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ABSTRACT

Content Based Image Retrieval (CBIR) has become one of the most
active research areas in computer science. Relevance feedback is
often used in CBIR systems to bridge the semantic gap. Typically,
users are asked to make relevance judgements on some query re-
sults, and the feedback information is then used to re-rank the im-
ages in the database. An effective relevance feedback algorithm
must provide the users with the most informative images with re-
spect to the ranking function. In this paper, we propose a novel
active learning algorithm, called Convex Laplacian Regularized I-
optimal Design (CLapRID), for relevance feedback image retrieval.
Our algorithm is based on a regression model which minimizes the
least square error on the labeled images and simultaneously pre-
serves the intrinsic geometrical structure of the image space. It
selects the most informative images which minimize the average
predictive variance. The optimization problem of CLapRID can be
cast as a semidefinite programming (SDP) problem, and solved via
interior-point methods. Experimental results on COREL database
have demonstrate the effectiveness of the proposed algorithm for
relevance feedback image retrieval.

Categories and Subject Descriptors

H.3.3 [Information storage and retrieval]: Information search
and retrieval—Relevance feedback; G.3 [Mathematics of Com-

puting]: Probability and Statistics—Experimental design
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1. INTRODUCTION
With the rapid increase in the volume of electronically archived

image and video materials, Content Based Image Retrieval (CBIR)
has become one of the most active research areas for the last few
decades [10, 17]. Query by example (QBE) is the traditional type
of query in CBIR. In this environment, users formulate a query by
means of giving an example image [21]. CBIR systems use the low
level visual features (mostly color, texture and shape) to represent
an image’s content, and relevant images are retrieved based on the
similarity of their visual features. Although CBIR has been exten-
sively studied, the semantic gap between low-level image features
and high-level semantic concepts limits its performance largely.

To narrow down the semantic gap, relevance feedback is intro-
duced into CBIR [16]. Typically, users are asked to make relevance
judgements on the top images returned by the system, and their
preference is used to train a classifier to separate images that match
the query concept from those that do not. However, in general the
top returned images may not be the most informative ones. In the
worst case, all the top images labeled by the user may be positive
and thus the standard classification techniques can not be applied
due to the lack of negative examples. The key problem then be-
comes how to select the most informative samples from the image
database. In machine learning, this problem is called active learn-
ing, which studies the phenomenon of a learner selecting actions
or making queries that influence what data are added to its training
set [9].

Active learning algorithm is highly correlated with the under-
lying ranking mechanism. The most popular active learning tech-
niques include Support Vector Machine active learning (SVMactive)
[19,20] and regression based active learning [2,14,23,24]. SVMactive

asks the user to label those images which are closest to the SVM
boundary. The rationale is that the closer to the SVM boundary an
image is, the less reliable its classification is. One of the major dis-
advantages of SVMactive is that the estimated boundary may not
be accurate enough, especially when the number of labeled image
is small. Moreover, SVMactive can not be applied at the first round
of the retrieval when there is no feedback images.

In statistics, the problem of selecting samples to label is usu-
ally referred to as experimental design. The study of Optimum
Experimental Design (OED) [2] is concerned with the design of
experiments that are expected to minimize variance of a parame-
terized model. There are two types of selection criteria of OED.
One type is to choose points to minimize the confidence region
for the estimated model parameters, which results in D-, A-, and
E-optimal Design. The other is to minimize the variance of the pre-
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diction value, which results in I- and G-optimal Design. Recently,
Yu et al. propose an active learning formulation, called Transduc-
tive Experimental Design (TED) [23]. TED selects data points to
minimize the average predictive variance of the learned function
on some pre-given dataset. It is also formulated into a convex opti-



TED is then formulated as the following optimization problem:

min Tr(XT (ZZT + γI)−1X)
s.t. {z1, · · · , zk} ⊆ X

(9)

with variable Z = [z1, · · · , zk]. After some mathematical deriva-
tion, the above problem can be formulated as an equivalent opti-
mization problem as follows:

min
∑m

i=1
‖xi − Zαi‖

2 + γ‖αi‖
2

s.t. {z1, · · · , zk} ⊆ X
(10)

where the variables are Z = [z1, · · · , zk] and αi ∈ R
k, i =

1, · · · , m.
The above problem is NP-hard. Yu et al. have proposed a sequen-

tial greedy algorithm [23] and a convex relaxation [24] to solve it.
The convex relaxation (CovTED) is shown as follows:

min
m∑

i=1

(

‖xi − Xαi‖
2 +

m∑
j=1

α2
i,j

βj

)

+ γ‖β‖1

s.t. βj ≥ 0, j = 1, · · · , m

(11)

where the variables are β ∈ R
m and αi ∈ R

m, i = 1, · · · , m.
Here, ‖β‖1 is the ℓ1-norm of β, which is used to enforce some
elements of β to be zero. An iterative algorithm is proposed to
solve it [24].

3. CONVEX LAPLACIAN REGULARIZED

I-OPTIMAL DESIGN
Traditional active learning algorithms, such as SVMactive and

OED, are based on supervised learning algorithms (SVM or linear
regression). These approaches only consider the labeled data points
while neglecting the large amount of unlabel data points which may
play essential rules in selecting informative samples. We introduce
in this section a novel active learning algorithm which is based on
one semi-supervised learning algorithm. We will first introduce
the linear algorithm and then generalize it to the nonlinear case by
applying kernel tricks. Our algorithm is fundamentally based on
Laplacian Regularized Least Squares (LapRLS) [3], and motivated
by recent progress in experimental design [2, 14, 23, 24].

3.1 Laplacian Regularized Least Squares
Laplacian Regularized Least Squares (LapRLS) [3] makes use

of both labeled and unlabeled points to discover the intrinsic geo-
metrical structure in the data. It assumes that if two points xi and
xj are close then their measurements f(xi) and f(xj) are close as
well. Specifically, LapRLS adds a new locality preserving regular-
izer into the loss function of ridge regression (Eq. 4). Let W be a
similarity matrix, the new loss function is defined as follows:

JL(w)=
k∑

i

(f(zi)− yi)
2+

α

2

m∑

i,j=1

(f(xi)−f(xj))
2
Wij +β‖w‖2

(12)

where α ≥ 0 and β ≥ 0 are the regularization parameters. The
second term of the right-hand side in the cost function is the locality
preserving regularizer, which incurs a heavy penalty if neighboring
points xi and xj are mapped far apart.

There are many choices of similarity matrix W . A simple defi-
nition is as follows:

Wij =






1, if xi is among the p nearest neighbors of xj ,
or xj is among the p nearest neighbors of xi;

0, otherwise.
(13)

Let D be a diagonal matrix with Dii =
∑m

j=1
Wij , and L =

D −W . The matrix L is called Graph Laplacian in spectral graph
theory [8]. The solution to minimize equation (12) is given as fol-
lows:

ŵL = (ZZ
T + αXLX

T + βI)−1
Zy (14)

Let H = ZZT + αXLXT + βI , the covariance matrix of ŵL is

Cov(ŵL) =H
−1

Z Cov(y)ZT
H

−1

=σ
2
H

−1
ZZ

T
H

−1

=σ
2
H

−1(H − αXLX
T + βI)H−1

=σ
2
H

−1 − σ
2
H

−1(αXLX
T + βI)H−1

(15)

Since the regularization parameters (α and β) are usually set to be
very small, we have

Cov(ŵL) ≈ σ
2
H

−1 = σ
2(ZZ

T + αXLX
T + βI)−1

(16)

3.2 Convex Laplacian Regularized I-optimal
Design

Through making use of both labeled and unlabeled data, LapRLS
estimates a linear fitting function f(x) = ŵT

Lx that respects the
intrinsic geometrical structure in the data space. An ideal design
would choose a subset Z ⊆ X which simultaneously minimizes
the confidence region for ŵ

T
L and the predictive variance of f(x).

However, usually a choice has to be made between these desiderata
[2]. In image retrieval, we aim at learning a regression function
which can distinguish the relevant images from irrelevant ones. It
is natural to require that the predictions of the learned function on
the image database are as stable as possible. Thus, we use the I-
optimal design criterion to select those images which can minimize
the average predictive variance of learned regression function.

Here, we consider a set V = {v1, · · · , vl} of test data points
besides candidates in X = {x1, · · · ,xm}. In special cases, V and
X can be the same set. Given a test point v, its prediction value
is f(v) = ŵ

T
Lv with variance Var(f(v)) = v

T Cov(ŵL)v. Let
V = [v1, · · · ,vl], the average predictive variance on V is

1

l

l∑

i=1

v
T
i Cov(ŵL)vi

≈
σ2

l

l∑

i=1

v
T
i (ZZ

T + αXLX
T + βI)−1

vi

=
σ2

l
Tr(V T (ZZ

T + αXLX
T + βI)−1

V )

(17)

Then, our problem is to find a subset Z ⊆ X to minimize equation
(17). A simple sequential greedy approach was suggested to select
zi’s one after another in [14].

By introducing m indicator variables {λi}
m
i=1 ∈ {0, 1} where

λi indicates whether or not point xi is chosen, finding a subset Z to
minimize equation (17) is equivalent to the following optimization
problem:

min Tr(V T (
∑m

i=1
λixix

T
i + αXLXT + βI)−1V )

s.t. {λi}
m
i=1 ∈ {0, 1},

∑m

i=1
λi = k

(18)

where the variables are {λi}
m
i=1 and k is the number of data points

to be chosen. To simplify our presentation, we use vector λ =
[λ1, · · · , λm] to denote all the m variables. The variable vector λ

is sparse and has only k non-zero entries.



nonnegative values. Then, the value of λi indicates how signif-
icantly xi contributes to the minimization in problem (18). The
sparseness of λ can be controlled through minimizing the ℓ1-norm
of λ, which is a very popular technique in regression [4, 13].

Following the convention in the field of optimization, we use
λ � 0 to denote that all the elements in λ should be nonnegative.
And because all the elements of λ are nonnegative, ‖λ‖1 is equal
to 1

T λ, where 1 is a column vector containing all ones. Finally,
our optimization problem becomes:

Definition 1. Convex Laplacian Regularized I-optimal Design
(CLapRID):

min Tr(V T (
m∑

i=1

λixix
T
i +αXLXT +βI)−1V )+γ1T λ

s.t. λ � 0
(19)

where the variable is λ ∈ R
m, and γ ≥ 0 is the trade-off parameter

for sparsity.

THEOREM 1. Problem (19) is a convex optimization problem

with variable λ ∈ R
m.

PROOF. Let g(X) = Tr(V T X−1V ) =
∑l

j=1
vT

j X−1vj and

h(λ) =
∑m

i=1
λixix

T
i + αXLXT + βI . We know that matrix

fractional function f1(X) = v
T X−1

v is a convex function of X
[4]. Since nonnegative weighted sum preserves convexity, g(X) is
also a convex function of X. We define

g ◦ h(λ) = Tr(V T (
m∑

i=1

λixix
T
i + αXLX

T + βI)−1
V )

Because h(λ) is an affine function of λ and composition with an
affine function preserves convexity, g ◦h is a convex function of λ.

Since f2(λ) = γ1
T λ is a convex function of λ, the objective

function of problem (19) (g ◦ h(λ)+ f2(λ)) is also convex.
Because the objective function is convex, the inequality con-

straint function (−λ) is convex, problem (19) is a convex optimiza-
tion problem with variable λ ∈ R

m [4].

3.3 Optimization Scheme
The success of Semidefinite programming (SDP) in various ap-

plications motivates us to formulate and solve CLapRID as an SDP
problem. Semidefinite programming has been the most exciting
mathematical development in mathematical programming. It has
applications in traditional convex constrained optimization, as well
as in such diverse domains as control theory and combinatorial op-
timization [12]. Moreover, the powerful interior-point methods for
linear programming have been extended to SDP [11].

By introducing a new variable P ∈ R
l×l, optimization problem

(19) can be equivalently rewrote as:

min Tr(P ) + γ1
T λ

s.t. P �
S
+

l

V T (
∑m

i=1
λixix

T
i +αXLXT + βI)−1V

λ � 0

(20)

with variables P ∈ R
l×l and λ ∈ R

m. Here, S
+

l denotes the set
of symmetric positive semidefinite l × l matrices, which is called
positive semidefinite cone in the field of optimization. The asso-
ciated generalized inequality �

S
+

l

is the usual matrix inequality:

A �
S
+

l

B means A− B is a positive semidefinite l × l matrix [4].

THEOREM 2. Problem (19) is equivalent to problem (20).

PROOF. Let λ∗
a be the optimal solution of problem (19), and

(P ∗, λ∗
b ) be the optimal solutions of problem (20). Then, λ∗

a= λ∗
b is

a sufficient condition for Theorem 2. Let f(λ) = T T (
∑m

i=1
λixix

T
i +

αXLXT + βI)−1T .
Assume λ∗

a 6= λ∗
b . Since λ∗

a minimizes problem (19), we must
have Tr f(λ∗

a) + γ1
T λ∗

a < Tr f(λ∗
b) + γ1

T λ∗
b . Because (P ∗,

λ∗
b ) satisfies the constraints in problem (20), we have

P
∗ �

S
+

l

f(λ∗
b) ⇔ P

∗ − f(λ∗
b) ∈ S

+

l

⇒ Tr(P ∗ − f(λ∗
b)) ≥ 0

⇒ Tr(P ∗) ≥ Tr f(λ∗
b)

⇒ Tr(P ∗) + γ1
T
λ

∗
b ≥ Tr f(λ∗

b) + γ1
T
λ

∗
b

⇒ Tr(P ∗) + γ1
T
λ

∗
b > Tr f(λ∗

a) + γ1
T
λ

∗
a

It is clear that (f(λ∗
a), λ∗

a) satisfies the constraints in problem
(20). Then, for problem (20), (f(λ∗

a), λ∗
a) is more optimal than

(P ∗, λ∗
b ), which contradicts our assumptions. So, we mush have

λ∗
a = λ∗

b .

Problem (20) can be cast as an SDP using the Schur complement
theorem [4]. Given a symmetric matrix X partitioned as

X =

[
A B

BT C

]

If A is invertible, the matrix S = C−BT A−1B is called the Schur
complement of A in X. Schur complement theorem states that, if
A is positive definite, then X is positive semidefinite if and only if
S is positive semidefinite.

According to this theorem, problem (20) is equivalent to the fol-
lowing semidefinite programming (SDP):

min Tr(P ) + γ1
T λ

s.t.

[∑m

i=1
λixix

T
i + αXLXT + βI V

V T P

]
�

S
+

n+l

0

λ � 0

(21)

with variables P ∈ R
l×l and λ ∈ R

m. As explained previously,
A�

S
+

n+l

0 means A is a positive semidefinite (n+l)×(n+l) matrix.

We can solve this problem exactly via interior-point methods [4].
After obtaining the optimal solution λ∗, we select k points with the
largest significant indicators (λ∗

i ’s) for user to label.

4. CONVEX KERNEL LAPLACIAN REGU-

LARIZED I-OPTIMAL DESIGN
Traditional experimental design only considers linear functions.

When the data is highly nonlinear distributed, the linear function
might not be able to fit the data well. In this Section, we ex-
tend CLapRID to handle nonlinear cases by performing experimen-
tal design in the Reproducing Kernel Hilbert Space (RKHS) [3].
We begin with a brief description of Kernel Laplacian Regularized
Least Squares [3].

4.1 Kernel Laplacian Regularized Least Squares
Let K be a positive definite mercer kernel K : R

n × R
n → R,

and HK be the corresponding Reproducing Kernel Hilbert Space
(RKSH). Consider the optimization problem (12) in RKHS. Then,
we seek a function f ∈ HK such that the following objective func-
tion is minimized:

JL(f) =
k∑

i=1

(yi−f(zi))
2+

α

2

m∑

i,j=1

(f(xi)−f(xj))
2
Wij+β‖f‖2

HK

(22)
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The Representer Theorem [3] can be used to show that the solu-
tion is an expansion of kernel functions over both the labeled and
the unlabeled data:

f̂(x) =

m∑

i=1

α̂iK(x,



(a) Data set
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(b) Data points chosen by CovTED
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  5  6

(c)Data points chosen by CLapRIDFigure 1: Data selection by different active learning algorithms. The numbers beside the selected points denote their orders to beselected. (a) Bird

(b)Dish

(c) SurfingFigure 2: Sample images from category Bird, Dish, and Surfing .

To exhibit the advantages of using our algorithm, we need a re -

liable way of evaluating the retrieval performance and the compar-isons with other algorithms. We list different aspects of the experi-mental design below.5.3.1 Evaluation MetricsWe use precision-scope curveandprecision rate [15] to evaluatethe effectiveness of the image retrieval algorithms. The scope isspecified by the number (N) of top-ranked images presented to theuser. The precision is the ratio of the number of relevant ima ges

presented to the user to the scopeN. The precision-scope curve

describes the precision with various scopes and thus gives an over-all performance evaluation of the algorithms. On the other hand,the precision rate emphasizes the precision at a particularvalueof scope. In general, it is appropriate to present 20 images on ascreen. Putting more images on a screen may affect the quality ofthe presented images. Therefore, the precision at top 20 (N= 20)is especially important.In real world image retrieval systems, the query image is usuallynot in the image database. To simulate such environment, we ran-domly select 20 images per category as query images, and the otherimages are used as the database for retrieval. The precision-scopecurve and precision rate are computed by averaging the results overthe 1540 (20×77) queries.5.3.2 Automatic Relevance Feedback SchemeWe designed an automatic feedback scheme to model the re-trieval process. For each submitted query, our system retrieves andranks the images in the database. At the beginning of retrieval,the Euclidean distances in the original 128-dimensional space are



Table 1: Precision at top 20 returns of the five algorithms after the second feedback iteration. The highest precision is in bold for

each category.

Category SVM LapRLS SVMactive CovTED CLapRID Category SVM LapRLS SVMactive CovTED CLapRID

Antelope 0.12 0.13 0.15 0.17 0.21 Horse 0.71 0.86 0.72 0.92 0.90

Antique 0.35 0.48 0.37 0.42 0.62 Indoor decorate 0.19 0.50 0.20 0.39 0.57

Aquarelle 0.14 0.13 0.16 0.17 0.18 Jewelry 0.06 0.07 0.07 0.10 0.10

Balloon 0.24 0.25 0.27 0.40 0.41 Kungfu 0.88 0.79 0.89 0.89 0.89

Beach 0.13 0.13 0.13 0.14 0.15 Leopard 0.25 0.22 0.23 0.24 0.32

Bead 0.16 0.12 0.16 0.23 0.20 Lighthouse 0.10 0.06 0.10 0.11 0.10

Bird 0.05 0.05 0.06 0.07 0.06 Lion 0.28 0.28 0.26 0.29 0.31

Bobsled 0.22 0.25 0.25 0.31 0.34 Lizard 0.18 0.17 0.14 0.22 0.29

Bonsai 0.22 0.38 0.25 0.38 0.46 Marble 0.29 0.28 0.28 0.35 0.29

Building 0.08 0.13 0.08 0.12 0.13 Mask 0.32 0.44 0.32 0.43 0.57

Bus 0.35 0.40 0.33 0.35 0.44 Men 0.12 0.10 0.12 0.11 0.10

Butterfly 0.31 0.34 0.33 0.31 0.45 Model 0.11 0.13 0.12 0.15 0.16

Cactus 0.12 0.10 0.14 0.15 0.15 Mosaic 0.61 0.62 0.57 0.72 0.69

Canvas 0.31 0.27 0.27 0.39 0.35 Mountain 0.29 0.28 0.25 0.31 0.40

Cards 0.88 0.94 0.89 0.90 0.93 Old Car 0.41 0.39 0.38 0.41 0.45

Castle 0.17 0.17
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rate even decreases after the second feedback iteration. This
phenomenon validates that the top images may not be the
most informative ones.

6. CONCLUSIONS
In this paper, we propose a novel active learning algorithm, called

Convex Laplacian Regularized I-optimal Design (CLapRID), for
relevance feedback image retrieval. Our algorithm is fundamen-
tally based on Laplacian Regularized Least Squares (LapRLS), and
motivated by many recent advances in experimental design [2, 14,
23, 24]. CLapRID makes use of both labeled and unlabeled points
to discover the intrinsic geometrical structure in the data. It se-
lects images to minimize average variance of prediction value, and
can be solved via semidefinite programming. Experimental results
on COREL database show that the proposed approach outperforms
Support Vector Machines [5], Laplacian Regularized Least Squares
[3], Support Vector Machine Active Learning [19,20], Convex Trans-
ductive Experimental Design [24].

In this paper we use I-optimal design criterion. However, other
classic optimal criteria, such as D-, A-, E-, and G-optimal designs,
can also be reformulated under this framework to reflect the under-
ling geometrical structure.
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