to guar-
antee ϵ-differential privacy by flipping each datum of the binary
matrix (noise addition). To preserve ϵ-differential privacy, PHashing
perturbs and adds noise to the hash codes learned by non-private
hashing algorithms using Random Flipping. However, the noise ad-
dition for privacy in PHashing will cause severe performance drops.
To alleviate this problem, PITQ leverages the power of alternative
learning to distribute the noise generated by Random Flipping into
each iteration while preserving ϵ-differential privacy. Furthermore,
to empirically evaluate our algorithms, we conduct comprehen-
sive experiments on the image search task and demonstrate that
proposed algorithms achieve equal performance compared with
non-private hashing methods.

CCS CONCEPTS
• Security and privacy; • Information systems → Informa-
tion retrieval;
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Figure 1: Our proposed Random Flipping is the first noise
mechanism aimed at hashing scenarios, which changes the
non-private database into a private database, and preserves
ϵ-differential privacy. With non-private databases, privacy
is likely to leak while attaining high search performance.
With private databases, privacy will be protected but protect-
ing privacy will cause a slight performance drop. Here, dif-
ferent colors of markers and boxes outside images represent
different subordinate categories. d is the Hamming distance.

1 INTRODUCTION
To deal with the large-scale data, as a popular technique in multi-
media search, approximate nearest neighbor (ANN) search [3, 4]
has attracted much attention in recent years. Among many ANN
search methods, hashing [17, 33, 35, 43, 51] is an active and repre-
sentative sub-area. Particularly, hashing maps data points to binary
codes with learned hash functions by preserving similarity in the
original space of data points. With the power of the binary rep-
resentation, the storage cost for the large-scale database can be
drastically reduced, while the search time complexity is constant or
sub-linear. Existing hashing methods can be roughly categorized
into unsupervised and supervised hashing. Unsupervised hashing
methods, e.g., LSH [17], SH [51], and ITQ [18], learn hash func-
tions from unlabeled data. To improve the quality of hash codes,
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supervised hashing methods such as KSH [33], utilize supervised
information (e.g., similarity matrix or label information). Inspired
by the progress of deep neural networks [21, 50], deep supervised
hashing [5, 20, 24, 30, 46, 53, 54] has been proposed, which lever-
ages the power of deep learning to generate high-level semantic
features.

With the increasing massive data gathered from customers or
individuals in the real world, hashing has been applied in many
scenarios, such as person re-identification [56] and face search [31],
and achieved promising performance. The availability of large and
representative datasets [26, 29], which are often crowd-sourced
and contain sensitive information, advances the success of hashing
technique. However, that would comprise and leak the privacy of
individually sensitive information. The wide use of these sensi-
tive data requires techniques to meet the demands of applications
that offer principled and rigorous privacy guarantees. Differential
privacy [13] is a well-established metric that mathematically re-
quires the probability of any observable outputs to change very
little when any single datum changes. It ensures no attacker can
tell whether the algorithm utilizes or not a specific training ex-
ample, hence addressing the aforementioned problem. Recently,
differential privacy has been applied in many active areas, e.g., on-
line learning [2, 19, 22], generic deep learning [1, 44], and natural
language processing [37].

In this paper, we formulate this novel problem called private
hashing as a step towards efficient large-scale multi-media search
with privacy. To achieve private hashing, we propose a noise mech-
anism, Random Flipping, and two algorithms, i.e., PHashing and
PITQ, within the framework of differential privacy.

The proposed noise mechanism, Random Flipping, leverages the
power of uncertainty (“Imperceptible Lying” proposal) to protect
privacy. Consider the following scenario: We are taking a test ques-
tioning some private individual information, and we have to answer
“yes” or “no”. If we want to keep this private answer uncovered, we
can simply protect our privacy by randomly changing our reply.
Similarly, the binary hash codes can be regarded as sequential ques-
tions of input features, such as black bird head and yellow long
tail, which can be used for identifying the input. Random Flipping
is based on this proposal and preserves ϵ-differential privacy by
randomly flipping each datum (private question) of binary input
with a predefined probability as shown in Fig. 1.

Two private hashing algorithms target different scenarios. PHash-
ing utilizes Random Flipping to extend non-private hashing meth-
ods into private methods and preserves ϵ-differential privacy. How-
ever, the privacy protection causes severe search performance
drops, which are inversely proportional to the strength of privacy-
preserving. To alleviate this problem, we develop PITQ, which
leverages the power of iterative discrete optimization to distribute
the noise generated by Random Flipping into several iterations with
ϵ-differential privacy.

To empirically evaluate the search performance and cost of pri-
vacy protection of our proposed algorithms, i.e., PHashing and PITQ,
we conduct comprehensive experiments on five vision datasets,
i.e., ImageNet [11], CIFAR-10 [26], NUS-WIDE [10], Aircraft [36],
and CUB [48]. Empirical results show that PHashing preserves ϵ-
differential privacy at an acceptable price. PITQ achieves equal

performance compared with non-private ITQ, and sometimes out-
performs the non-private ITQ as the noise helps to converge to a
better local optimum in the discrete binary optimization.

The main contributions of our paper are summarized as follows:
• Our paper is the first to formulate the practical and chal-

lenging private hashing problem within the framework of
differential privacy.

• The proposed Random Flipping is the first noise mechanism
aimed at hashing scenarios in the differential privacy area,
which ensures ϵ-differential privacy by flipping each datum
of the binary input with a predefined probability.

• We devise two private hashing algorithms preserving ϵ-
differential privacy, i.e., PHashing and PITQ, and present
theoretical guarantees. PHashing extends the non-private
hashing algorithms into private algorithms by Random Flip-
ping with an acceptable price. To reduce the performance
drop, PITQ distributes the noise generated by Random Flip-
ping into several iterations instead of adding the noise only
in the last iteration, which leads to better performances than
PHashing (ITQ).

• Empirical results show that our algorithms achieve equal
performances compared with non-private algorithms on the
image search task while preserving ϵ-differential privacy.

2 RELATED WORK
In this section, we briefly review related work on differential privacy
and hashing.

2.1 Differential Privacy
Differential privacy, firstly introduced by Dwork et al. [13], is a
mathematical notion of privacy that requires the probability of any
observable outputs to change very little when any single datum
changes.

Definition 1 (Differential Privacy [14]). A randomized algo-
rithm M with domain N∥X ∥ is (ϵ, δ )-differentially private if ∀S ⊆

Range(M) and ∀x,y ∈ N∥X ∥ with ∥x − y∥1 ≤ 1,

P [M(x) ∈ S] ≤ eϵ P [M(y) ∈ S] + δ . (1)

Here, ϵ, δ ≥ 0 are privacy loss parameters, which quantify the strength
of privacy protection. If S is a countable set, then we can modify the
inequality (1) as

P [M(x) = s] ≤ eϵ P [M(y) = s] + δ , (2)

where s ∈ S. If δ = 0, we say that MM



randomized mapping. Then f ◦M : N∥X ∥ → R
′

is (ϵ, δ )-differentially
private.

In another word, if any part of an algorithm, including outputs
and any components, is differentially private, the whole algorithm
is differentially private. Another important property related to our
work is the basic composition theorem, which indicates that the
composition of k (ϵk , δk )-differential private algorithms is at worst
(
∑

k ϵk ,
∑

k δk )-differential privacy.

Theorem 3 (Basic Composition [14]). Let Mi : N∥X ∥ → Ri
be (ϵi , δi )-differential private for i = 1, . . . ,k . Then the compo-
sition M[k ] : N∥X ∥ → R1 × · · · × Rk defined as: M[k ](x) =

(M1(x),M2(x), . . . ,Mk (x)) is
(∑k

i=1 ϵi ,
∑k

i=1 δi

)
-differential pri-

vate.

A typical paradigm for achieving differentially private real-valued
algorithms Mp is adding noise into the non-private algorithm M.
The noise is calibrated to the sensitivity of M, which is the maxi-
mum of the absolute distance ∥M(x) − M(x

′

)∥, where x and x
′

are
adjacent inputs, i.e., ∥x − x

′

∥1 ≤ 1. For instance, the Gaussian noise
mechanism is defined by

Mp (x) =M(x)+N

(
0, max

x,x′
∈X, ∥x−x′

∥1 ≤1

(
∥M(x) − M(x

′

)∥

)2
σ 2

)
,

(3)

where N

(
0,maxx,x′

∈X, ∥x−x′
∥1 ≤1

(
∥M(x) − M(x

′

)∥

)2
σ 2

)
is the

Gaussian distribution with mean 0 and standard deviation
maxx,x′

∈X, ∥x−x′
∥1 ≤1

(
∥M(x) − M(x

′

)∥

)
σ . If δ ≥ 4

5 exp−(δϵ )2/2

and ϵ < 1, the private real-valued algorithm Mp satisfies (ϵ, δ )-
differential privacy [14]. This paradigm utilizes the post-processing
theorem by implying a real-valued random Gaussian noise.

However, the existing literature on differential privacy mostly
targets real-valued algorithms, e.g., boosting [15], principal com-
ponent analysis [9], linear and logistic regression [7, 55], support
vector machines [38], risk minimization [8, 12], continuous data pro-
cessing [39], online learning [2, 19, 22], generic deep learning [1, 44]
and natural language processing [37], as opposed to binary algo-
rithms, such as hashing [20]. As the privacy of training data will
be leaked in the hashing scenarios, hashing is facing more critical
situations, and there does not exist suitable solutions for hashing.
We firstly formulate this practical and challenging private hashing
problem, and develop Random Flipping for the binary situation.

2.2 Hashing
Hashing is a widely used method for ANN search in large scale
multi-media search with encouraging efficiency in both speed and
storage. Existing hashing methods can be roughly categorized into
unsupervised and supervised hashing. Unsupervised hashing meth-
ods [25] learn hash functions from unlabeled data, e.g., LSH [17],
SH [51] and ITQ [18]. Locality Sensitive Hashing (LSH) [17] uses
random projections as the hash function. Iterative quantization (ITQ)
alternatively rotates the projected data and updates the codes to
find an optimal rotation for minimizing the quantization loss. Super-
vised hashing methods [23, 28, 34, 47, 49, 52] leverage supervised
information (e.g., similarity matrix or label information) to improve
the quality of hash codes, e.g., KSH [33] and SDH [42]. KSH [33]

utilizes the property of kernels to simplify the original problem
while achieving better search accuracy.

Inspired by powerful feature representations in learning with
deep neural networks [27], deep supervised hashing [6, 16] that
adopts deep learning to generate high-level semantic features has
been proposed. Deep Pairwise-Supervised Hashing (DPSH) [30]
preserves relative similarities between image triplets straightly by
integrating feature learning and hash functions in an end-to-end
manner. Deep Supervised Hashing (DSH) [32] splits training data
into similar pairs and dissimilar pairs to generate similarity corre-
lations and controls the quantization error to further improve the
performance. Moreover, HashNet [5] tackles the data imbalance
problem between similar and dissimilar pairs and alleviates this
problem by adjusting the weights of similar pairs. To additionally
accelerate the training procedure, several asymmetric deep hash-
ing methods [41] are proposed, e.g., Asymmetric Deep Supervised
Hashing (ADSH) [24], which only learns the hash function for
query points to reduce the computational complexity. For deriving
compact hash codes, the objective functions in hashing learning
are always designed by the following three principles: i) preserving
the similarity of data points in the original space, ii) distributing
the codes to uniformly fulfill the code space, and iii) generating
compact binary codes.

While the aforementioned hashing methods have shown great
success in multi-media searching, they ignore the privacy of data. In
this paper, to protect privacy which will be potentially revealed, we
are the first to investigate the private hashing problem and devise
two private hashing algorithms with a private noise mechanism.
Besides, to theoretically analyze the proposed algorithms, we derive
the privacy and stability guarantees for measuring the influence of
hash codes by noise addition.

3 METHOD
In this section, we elaborately introduce our noise mechanism
for privacy protection and our proposed private hashing methods.
Besides, we present theoretical guarantees of our algorithms.

Suppose that we have m query data points and n database points
denoted as X = {xi }m

i=1 and Y =
{
yj

}n
j=1. The pairwise information

is denoted by S ∈ {−1,+1}m×n , which is available in the supervised
setting. If point xi and point yj are similar, Si j = +1, otherwise
Si j = −1. Under this definition, the goal of hashing is to learn binary
hash codes b ∈ {−1,+1}c for each point, and the corresponding
hash function h(·), where c is the target length of binary codes. We
denote V ∈ {−1,+1}m×c and U ∈ {−1,+1}n×c as the hash codes
of the query points and the database points, respectively.

The mean average precision (mAP) is one of the most widely
used criteria to evaluate search accuracy. The core idea of mAP is
to evaluate ranked lists by averaging the precision at each position.
Given m query V = [v⊤

1 , . . . , v
⊤
m ] ∈ {−1,+1}m×c and lists of n

ranked retrieval database results, mAP is defined as:

mAP(V) =
1
m

n∑
i=1

1
N+i

n∑
j=1

precision(vi ,U, S, j)I(Si j = 1)

where N+i represents the count of ground-truth relevant instances
in the database for the query vi , I(·) is the indicator function,
and precision(vi ,U, s, j) stands for the precision at cut-off j in the
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Algorithm 1 RandomFlipping(U, β)

Input: U ∈ {−1,+1}n×c represents the input binary matrix. β is
the hyper-parameter for controlling the strength of privacy-
protecting.

Output: The perturbed binary matrix U.
1: for i → 1, . . . ,n do
2: for j → 1, . . . , c do
3: Get a random number 0 ≤ k < 1;
4: if k < β then
5: Ui j ← −Ui j ;
6: end if
7: end for
8: end for
9: return U.

ranked list. mAP is related to the Hamming distance between query
and database which is further influenced by hash codes of database.

3.1 Random Flipping
Here we present our novel noise mechanism, which is the key
novelty of this paper and also an important component of the
proposed private hashing algorithms.

The intuition behind our novel noise mechanism algorithm is
“Imperceptible Lying”. If we are taking a test questioning some
private individual information and have to answer either “yes” or
“no”, and we want to keep this private answer uncovered, we can
simply change our reply with a fixed probability. Similarly, “yes”
and “no” can be seen as “+1” and “-1’, while the c-length binary hash
codes of an input data can be regarded as c sequential questions,
such as “does the input data have black bird head?”, which can be
used for identifying the input. Hence, by changing each datum of
c-length binary hash codes with a predefined probability β , the
individually sensitive information of input data can be protected.
This mechanism is suitable for the hashing scenario, in another
word, the binary algorithms.

As shown in Algorithm 1, our proposed noise mechanism named
as Random Flipping, takes a binary matrix, e.g., hash codes U, as
input, and randomly flips each datum of the input binary matrix
with a predefined probability β , i.e., flipping “+1” to “-1” or flipping
“-1” to “+1”, and then outputs the private binary matrix U

′

. Random
Flipping is straightforward and has the following privacy guarantee:

Theorem 4 (Privacy Guarantee of Random Flipping). Algo-
rithm 1 is ϵ-differentially private, given β = e−ϵ , the parameter of
Random Flipping.

The above theorem shows that the size of the input matrix does
not affect the privacy guarantee, while only the probability β will
influence privacy protection. But, perturbing the input matrix will
cause unpredictable consequences. To estimate the difference be-
tween the input matrix U and the perturbed matrix U

′

which pre-
serves ϵ-differential privacy, we present the following lemma.

Lemma 5 (Stability of Input Binary Matrix). Let U ∈ {−1,+1}n×c

be the input binary matrix and U
′

∈ {−1,+1}n×c be the perturbed
binary matrix derived by U

′

= RandomFlipping(U, β). The expected

Algorithm 2 PHashing(Y, S,H(·, ·), β)

Input: Y =
{
yj

}n
j=1 represents n data points. S ∈ {−1,+1}n×n is

the similarity matrix between data points Y. H(·, ·) is a hashing
learning algorithm. β is the hyper-parameter of the Random
Flipping shown in Algorithm 1.

Output: h(·) is the learned hash function derived by H(·, ·). U
′

is
the private binary hash codes for data points.

1: Train: Learn the hash function h(·) and binary hash codes U
for data points by h(·), U ← H(Y, S).

2: Perturb: Obtain the private binary hash codes U
′

for data points
by U

′

← RandomFlipping(U, β).
3: return h(·) and U

′

.

F -norm ∥U
′

− U∥F satisfies

E
[U′

− U


F

]
= 2

√
βnc .

The above lemma can be further expanded as

E
[U′

− U


F

]
= 2

√
βnc = 2

√
nc

eϵ .

It indicates that the stability of the input matrix is proportional to
the size of the input matrix and the privacy parameter ϵ , and in-
versely proportional to the strength of privacy-protecting, which is
obvious in the sense if we want to hide more individual information,
more stability will lose.

3.2 Private Hashing (PHashing)
In this part, we present our PHashing (private hashing) algorithm
which can equip all the non-private hashing algorithms with the
ability of protecting privacy.

Inspired by the post-processing theorem [14], PHashing com-
bines our proposed novel Random Flipping noise mechanism with
the non-private hashing algorithms to achieve private hashing.
Specifically, after the training of a non-private hashing algorithm
H(·, ·) and obtaining learned hash codes U and the hash func-
tion h(·), we perturb the learned hash codes U for privacy by
RandomFlipping(·, ·). In this way, the perturbed hash codes U

′

is
private. PHashing is widely applicable as we can employ all the
existing hashing methods in the training procedure, and PHashing
involves the following steps:

1. Train: Given any non-private hashing algorithm H(·, ·), we
train it until convergence, and obtain the learned hash func-
tion h(·) and the binary hash codes U for the database;

2. Perturb: Given the privacy parameter β , we employ the Ran-
dom Flipping mechanism shown in Algorithm 1 to derive
the private hash codes U

′

.
The above procedure is summarized in Algorithm 2.

3.2.1 Privacy and Stability Analysis. We now present the privacy
and stability guarantees. With Theorem 2, we can easily obtain the
following privacy guarantee.

Theorem 6 (Privacy Guarantee). With β = e−ϵ , Algorithm 2
is ϵ-differentially private.
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Algorithm 3 PITQ(Y, β, E)

Input: Y =
{
yj

}n
j=1 represents n centralized data points. β is the

hyper-parameter of Random Flipping. E is the iterative epoch.
Output: U and R are the private binary hash codes for data points

and the rotation matrix.
1: Employ proper embedding methods, e.g., PCA, to project the

database data Y and return the optimal projection matrix W;
2: for i ← 1, . . . , E do
3: Fix R and update U: U ← sign(YWR);
4: Perturb U: U ← RandomFlipping(U, β);
5: Fix U and update R: first compute the SVD of U⊤(YW) as

U⊤(YW) = NΩN⊤, and then R ← NN⊤;
6: end for
7: return R and U = sign(YWR).

Now, we focus on the stability of PHashing. Due to sparse and
random properties of hash codes and the mechanism of calculat-
ing mAP, it is hard to measure the performance drop of an un-
constrained algorithm, while if we add some assumptions about
hashing algorithms and hash codes, the guarantee will not suit
most of scenarios. Thus, for deriving general theorems estimating
the privacy impact, we characterize the influence on the hash codes
and Hamming distance between query and database, which directly
influence the search accuracy, i.e., mAP, and present the following
lemma.

Lemma 7 (Stability of Hash Codes and Hamming Distance).
Let v ∈ {−1,+1}c be a query code containing only one point. Let
d

′

∈ {0, . . . , c}n be the Hamming distance between v and the private
hash code U

′

∈ {−1,+1}n×c for the database, and d ∈ {0, . . . , c}n×1

be the Hamming distance between v and the non-private hash code
U ∈ {−1,+1}n×c . The expected F -norm

U − U
′


F
satisfies Lemma 5,

and expected 1-norm
d − d

′

1

satisfies

E
[d − d

′

1

]
≤

n3/2c
√

eϵ
= n3/2c

√
β .

3.3 Private Iterative Quantization (PITQ)
In this section, to reduce performance drop, we devise a private
unsupervised iterative hashing algorithm. The proposed algorithm
is named as PITQ (private iterative quantization), whose perfor-
mance is better than PHashing with H(·, ·) = ITQ . Different from
PHashing, PITQ distributes the noise to each iteration and alter-
natively updates the interdependent parameters for improving the
search performance, while PHashing adds the noise directly on the
output.

As one of the most popular unsupervised conventional hash-
ing methods, ITQ [18] first obtains the binary hash codes U =
sign(YWR) by rotating and quantizing the projected centralized
data YW, where the projection matrix W is learned by embed-
ding methods, e.g., PCA, and then updates the rotation matrix R to
minimize the quantization loss (Eq. (4)) iteratively. This procedure
totally utilizes the structure of data points in the original space.

Inspired by the power of iterative discrete learning in ITQ, PITQ
is motivated as follows: in each iteration i ∈ [E], PITQ first obtains

the binary hash codes U = sign(YWR) by rotating (rotation matrix
R) and quantizing the projected centralized data YW, where the
projection matrix W is learned by embedding methods, e.g., PCA.
Now, for the sake of the privacy in the database, PITQ perturbs the
learned hash codes U utilizing Random Flipping (Algorithm 1). After
that, PITQ updates the rotation matrix R to minimize the quantiza-
tion loss (Eq. (4)). In this way, the rotation matrix R and hash codes
U are alternatively updated. In the last iteration, PITQ returns the
learned rotation matrix R and private hash codes U = sign(YWR),
where the sign(·) is the signum function. PITQ minimizes the fol-
lowing loss function:

Q(U,R) = ∥U − YWR∥2
F . (4)

Specifically, PITQ involves the following steps:
1. Fix R and update U: Expanding Eq. (4), we have

Q(U,R) =∥U∥2
F + ∥YW∥2

F − 2 tr(UR⊤(YW)⊤)

=nc + ∥YW∥2
F − 2 tr(UR⊤(YW)⊤) .

(5)

Minimizing (5) is equivalent to maximizing tr(UR⊤(YW)⊤).
It is obvious that the trace is maximized by letting U =
sign(YWR);

2. Perturb U: Given the parameter β , we employ Random Flip-
ping mechanism (Algorithm 1) to obtain private hash codes
U;

3. Fix U and update R: Now the objective function (5) corre-
sponds to the classic Orthogonal Procrustes problem [40],
which tries to find a rotation for aligning two sets. Thus, we
first compute the SVD of U⊤(YW) as U⊤(YW) = NΩN⊤,
and then set R ← NN⊤;

4. Loop the step 1-3 for predefined iterations E, then return R
and U = sign(YWR).

As summarized in Algorithm 3, our PITQ algorithm alternately
updates the parameters R and U for several predefined iterations E
to find a locally optimal solution. The noise added when perturbing
learned binary codes U in each iteration may help the discrete
optimization to find a better local optimum in some cases practically,
as shown in Tab. 2.

3.3.1 Privacy Analysis. Similarly, based on Theorem 2 and Theo-
rem 3 of differential privacy, we have the following privacy guar-
antee.

Theorem 8 (Privacy Guarantee). Algorithm 3 is ϵ-differentially
private, given the parameter β heo83(aE56 8.966 TfΩ7885 0 TdΩeN)TjΩ/T1_11 7.273 Tf94.923-3.255 TdΩ(000N)TjΩ/T1_51 7.273 Tf94.553 0 TdΩ(ffl)TjΩ/T1_11 7.273 Tf941317 0 TdΩ(ï)TjΩ/T181 7.273 Tf3.4594 0 TdΩE7



Table 1: Comparisons of mAP w.r.t. the different lengths of bits on ImageNet, CIFAR-10, and NUS-WIDE of private ver-
sions (PHashing) and non-private versions (original algorithms) of several hashing algorithms. The rows ticked with private
represents the private versions (PHashing) with ϵ-differential privacy.

Method Private? ϵ
ImageNet CIFAR-10 NUS-WIDE

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits
LSH 0 0.0520 0.1134 0.1625 0.2268 0.1162 0.1215 0.1264 0.1244 0.1850 0.2222 0.2088 0.2116

PHashing (LSH)
✓ 1 0.0130 0.0150 0.0162 0.0186 0.1036 0.1047 0.1057 0.1054 0.1704 0.1783 0.1752 0.1755
✓ 2 0.0280 0.0532 0.0761 0.1140 0.1111 0.1147 0.1183 0.1170 0.1789 0.2052 0.1954 0.1968
✓ 4 0.0475 0.1033 0.1492 0.2110 0.1154 0.1205 0.1252 0.1234 0.1841 0.2199 0.2069 0.2095

ITQ 0 0.2917 0.4929 0.5586 0.6337 0.1544 0.1607 0.1630 0.1656 0.3189 0.3264 0.3277 0.3322

PHashing (ITQ)
✓ 1 0.0213 0.0346 0.0451 0.0715 0.1110 0.1134 0.1148 0.1167 0.1960 0.1987 0.1999 0.2029
✓ 2 0.1429 0.3192 0.3982 0.5116 0.1374 0.1442 0.1471 0.1509 0.2718 0.2805 0.2835 0.2907
✓ 4 0.2684 0.4710 00.5389 0.6208 0.1522 0.1585 0.1612 0.1638 0.3128 0.3207 0.3223 0.3271

SH 0 0.1468 0.2545 0.3039 0.3739 0.1316 0.1289 0.1287 0.1274 0.2270 0.2134 0.2092 0.2066

PHashing (SH)
✓ 1 0.0142 0.0159 0.0168 0.0187 0.1061 0.1055 0.1054 0.1048 0.1724 0.1716 0.1716 0.1711
✓ 2 0.0535 0.0917 0.1133 0.1591 0.1204 0.1185 0.1184 0.1171 0.1936 0.1890 0.1875 0.1862
✓ 4 0.1275 0.2251 0.2712 0.3415 0.1299 0.1273 0.1272 0.1259 0.2205 0.2090 0.2050 0.2028

KSH 0 0.1458 0.1913 0.2150 0.2544 0.2339 0.2586 0.2669 0.2751 0.2891 0.2813 0.2773 0.3055

PHashing (KSH)
✓ 1 0.0148 0.0182 0.0206 0.0257 0.1228 0.1320 0.1387 0.1487 0.1886 0.1893 0.1889 0.2022
✓ 2 0.0591 0.0868 0.0982 0.1345 0.1911 0.2187 0.2306 0.2444 0.2470 0.2451 0.2433 0.2737
✓ 4 0.1285 0.1718 0.1937 0.2345 0.2287 0.2537 0.2626 0.2717 0.2833 0.2763 0.2728 0.3017

SDH 0 0.1296 0.1732 0.2245 0.3058 0.1746 0.2115 0.2033 0.2153 0.1659 0.1659 0.2519 0.2656

PHashing (SDH)
✓ 1 0.0092 0.0198 0.0219 0.0301 0.1181 0.1205 0.1210 0.1286 0.1665 0.1662 0.1690 0.1691
✓ 2 0.0493 0.0769 0.1012 0.1435 0.1525 0.1775 0.1740 0.1912 0.1662 0.1656 0.1798 0.1797
✓ 4 0.1242 0.1688 0.2117 0.2981 0.1710 0.2069 0.1994 0.2126 0.1659 0.1657 0.2266 0.2240

DPSH 0 0.2591 0.5038 0.5980 0.6970 0.6872 0.7024 0.7281 0.7437 0.4169 0.4911 0.5103 0.5438

PHashing (DPSH)
✓ 1 0.0204 0.0326 0.0460 0.0751 0.1920 0.2418 0.2816 0.3616 0.2358 0.2724 0.2999 0.3269
✓ 2 0.1196 0.3108 0.4307 0.5819 0.5720 0.6350 0.6700 0.7059 0.3704 0.4503 0.4994 0.5011
✓ 4 0.2358 0.4797 0.5782 0.6851 0.6752 0.6991 0.7196 0.7386 0.4119 0.4968 0.5085 0.5123

DSH 0 0.6773 0.7164 0.7053 0.7202 0.7230 0.7644 0.7746 0.7920 0.5127 0.5093 0.5184 0.5168

PHashing (DSH)
✓ 1 0.0245 0.0515 0.0671 0.1264 0.1749 0.2903 0.3435 0.4302 0.2687 0.3225 0.3492 0.3864
✓ 2 0.3700 0.6262 0.6379 0.6950 0.5264 0.7109 0.7242 0.7411 0.4734 0.4979 0.5039 0.5050
✓ 4 0.6555 0.7122 0.6997 0.7173 0.6958 0.7548 0.7579 0.7653 0.5100 0.5078 0.5158 0.5142

HashNet 0 0.3005 0.4903 0.5503 0.6313 0.7261 0.7614 0.7858 0.7950 0.5516 0.5663 0.5723 0.5782

PHashing (HashNet)
✓ 1 0.0231 0.0320 0.0366 0.0638 0.2206 0.3139 0.3917 0.4925 0.2844 0.3325 0.3570 0.3963
✓ 2 0.1536 0.3113 0.3752 0.5054 0.6413 0.7139 0.7489 0.7634 0.5083 0.5337 0.5399 0.5512
✓ 4 0.2743 0.4684 0.5308 0.6181 0.7162 0.7491 0.7710 0.7784 0.5469 0.5623 0.5681 0.5745

ADSH 0 0.0630 0.1696 0.3029 0.5720 0.6599 0.7413 0.7590 0.7672 0.5691 0.5938 0.6022 0.6137

PHashing (ADSH)
✓ 1 0.0111 0.0129 0.0249 0.0618 0.1745 0.2802 0.3503 0.3980 0.2738 0.3196 0.3460 0.3750
✓ 2 0.3594 0.0745 0.0648 0.2149 0.5119 0.6969 0.7260 0.7432 0.5031 0.5372 0.5475 0.5249
✓ 4 0.5834 0.1090 0.2139 0.4864 0.6379 0.7360 0.7519 0.7645 0.5596 0.5797 0.5877 0.5581

Table 2: Comparisons of mAP w.r.t. the different lengths of bits on ImageNet, CIFAR-10, NUS-WIDE of our proposed PITQ and
non-private ITQ method.

Method Private? ϵ
ImageNet CIFAR-10 NUS-WIDE

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits 112 bits 24 bits 32 bits 48 bits
ITQ 0 0.2917 0.4929 0.5586 0.6337 0.1544 0.1607 0.1630 0.1656 0.3189 0.3264 0.3277 0.3322

PITQ

✓ 0.25 0.2921 0.4887 0.5628 0.6398 0.1543 0.1608 0.1625 0.1655 0.3221 0.3257 0.3275 0.3311
✓ 0.5 0.2918 0.4880 0.5633 0.6406 0.1544 0.1608 0.1626 0.1657 0.3223 0.3257 0.3277 0.3313
✓ 1 0.2922 0.4883 0.5598 0.6389 0.1543 0.1607 0.1626 0.1659 0.3217 0.3256 0.3276 0.3310
✓ 4 0.2928 0.4881 0.5663 0.6374 0.1538 0.1610 0.1624 0.1659 0.3224 0.3257 0.3273 0.3306

4.1 Datasets and Evaluation Details
We evaluate the performance of our proposed methods on five
vision datasets, three generic datasets and two fine-grained datasets.

• ImageNet [11] (Generic Dataset): ImageNet is a classical
benchmark image dataset and contains over 1.2M images in
the training set and 50K images in the validation set. Each
image has a single label of one of the 1,000 categories. We
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Figure 2: Performance of precision-recall curves on CIFAR-10 comparing several non-private and private methods, i.e., ITQ and
PHashing (ITQ), KSH and PHashing (KSH), DSH and PHashing (DSH). The four sub-figures in each row are the precision-recall
curves for 12 bits, 24 bits, 32 bits, and 48 bits, respectively. Best view in color.

randomly select 100 categories, use all the images of these
categories in the training set as the database, and use all the
images in the validation set as the query.

• CIFAR-10 [26] (Generic Dataset): This dataset contains 60,000
32 × 32 color images. Each image belongs to one of the
ten classes. We follow the protocol proposed in [26], where
10,000 images (1000 images per class) in the test set is used
for evaluation, with the remaining 50,000 images as database
points.

• NUS-WIDE [10] (Generic Dataset): This is a public Web im-
age dataset which contains 269,648 images downloaded from
Flickr.com. Each image is manually annotated by multi-
classes of 81 categories for evaluating retrieval models. We
randomly sample 5,000 images as queries, with the remaining
images as the database.

• CUB [48] (Fine-grained Dataset): This is a fine-grained dataset
focusing on birds with 11,788 images for 200 various birds
species. Database and test sets have 5,994 and 5,794 images.

• Aircraft [36] (Fine-grained Dataset): Aircraft contains 10,000
images of aircraft, with 100 images for each of 100 different
aircraft model variants. We also follow the standard split
in [36].

For the above datasets, two images are treated as a ground-truth
similar pair if they share at least one label. We evaluate the search
performance by adopting two evaluation metrics: mean Average
Precision (mAP) and Precision-recall Curves (PR Curves) based on
lookup. PR Curves are obtained by varying the Hamming radius
from 0 to c with the step-size of 1 to demonstrate the hash lookup
procedure. All the data are reported with average values running
five times.
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Figure 3: mAP comparison on ImageNet, CIFAR-10, and NUS-WIDE with ϵ = 1 for some private methods. For a clear presenta-
tion, we omit the legend of Fig. 3(a) and Fig. 3(c) whose legends are the same as Fig. 3(b) . Best view in color.

We use several non-private state-of-the-art hashing methods to
compare the performance of PHashing, including shallow meth-
ods, i.e., LSH [17], ITQ [18], SH [51], SDH [42] and KSH [33], and
deep supervised methods, i.e., DSH [32], DPSH [30], HashNet [5],
and ADSH [24]. To simplify the notation, we denote the hashing
algorithm extended by PHashing as PHashing (·). For example,
PHashing (ITQ) represents the private version of ITQ extended by
PHashing, while H(·, ·) is ITQ. For deep hashing methods, we use
raw images resized to 224 × 224 as inputs. For traditional shallow
methods, we extract 4096-dimensional deep features by the VGG-
D [45] model pre-trained with ImageNet to conduct fair compar-
isons. Besides, for all the non-private hashing methods, we employ
hyper-parameters introduced in their papers.

4.2 Performance Drop Caused by Privacy
Protection – Parameter Sensitivity

To validate the cost of privacy protection, we choose ϵ from the
set {1, 2, 4} of PHashing and {0.25, 0.5, 1, 4} of PITQ. The mAP of
different methods on three generic datasets is presented in Tab. 1
and Tab. 2 with code-lengths of 12 bits, 24 bits, 32 bits, and 48 bits,
respectively. PR Curves of some methods are shown in Fig. 2. The
left mAP results and PR Curves are presented in Appendix due to
the limitation of space.

Search accuracy: In Tab. 1, the results demonstrate that the
search accuracy is inversely proportional to the privacy parameter
ϵ , which is consistent with the theoretical analysis. And as the
parameter ϵ increases, accuracies of PHashing are approaching
non-private accuracies. The search accuracy in Tab. 2 shows that
distributing the noise to several iterations significantly improves
the search performance, as our PITQ achieves equal performances
with the non-private ITQ and outperforms PHashing (ITQ).

PR Curves: Fig. 2 presents several precision-recall curves for
PHashing using ITQ, KSH, and DSH on CIFAR-10. As the curves
show, the private curves are approaching the non-private curves
with ϵ increasing. The private curves of ϵ = 4 are almost the same
as non-private curves.

4.3 Search Performance
To validate the search performance, we set ϵ = 1 for PHashing
and PITQ. The mAP of different methods on three generic datasets
is presented in Fig. 3 with the code-lengths of 12 bits, 24 bits, 32
bits, and 48 bits, respectively. Due to the limitation of space, the
mAP comparison of fine-grained datasets and PR Curves of all five
datasets are presented in Appendix.

Search accuracy: In Fig. 3, PITQ outperforms PHashing (ITQ).
As PITQ distributes the noise to each iteration, the performance
drop is reduced and PITQ achieves satisfying performance. Due
to the power of supervised learning and deep learning, PITQ is
worse than some deep supervised private hashing methods, which
is reasonable.

5 CONCLUSION
In this paper, we presented a novel noise mechanism and two pri-
vate algorithms for the private hashing task. One of the key con-
tributions was the novel Random Flipping algorithm designed for
the binary situation, in other words, hashing scenario, which en-
sured ϵ-differential privacy. Besides, our first algorithm, PHashing,
showed its ability to extend any non-private hashing methods to
preserve ϵ-differential privacy with acceptable performance drops.
Also, our second algorithm, PITQ, improved the search accuracy
by distributing the noise generated by Random Flipping to each
iteration while achieving equal performances comparing with the
non-private ITQ, as the noise could practically help to find a better
local optimum with ϵ-differential privacy. Experimental results on
diverse vision datasets showed the effectiveness of our methods. In
the future, we would like to explore novel private hashing methods
under the supervised setting and reduce performance drop.
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