Convex Experimental Design Using Manifold Structure for Image Retrieval

Lijun Zhang¹ zljzju@zju.edu.cn

Jiajun Bu¹ bjj@zju.edu.cn Chun Chen¹ chenc@zju.edu.cn

Deng Cai² dengcai@cad.zju.edu.cn

Wei Chen¹ chenw@zju.edu.cn

Xiaofei He² xiaofeihe@cad.zju.edu.cn

¹Zhejiang Key Laboratory of Service Robot, College of Computer Science, Zhejiang University, Hangzhou, China ²State Key Lab of CAD&CG, College of Computer Science, Zhejiang University, Hangzhou, China

ABSTRACT

Content B sed I ge Retriev CBIR h s eco e one of the ost ctive rese rch re s in co puter science Re ev nce feed ck is often used in CBIR syste s to ridge the se ntic g p Typic y users re sked to ke re ev nce judge ents on so e query re su ts nd the feed ck infor tion is then used to re r nk the i ges in the d t se An effective re ev nce feed ck gorith ust provide the users ith the ost infor tive i ges ith re spect to the r nking function In this p per e propose nove ctive e rning gorith c ed Conve L p ci n Regu rized I Design CL pRID for re ev nce feed ck i ge retriev Our gorith is sed on regression ode hich ini izes the e st squ re error on the e ed i ges nd si u t neous y pre serves the intrinsic geo etric structure of the i ge sp ce It se ects the ost infor tive i ges hich ini ize the ver ge predictive v ri nce The opti iz tion pro e of CL pRID c n e c st s se ide nite progr ing SDP pro e interior point ethods E peri ent resu ts on COREL d t se h ve de onstr te the effectiveness of the proposed gorith for re ev nce feed ck i ge retriev

Categories and Subject Descriptors

H Information storage and retrieval Infor tion se rch nd retriev Re e nce feed c G Mathematics of Computing Pro i ity nd St tistics E peri ent design

General Terms

A gorith s Perfor nce Theory

Keywords

I ge retriev ctive e rning conve opti iz tion re ev nce feed ck se ide nite progr ing

Per ission to ke digit or h rd copies of or p rt of this ork for person or c ssroo use is gr nted ithout fee provided th t copies re not de or distri uted for pro t or co erci dv nt ge nd th t copies e r this notice nd the fu cit tion on the rst p ge To copy other ise to repu ish to post on servers or to redistri ute to ists requires prior speci c per ission nd or fee

MM 9 Octo er 42 2 Beijing Chin Copyright 2 ACM 8 8 8

1. INTRODUCTION

ith the r pid incre se in the vou e of e ectronic y rchived i ge nd video teri s Content B sed I ge Retriev CBIR h s eco e one of the ost ctive rese rch re s for the st fe dec des Query y e p e QBE is the tr dition type of query in CBIR In this environ ent users for u te query y e ns of giving n e p e i ge 2 CBIR syste s use the o eve visu fe tures ost y co or te ture nd sh pe to represent n i ge s content nd re ev nt i ges re retrieved sed on the si i rity of their visu fe tures A though CBIR h s een e ten sive y studied the se ntic g p et een o eve i ge fe tures nd high eve se ntic concepts i its its perfor nce rge y

To n rro do n the se ntic g p re ev nce feed ck is intro duced into CBIR • Typic y users re sked to ke re ev nce judge ents on the top i ges returned y the syste preference is used to tr in c ssi er to sep r te i ges th t the query concept fro those th t do not Ho ever in gener the top returned i ges y not e the ost infor tive ones In the the top i ges e ed y the user y e positive nd thus the st nd rd c ssi c tion techniques c n not e pp ied due to the ck of neg tive e p es The key pro e then e co es ho to se ect the ost infor tive s p es fro the i ge se In chine e rning this pro e is c ed ctive e rn hich studies the pheno enon of e rner se ecting ctions or king queries th t if uence h t d t re dded to its tr ining set

Active e rning gorith is high y corre ted ith the under ying r nking ech nis. The ost popu r ctive e rning tech niques inc ude Support ector M chine ctive e rning S M_{active}

2 nd regression sed ctive e rning 24 2 42 S Mactive sks the user to e those i ges hich recosest to the S M ound ry The r tion e is that the coser to the S M ound ry n i ge is the ess re i e its cossication is One of the jor dis dv nt ges of S Mactive is that the estited ound ry y not e ccur to enough especially hen the number of e ed i ge is s Moreover S Mactive con not e ppied to the retrieval hen there is no feed ck i ges

In st tistics the pro e of se ecting s p es to e is usu y referred to s e peri ent design. The study of Opti u E peri ent Design OED 2 is concerned ith the design of e peri ents that re e pected to ini ize v ri nce of p r e terized ode. There re to types of se ection criteri of OED One type is to choose points to ini ize the con dence region for the esti ted ode p r eters hich results in D. A. nd E opti. Design. The other is to ini ize the v ri nce of the pre

 TED is then for u ted s the fo o ing opti iz tion pro e

$$\min_{\substack{\mathbf{s} \text{ t}}} \operatorname{Tr}(X^T (ZZ^T + \gamma I)^{-1} X)$$

ith v ri e $Z=[\mathbf{z}_1,\cdots,\mathbf{z}_k]$ After so e the tic deriv tion the ove pro e c n e for u ted s n equiv ent opti iz tion pro e s fo o s

$$\begin{array}{ll} & \text{in} & \sum_{i=1}^{m} \|\mathbf{x}_i - Z\boldsymbol{\alpha}_i\|^2 + \gamma \|\boldsymbol{\alpha}_i\|^2 \\ \text{s.t.} & \{\mathbf{z}_1, \cdots, \mathbf{z}_k\} \subseteq \mathcal{X} \end{array}$$

here the v ri es re $Z=[\mathbf{z}_1,\cdots,\mathbf{z}_k]$ nd $\boldsymbol{\alpha}_i\in\mathbb{R}^k, i=1,\cdots,m$

The ove pro e is NP h rd Yu et h ve proposed sequen ti greedy gorith 2 nd conve re tion 42 to so ve it The conve re tion CovTED is sho n s fo o s

$$\begin{array}{ll} & \text{in} & \sum\limits_{i=1}^{m} \left(\|\mathbf{x}_i - X\boldsymbol{\alpha}_i\|^2 + \sum\limits_{j=1}^{m} \frac{\alpha_{i,j}^2}{\beta_j} \right) + \gamma \|\boldsymbol{\beta}\|_1 \\ & \text{s t} & \beta_j \geq 0, j = 1, \cdots, m \end{array}$$

here the v ri es re $\beta \in \mathbb{R}^m$ nd $\alpha_i \in \mathbb{R}^m, i=1,\cdots,m$ Here $\|\beta\|_1$ is the ℓ_1 nor of β hich is used to enforce so e e e ents of β to e zero. An iter tive gorith is proposed to so ve it $\frac{4}{2}$?

3. CONVEX LAPLACIAN REGULARIZED I-OPTIMAL DESIGN

Tr dition ctive e rning gorith s such s S M_{active} nd OED re sed on supervised e rning gorith s S M or ine r regression. These ppro ches on y consider the e e d d t points hi e neg ecting the rge ount of un e d t points hich y p y essenti ru es in se ecting infor tive s p es e introduce in this section nove ctive e rning gorith hich is sed on one se i supervised e rning gorith e i rst introduce the ine r gorith nd then gener ize it to the non ine r c se y pp ying kerne tricks. Our gorith is fund ent y sed on L p ci n Regu rized Le st Squ res L pRLS nd otiv ted y recent progress in e peri ent design 2^4 2

3.1 Laplacian Regularized Least Squares

L p ci n Regu rized Le st Squ res L pRLS kes use of oth e ed nd un e ed points to discover the intrinsic geo etric structure in the d t It ssu es th t if t o points \mathbf{x}_i nd \mathbf{x}_j re c ose then their e sure ents $f(\mathbf{x}_i)$ nd $f(\mathbf{x}_j)$ re c ose s e Speci c y L pRLS dds ne oc ity preserving regu r izer into the oss function of ridge regression Eq. Let W e si i rity tri the ne oss function is de ned s fo o s

$$J_L(\mathbf{w}) = \sum_{i}^{k} (f(\mathbf{z}_i) - y_i)^2 + \frac{\alpha}{2} \sum_{i,j=1}^{m} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2 W_{ij} + \beta ||\mathbf{w}||^2$$

here $\alpha \geq 0$ nd $\beta \geq 0$ re the regurization preters. The second teres of the right hand side in the cost function is the ocity preserving regurizer hich incurs he vy penety if neighboring points \mathbf{x}_i nd \mathbf{x}_j respectively.

There re ny choices of si i rity tri W A si pe de nition is s fo o s

$$W_{ij} = \begin{cases} 1, & \text{if } \mathbf{x}_i \text{ is} & \text{ong the } p \text{ ne rest neigh ors of } \mathbf{x}_j \\ & \text{or } \mathbf{x}_j \text{ is} & \text{ong the } p \text{ ne rest neigh ors of } \mathbf{x}_i \\ 0, & \text{other ise} \end{cases}$$

Let D e di gon tri ith $D_{ii} = \sum_{j=1}^m W_{ij}$ nd L = D - W The tri L is c ed Gr ph L p ci n in spectr gr ph theory g The so ution to ini ize equ tion g is given g to g g

$$\widehat{\mathbf{w}}_L = (ZZ^T + \alpha X L X^T + \beta I)^{-1} Z \mathbf{y}$$

Let $H = ZZ^T + \alpha XLX^T + \beta I$ the cov rince tri of $\hat{\mathbf{w}}_L$ is

$$\operatorname{Cov}(\widehat{\mathbf{w}}_L) = H^{-1} Z \operatorname{Cov}(\mathbf{y}) Z^T H^{-1}$$

$$= \sigma^2 H^{-1} Z Z^T H^{-1}$$

$$= \sigma^2 H^{-1} (H - \alpha X L X^T + \beta I) H^{-1}$$

$$= \sigma^2 H^{-1} - \sigma^2 H^{-1} (\alpha X L X^T + \beta I) H^{-1}$$

Since the regularization p race eters α and β are usually set to every same e have

$$\operatorname{Cov}(\widehat{\mathbf{w}}_L) \approx \sigma^2 H^{-1} = \sigma^2 (ZZ^T + \alpha X L X^T + \beta I)^{-1}$$

3.2 Convex Laplacian Regularized I-optimal Design

Through king use of oth e ed nd un e ed d t L pRLS esti tes ine r tting function $f(\mathbf{x}) = \widehat{\mathbf{w}}_L^T \mathbf{x}$ th t respects the intrinsic geo etric structure in the d t sp ce An ide design ou d choose su set $\mathcal{Z} \subseteq \mathcal{X}$ hich si u t neous y ini izes the con dence region for $\widehat{\mathbf{w}}_L^T$ nd the predictive v ri nce of $f(\mathbf{x})$. Ho ever usu y choice h s to e de et een these desider t

2 In i ge retriev e i t e rning regression function hich c n distinguish the re ev nt i ges fro irre ev nt ones It is n tur to require th t the predictions of the e rned function on the i ge d t se re s st e s possi e Thus e use the I opti design criterion to se ect those i ges hich c n ini ize the ver ge predictive v ri nce of e rned regression function

Here e consider set $\mathcal{V} = \{\mathbf{v}_1, \cdots, \mathbf{v}_l\}$ of test d t points esides c ndid tes in $\mathcal{X} = \{\mathbf{x}_1, \cdots, \mathbf{x}_m\}$ In speci c ses \mathcal{V} nd \mathcal{X} c n e the s e set Given test point v its prediction v ue is $f(\mathbf{v}) = \widehat{\mathbf{w}}_L^T \mathbf{v}$ ith v ri nce $\mathrm{Var}(f(\mathbf{v})) = \mathbf{v}^T \mathrm{Cov}(\widehat{\mathbf{w}}_L) \mathbf{v}$ Let $V = [\mathbf{v}_1, \cdots, \mathbf{v}_l]$ the ver ge predictive v ri nce on \mathcal{V} is

$$\frac{1}{l} \sum_{i=1}^{l} \mathbf{v}_{i}^{T} \operatorname{Cov}(\widehat{\mathbf{w}}_{L}) \mathbf{v}_{i}$$

$$\approx \frac{\sigma^{2}}{l} \sum_{i=1}^{l} \mathbf{v}_{i}^{T} (ZZ^{T} + \alpha X L X^{T} + \beta I)^{-1} \mathbf{v}_{i}$$

$$= \frac{\sigma^{2}}{l} \operatorname{Tr}(V^{T} (ZZ^{T} + \alpha X L X^{T} + \beta I)^{-1} V)$$

Then our pro e is to nd su set $\mathcal{Z} \subseteq \mathcal{X}$ to ini ize equ tion A si p e sequenti greedy ppro ch s suggested to se ect \mathbf{z}_i 's one fter nother in

By introducing m indic tor \mathbf{v} ri $\operatorname{es}\{\lambda_i\}_{i=1}^m \in \{0,1\}$ here λ_i indic tes hether or not point \mathbf{x}_i is chosen inding su set $\mathcal Z$ to initize equation $\overline{\mathbf{y}}$ is equivalent to the following property is equivalent.

in
$$\text{Tr}(V^T(\sum_{i=1}^m \lambda_i \mathbf{x}_i \mathbf{x}_i^T + \alpha X L X^T + \beta I)^{-1}V)$$

s t $\{\lambda_i\}_{i=1}^m \in \{0, 1\}, \sum_{i=1}^m \lambda_i = k$

here the v ri es re $\{\lambda_i\}_{i=1}^m$ nd k is the nu er of d t points to e chosen. To si p if y our present tion e use vector $\lambda = [\lambda_1, \cdots, \lambda_m]$ to denote the m v ri es. The v ri e vector λ is sp rse nd h s on y k non zero entries

nonneg tive v ues Then the v ue of λ_i indic tes ho signif ic nt y \mathbf{x}_i contri utes to the ini iz tion in pro e 8 The sp rseness of λ c n e contro ed through ini izing the ℓ_1 nor of λ hich is very popur technique in regression.

Fo o ing the convention in the ed of opti iz tion e use $\lambda \succeq 0$ to denote that the ee ents in λ should enounce tive And ec use the ee ents of λ renonneg tive $\|\lambda\|_1$ is equal to $\mathbf{1}^T \lambda$ here $\mathbf{1}$ is compute in the equation of the equation of the equation $\mathbf{1}^T \lambda$ here $\mathbf{1}$ is compute equation of the equation of the equation $\mathbf{1}^T \lambda$ here $\mathbf{1}$ is compute equation of $\mathbf{1}^T \lambda$ here $\mathbf{1}$ is compute equation of $\mathbf{1}^T \lambda$ here $\mathbf{1}$ is compute equation of λ in the equation of λ in the equation λ is equation as λ in the equation λ in the equation λ in the equation λ is equation λ .

De nition Conve L p ci n Regu rized I opti Design CL pRID

$$\begin{array}{ll} & \text{in } \operatorname{Tr}(V^T(\sum\limits_{i=1}^m \lambda_i \mathbf{x}_i \mathbf{x}_i^T + \alpha X L X^T + \beta I)^{-1}V) + \gamma \mathbf{1}^T \boldsymbol{\lambda} \\ \text{s t} & \boldsymbol{\lambda} \succeq 0 \end{array}$$

here the v ri \mathbf{e} is $\mathbf{\lambda} \in \mathbb{R}^m$ $\mathbf{nd} \ \gamma \geq 0$ is the tr $\ \mathbf{de} \ \mathbf{off} \ \mathbf{p} \ \mathbf{r}$ eter for sp rsity

Theorem Pro e 9 is con e opti iz tion pro e ith ri e $\lambda \in \mathbb{R}^m$

PROOF Let $g(X) = \operatorname{Tr}(V^TX^{-1}V) = \sum_{j=1}^l \mathbf{v}_j^TX^{-1}\mathbf{v}_j$ nd $h(\lambda) = \sum_{i=1}^m \lambda_i \mathbf{x}_i \mathbf{x}_i^T + \alpha X L X^T + \beta I$ e kno th t tri fr ction function $f_1(X) = \mathbf{v}^TX^{-1}\mathbf{v}$ is conve function of X. Since nonneg tive eighted su preserves conve ity g(X) is so conve function of X e de ne

$$g \circ h(\lambda) = \text{Tr}(V^T(\sum_{i=1}^m \lambda_i \mathbf{x}_i \mathbf{x}_i^T + \alpha X L X^T + \beta I)^{-1}V)$$

Bec use $h(\lambda)$ is n f ne function of λ nd co position ith n f ne function preserves conve ity $g \circ h$ is conve function of λ Since $f_2(\lambda) = \gamma \mathbf{1}^T \lambda$ is conve function of λ the o jective function of pro e $g \circ h(\lambda)$ $f_2(\lambda)$ is so conve

Bec use the o jective function is conver the inequality constraint function $-\lambda$ is converproperation by its converproperation $-\lambda$ is converproperation. The inequality constraints $-\lambda$ is converproperation.

3.3 Optimization Scheme

The success of Se ide nite progr ing SDP in v rious p p ic tions otiv tes us to for u te nd so ve CL pRID s n SDP pro e Se ide nite progr ing h s een the ost e citing the tic deve op ent in the tic progr ing It h s pp ic tions in tr dition conve constr ined opti iz tion s e s in such diverse do ins s contro theory nd co in tori op ti iz tion 2 Moreover the po erfu interior point ethods for ine r progr ing h ve een e tended to SDP

By introducing $\$ ne $\$ v ri $\$ e $\$ P $\ \in \$ $\mathbb{R}^{l \times l}$ opti $\$ iz tion pro e $\$ c $\$ n e equiv ent y re rote s

in
$$\operatorname{Tr}(P) + \gamma \mathbf{1}^T \boldsymbol{\lambda}$$

s t $P \succeq_{\mathbb{S}^+_l} V^T (\sum_{i=1}^m \lambda_i \mathbf{x}_i \mathbf{x}_i^T + \alpha X L X^T + \beta I)^{-1} V$ 2
 $\boldsymbol{\lambda} \succeq 0$

ith v ri es $P \in \mathbb{R}^{l \times l}$ nd $\lambda \in \mathbb{R}^m$ Here \mathbb{S}^+_l denotes the set of sy etric positive se ide nite $l \times l$ trices hich is c ed positive se ide nite cone in the e d of opti iz tion. The sso ci ted gener ized inequ ity $\succeq_{\mathbb{S}^+_l}$ is the usu tri inequ ity $A \succeq_{\mathbb{S}^+_l} B$ e ns A - B is positive se ide nite $l \times l$ tri.

THEOREM 2 Pro e 9 is equi ent to pro e 2

PROOF Let λ_a^* e the opti so ution of pro e nd $P^* \lambda_b^*$ e the opti so utions of pro e 2 Then $\lambda_a^* \lambda_b^*$ is

suf cient condition for Theore 2Let $f(\lambda) = T^T(\sum_{i=1}^m \lambda_i \mathbf{x}_i \mathbf{x}_i^T + \alpha X L X^T + \beta I)^{-1} T$

Assu e $\lambda_a^* \neq \lambda_b^*$ Since λ_a^* ini izes pro e e ust h ve $\operatorname{Tr} f(\lambda_a^*) + \gamma \mathbf{1}^T \lambda_a^* < \operatorname{Tr} f(\lambda_b^*) + \gamma \mathbf{1}^T \lambda_b^*$ Bec use P^* λ_b^* s tis es the constr ints in pro e 2 e h ve

$$P^* \succeq_{\mathbb{S}_l^+} f(\boldsymbol{\lambda}_b^*) \Leftrightarrow P^* - f(\boldsymbol{\lambda}_b^*) \in \mathbb{S}_l^+$$

$$\Rightarrow \operatorname{Tr}(P^* - f(\boldsymbol{\lambda}_b^*)) \ge 0$$

$$\Rightarrow \operatorname{Tr}(P^*) \ge \operatorname{Tr} f(\boldsymbol{\lambda}_b^*)$$

$$\Rightarrow \operatorname{Tr}(P^*) + \gamma \mathbf{1}^T \boldsymbol{\lambda}_b^* \ge \operatorname{Tr} f(\boldsymbol{\lambda}_b^*) + \gamma \mathbf{1}^T \boldsymbol{\lambda}_b^*$$

$$\Rightarrow \operatorname{Tr}(P^*) + \gamma \mathbf{1}^T \boldsymbol{\lambda}_b^* > \operatorname{Tr} f(\boldsymbol{\lambda}_a^*) + \gamma \mathbf{1}^T \boldsymbol{\lambda}_a^*$$

It is c e r th t $(f(\lambda_a^*), \lambda_a^*)$ s tis es the constr ints in pro e 2. Then for pro e 2. $(f(\lambda_a^*), \lambda_a^*)$ is ore opti thin P^* λ_b^* hich contr dicts our ssu ptions. So e ush hive $\lambda_a^* = \lambda_b^*$ \square

Pro e 2 c n e c st s n SDP using the Schur co p e ent theore 4 Given sy etric tri X p rtitioned s

$$X = \left[\begin{array}{cc} A & B \\ B^T & C \end{array} \right]$$

If A is invertige the A tright of the second of the second of A in A should be second of A in A should be second of A in A should be second of A in A is positive definite then A is positive second on the second of A in A in A is positive second of A in A i

According to this theore pro e 2 is equiv ent to the fo o ing se ide nite progr ing SDP

$$\begin{array}{ll} & \text{in} & \operatorname{Tr}(P) + \gamma \mathbf{1}^T \boldsymbol{\lambda} \\ \text{s t} & \begin{bmatrix} \sum_{i=1}^m \lambda_i \mathbf{x}_i \mathbf{x}_i^T + \alpha X L X^T + \beta I & V \\ V^T & P \end{bmatrix} \succeq_{\mathbb{S}_{n+l}^+} 0 \\ & \boldsymbol{\lambda} \succeq 0 \end{array}$$

ith v ri es $P \in \mathbb{R}^{l \times l}$ nd $\lambda \in \mathbb{R}^m$ As e p ined previous y $A \succeq_{\mathbb{S}^+_{n+l}} 0$ e ns A is positive se ide nite $(n+l) \times (n+l)$ tri e c n so ve this pro e e ct y vi interior point ethods \P . After o t ining the opti so ution λ^* e se ect k points ith the rgest signi c nt indic tors λ^*_i s for user to e

4. CONVEX KERNEL LAPLACIAN REGU-LARIZED I-OPTIMAL DESIGN

Tr dition e peri ent design on y considers ine r functions hen the d t is high y non ine r distri uted the ine r function ight not e e to t the d t e In this Section e e tend CL pRID to h nd e non ine r c ses y perfor ing e peri en t design in the Reproducing erne Hi ert Sp ce R HS e egin ith rief description of erne L p ci n Regu rized Le st Squ res

4.1 Kernel Laplacian Regularized Least Squares

Let K e positive de nite ercer kerne $K: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ nd \mathcal{H}_K e the corresponding Reproducing erne Hi ert Sp ce R SH Consider the opti iz tion pro e 2 in R HS Then e seek function $f \in \mathcal{H}_K$ such that the for o ing o jective function is initized

$$J_L(f) = \sum_{i=1}^k (y_i - f(\mathbf{z}_i))^2 + \frac{\alpha}{2} \sum_{i,j=1}^m (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2 W_{ij} + \beta \|f\|_{\mathcal{H}_K}^2$$

The Representer Theore \quad c \quad e used to sho \quad th t the so u tion is \quad n e p nsion of kerne functions over \quad oth the \quad e ed \quad nd the un \quad e ed d t

$$\widehat{f}(\mathbf{x}) = \sum_{i=1}^{m} \widehat{\alpha}_i K(\mathbf{x},$$

precision-scope cur e

e e peri ent design e o

ithms. The numbers beside the selected points denote their o

o prisons ith other gorith s e

Table 1: Precision at top 20 returns of the five algorithms after the second feedback iteration. The highest precision is in bold for each category.

	- 5 -										
C tegory	S M	L pRLS	S M _{active}	CovTED	CL pRID	C tegory	S M	L pRLS	S M _{active}	CovTED	CL pRID
Ante ope	2			~	0.21	Horse	-	8 • ~	₌ 2	0.92	
Antique		4 8	•	4 2	0.62	Indoor decor te	'		12		0.57
Aqu re e	4		1,~	~	0.18	Je e ry	•~	₹	Ŧ	0.10	
B oon	42	2	2	4 '	0.41	ungfu	88	· ·	8'	8	0.89
Be ch			'	4	0.15	Leop rd	2	22	2	4 2	0.32
Be d	•	2	•~	0.23	2	Lighthouse		•~		0.11	
Bird			•~	0.07	•	Lion	8	8	3~	2	0.31
Bo s ed	22	2	2		0.34	Liz rd	8	~	4	22	0.29
Bons i	22	8	2	8	0.46	Mre	2	8	8	0.35	2
Bui ding	8		8	2	0.13	M sk	2	44	2	4	0.57
Bus		4			0.44	Men	2		0.12		
Butten y		4			0.45	Mode			2		0.16
C ctus	2		4	0.15	0.15	Mos ic	•~	• 2	-	0.72	·~
C nv s		2	2	0.39		Mount in	2	8	2		0.40
C rds	88	0.94	8'			OdCr	4		8	4	0.45
C st e	0.17	-				•	•	•		•	•
•		Y									

r te even decre ses fter the second feed ck iter tion This pheno enon v id tes th t the top i ges y not e the ost infor tive ones

6. CONCLUSIONS

In this p per e propose nove ctive e rning gorith c ed Conve L p ci n Regu rized I opti Design CL pRID for re ev nce feed ck i ge retriev Our gorith is fund en t y sed on L p ci n Regu rized Le st Squ res L pRLS nd otiv ted y ny recent dv nces in e peri ent design 24 CL pRID kes use of oth e ed nd un e ed points to discover the intrinsic geo etric structure in the d t It se ects i ges to ini ize ver ge v ri nce of prediction v ue nd c n e so ved vi se ide nite progr ing E peri ent resu ts on COREL d t se sho th t the proposed ppro choutperfor s Support ector M chines L p ci n Regu rized Le st Squ res Support ector M chine Active Le rning 2 Conve Tr ns ductive E peri ent Design 42

In this p per e use I opti design criterion. Ho ever other c ssic opti criteri such s D A E nd G opti designs c n so e refor u ted under this fr e ork to rest ect the under ing geo etric structure

7. ACKNOWLEDGMENTS

This ork s supported y Chin N tion ey Techno ogy R D Progr 2 8BAH 2 B 2 2 BAH B $^{\circ}$

8. REFERENCES

S P Asprey and S M cchietto Designing ro ust opti dyn ic e peri ents ourn of Process Contro 4 1 2 2

2 A Atkinson A Donev nd R To i s *Opti u*E peri ent Designs ith SAS O ford University Press
USA 2

M Be kin P Niyogi nd Sindh ni M nifo d regu riz tion A geo etric fr e ork for e rning fro e ed nd un e ed e p es The ourn of M chine Le rning Rese rch 2 424 2 •

S Boyd nd L nden erghe Con e Opti iz tion C ridge University Press 24

C J C Burges A tutori on support vector chines for p ttern recognition D t Mining nd no edge Disco ery 2 2 2 $\bullet_{\overline{\mathbf{v}}}$ 8

C C Che ng and C J Lin L BS M g i r ry for support ector chines 2 Soft re v i e t

The position of the control of the control

O Ch pe e B Sch kopf nd A Zien editors

Se i-Super ised Le rning MIT Press C ridge MA

2 •

8 F R Chung Spectr Gr ph Theory vo u e 20f Region Conference Series in M the tics A eric n

M the tic Society
D A Cohn Z Gh hr
e rning ith st tistic
nte igence Rese rch 2

2

4

in ind M 1 ford in D
Active nd d inoinhin 9M o p o - i - n ode s ourn of Arti ci
2

4

nte igence Rese rch 2 4

R D tt D Joshi J Li nd J Z ng I ge retriev
Ide s ift uences nd trends of the ne ge ACM
Co puting Sur eys 2 2 8

E de erk Aspects of Se ide nite Progr ing i nd 22 - 2 - Td R PcngSsgrtth oni te ertsd Appoig rinnf

TJ 8 4 4 Td

RT od ttic D Dnhi i nd