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Abstract We propose a novel linear dimensionality reduction algorithm, namely Locally

Regressive Projections (LRP). To capture the local discriminative structure, for each data

point, a local patch consisting of this point and its neighbors is constructed. LRP assumes
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approaches include Locally Linear Embedding (LLE)[18], Laplacian Eigenmap
(LE)[4], Neighborhood Preserving Embedding (NPE)[11], and Locality Preserving
Projections (LPP)[12]. These methods have succeeded in recovering the intrinsic
geometric structure of a broad class of nonlinear data manifolds. Besides, it has
been shown that all of those algorithms can be reformulated in a general graph
embedding framework, and their differences lie in the way of describing the local
geometry[15,26].

Among those approaches, Locally Linear Embedding (LLE)[18] is one typical local
learning method which characterizes the local geometry of the data space by linear
coefficients that reconstruct each point from its neighbors. It then assumes that the
embedding of each point can also be reconstructed from its neighbors’ embeddings
with the same coefficients. Recently, Wu[24] et al. proposed another local method
named Local Learning Projections (LLP). Similar to LLE, LLP assumes that the
projection value of each point can be estimated based on its neighbors and their
projected coordinates. The difference is that LLP trains a kernel machine at each
point and each projection to do the estimation. Both LLE and LLP aim to minimize
the estimation errors of all the data points, and the estimation error of each point is
counted once in their objection functions. Thus, different points are treated equally
in LLE and LLP. However, in real word applications, data points are usually not
uniformly distributed, and thus it is more reasonable to assign large weights to points
sampled from dense regions.

Inspired by recent developments in local learning[18,24,25], a novel linear
dimensionality reduction algorithm, called Locally Regressive Projections (LRP), is
proposed in this paper. LRP is fundamentally built upon the idea of local linear
regression, which is recently applied to ranking[25] and coclustering[27]. For the
purpose of discovering the local discriminative structure, we define a local patch for
each data point as the set containing this point and its neighbors. LRP assumes
that for each local patch in the data space, the low dimensional representations of
points belonging to it can be well estimated by a locally fitted function. Specifically,
we adopt ridge regression to learn a locally linear function for each patch, using
point belonging to this patch as the training data. Then, the fitting error of the
local function provides a natural measurement for the projection performance. The
objective function of LRP is thus defined as the summation of the fitting errors over
all the local patches. And the optimal projections are obtained by minimizing this
summation, which can be solved efficiently via eigenvalue decomposition. Since the
local patch can be constructed according to the label information, LRP can be
easily extended by incorporating prior knowledge.

One important property of LRP is that it is adaptive to the underlying data
density. Because the fitting error of ridge regression contains the estimation errors of
all the training points, LRP actually minimizes the estimation errors of all the points
in each patch. Since points sampled from dense regions would appear in more local
patches, these points will receive higher weights than those from sparse regions. In
this way, LRP can model the local discriminative structure more accurately than LLE
and LLP.

The rest of the paper is organized as follows. In Section 2, we give a brief review
of several related work. Our proposed dimensionality reduction algorithm LRP is



Lijun Zhang: Locally regressive projections 437

introduced in Section 3. Discussions with related methods are given in Section 4.
Experiments are presented in Section 5. Finally, we provide some concluding remarks
in Section 6.

2 Related Work

The major notations used in this paper are summarized in Table 1.

Table 1 List of notations used in this paper

xi ∈ Rn the i-th data point

X ∈ Rn×m the data matrix consisting of xi’s, i.e. X = [x1, · · · , xm]

yi ∈ Rp the p-dimensional new representation of xi

Y ∈ Rp×m the data matrix consisting of yi’s, i.e. Y = [y1, · · · , ym]

yl ∈ Rm the l-th column of Y T , i.e. Y T = [y1, · · · , yp]

P ∈ Rn×p the projection matrix, i.e. Y = P T X

pl ∈ Rn the l-th column of P , i.e. P = [p1, · · · , pp] and yl = XT pl

N−
i the local patch consisting of neighboring points of xi

n−i the number of points in N−
i , i.e. |N−

i |
Ni the local patch consisting of xi and its neighboring points

ni the number of points in Ni, i.e. |Ni|
1k the k-dimensional constant vectors of all ones

I the identity matrix

ƒk the k × k centering matrix, i.e. I − 1
k

1k1T
k

ek the k-th unit vector

2.1 The linear dimensionality reduction problem

Given a set of m points {x1; · · · ; xm} ⊆ Rn, linear dimensionality reduction looks
for a projection matrix P = [p1; · · · ; pp] ∈ Rn×p which maps these m points to a set
of points {y1; · · · ; ym} ⊆ Rp, that capture the content in the original data, according
to some criterion[10]. Let X = [x1; · · · ; xm] and Y = [y1; · · · ; ym], then Y = P T X.

2.2 Classical methods

2.2.1 Principal component analysis (PCA)

PCA[3,8] can be defined in terms of the orthogonal projections which maximize
the variance in the projected subspace. The optimization problem of PCA can be
formularized as:

max
P

Tr
(
P T CP

)

s.t. P T P = I
(1)

where C is the data covariance matrix. Let x̄ be the sample mean, 1m be the m-
dimensional constant vectors of all ones, and Πm = I − 1

m 1m1T
m be the centering

matrix. The data covariance matrix C is defined as:

C =
1
m

m∑

i=1

(xi − x)(xi − x)T =
1
m

XΠmXT (2)
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The optimal solution P ∗ of (1) is given by the eigenvectors of C associated with
the largest eigenvalues.

2.2.2 Linear discriminant analysis (LDA)

LDA[8] tries to minimize the within-class variance and maximize the between-
class variance simultaneously. Suppose the given m points belong to c classes. Let m
be the total sample mean vector, ri be the number of samples in the i-th class, mi be
the sample mean vector of the i-th class, and xi

j be the j-th sample in the i-th class.
One of the most common objective functions of LDA is as follows:

max
P

Tr
(
(P T SW P )−1(P T SBP )) (3)

where SW and SB are the within-class scatter matrix and between-class scatter matrix,
respectively. They are defined as:

SW =
c∑

i=1




ri∑

j=1

(
xi

j −mi
) (

xi
j −mi

)T


 (4)

SB =
c∑

i=1

ri(mi −m)(mi −m)T (5)

The projections of LDA are computed by solving the following generalized
eigenvalue problem:

SBα = °SW α (6)

The optimal projections correspond to the eigenvectors associated with the
largest eigenvalues. Since the rank of SB is bounded above by c − 1, LDA is unable
to find more than c− 1 projection vectors.

2.3 Local learning based methods

2.3.1 Locally linear embedding (LLE)

Locally Linear Embedding (LLE)[18] characterizes the local geometric structure
by linear coefficients that reconstruct each data point from its neighbors. Let N−

i be
local patch consisting of neighboring points of xi, not including xi itself. The optimal
reconstruction coefficients are found by solving the following optimization problem:

min
W

∑m
i=1 ‖xi −

∑m
j=1 Wijxj‖2

s:t:
∑m

j=1 Wij = 1; i = 1; · · · ; m

Wij = 0 if xj =∈ N−
i

(7)

where the variable is the matrix W ∈ Rm×m, and Wij summarizes the contribution of
the j-th data point to the i-th reconstruction. LLE assumes that the low dimensional
embedding of each point can also be reconstructed from its neighbors’ embeddings
with the same coefficients. For each data point xi, the following function is used to
reconstruct its embedding:

fi(xi) =
m∑

j=1

Wijyj (8)
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LLE aims to minimize the reconstruction errors of all the data samples, and its
objective function is given by

m∑

i=1

‖yi − fi(xi)‖2 =
m∑

i=1

‖yi −
m∑

j=1

Wijyj‖2 = ‖Y T −WY T ‖2 (9)

As can be seen from Eq. (9), the reconstruction error of each point is counted
once, thus different points receive the same weight in LLE.

Different from PCA and LDA, LLE is a nonlinear dimensionality reduction
method, and can’t apply to unseen data samples. To address the out-of-sample
problem, the linearization of LLE is discussed in Ref. [11].

2.1.1 Local learning projections (LLP)

LLP[24] assumes that the projection value of each point can be estimated based
on its neighbors and their projected coordinates. At each point xi and each projection
l, LLP fits a Kernel Machine f l

i (x) using {xj ; yl
j}xj∈N−

i
as the training data. Denote

the size of N−
i as n−i . The function f l

i (xi) is fitted via kernel ridge regression[20], and
we obtain

f l
i (xi) = (k−i )T (K−

i + ‚I)−1yl
i (10)

where k−i ∈ Rn−i is the vector [K(xi; xj)]T for xj ∈ N−
i , K−

i ∈ Rn−i ×n−i is the local
kernel matrix over N−

i , and yl
i ∈ Rn−i is the vector [yl

j ]
T for xj ∈ N−

i .
Let αT

i = (k−i )T (K−
i + ‚I)−1. The objective function of LLP is defined as the

summation of the estimation errors of all the points:

p∑

l=1

m∑

i=1

(
yl

i − f l
i (xi)

)2 =
p∑

l=1

m∑

i=1

(yl
i −αT

i yl
i)

2 (11)

The estimation error of each point is also counted once in Eq. (11), so the
importance of each point is the same in LLP.

2.4 More recent progresses

As an extension of PCA, Dirichlet Component Analysis (DCA)[23] is proposed to
handle the compositional data (positive constant-sum real vectors). DCA attempts
to find the optimal projection that maximizes the estimated Dirichlet precision on the
projected data, thus reducing the compositional data to a lower dimensionality such
that the components are de-correlated as much as possible. In Ref. [28], Worst-case
Linear Discriminant Analysis (WLDA) is developed by defining new between-class
and within-class scatter measures. WLDA adopts the worst-case view and is more
suitable for applications such as classification.

In Ref. [19], Structure Preserving Embedding (SPE) is proposed for embedding
graphs in a low-dimensional Euclidean space such that the global topological
properties of the input graph are preserved. SPE is formulated as a semi-definite
program constrained by a set of linear inequalities which captures the connectivity
structure of the graph. Instead of focusing the structure of the data space, Local
Minima Embedding (LME)[16] tries to find a low-dimensional embedding that
preserves the local minima structure of a given objective function. The embedding
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where I is the identity matrix and Πni
= I − 1

ni
1ni

1T
ni

is the centering matrix. For
the sake of brevity, we drop the subscript ni from the centering matrix Πni when the
dimension can be easily inferred from the context.

Let Ji denote the fitting error of the local function fi(x), which is given by the
minimum of Eq. (14):

Ji

=
1
ni
‖Yi − (W ∗

i )T Xi − b∗i 1T
ni
‖2

F + ‚‖W ∗
i ‖2

F

=
1
ni
‖Yi − (W ∗

i )T Xi − 1
ni

(
Yi − (W ∗

i )T Xi

)
1ni

1T
ni
‖2

F + ‚‖W ∗
i ‖2

F

=
1
ni
‖(Yi − (W ∗

i )T Xi

)
Π‖2

F + ‚‖W ∗
i ‖2

F

=
1
ni
‖Yi

(
Π−ΠXT

i (XiΠXT
i + ni‚I)−1XiΠ

)‖2
F + ‚‖(XiΠXT

i + ni‚I)−1XiΠY T
i ‖2

F

=
1
ni

Tr
(

Yi

(
Π−ΠXT

i (XiΠXT
i + ni‚I)−1XiΠ

)2
Y T

i

)

+ ‚Tr
(
YiΠXT

i (XiΠXT
i + ni‚I)−2XiΠY T

i

)

=
1
ni

Tr
(
Yi

(
Π−ΠXT

i (XiΠXT
i + ni‚I)−1XiΠ

)
Y T

i

)

(17)

In the above derivations, we have used the fact that the centering matrix is
idempotent, so that Π = Πk for k = 1; 2; · · · . For each local patch Ni, we define

Li =
1
ni

(
Π−ΠXT

i (XiΠXT
i + ni‚I)−1XiΠ

)
(18)

which characterizes the local discriminative structure of Ni. The formulation of Li in
Eq. (18) involves the inverse of one n×n matrix, which is computationally expensive
when the dimensionality is high. Using the Woodbury-Morrison formula[21], Li can
be reformulated as[1]:

1
ni

(
Π−ΠXT

i (XiΠXT
i + ni‚I)−1XiΠ

)

=
1
ni

Π
(
I −ΠXT

i (XiΠXT
i + ni‚I)−1XiΠ

)
Π

=
1
ni

Π
(
I − IΠXT

i (XiΠIΠXT
i + ni‚I)−1XiΠI

)
Π

=
1
ni

Π(I +
1

ni‚
ΠXT

i XiΠ)−1Π

=‚Π(ni‚I + ΠXT
i XiΠ)−1Π

(19)

The above equation needs to compute the inverse of one ni × ni matrix, which
is quite efficient, since the size of the local patch is usually very small.

The fitting error Ji treats Yi as the variable, and measures how well do the new
representations respect the local discriminative structure. Thus, good representations
should give rise to minimal fitting errors. The objective function of LRP is naturally
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defined as the summation of the fitting errors over all the local patches {Ni}m
i=1:

m∑

i=1

Ji =
m∑

i=1

Tr(YiLiY
T

i ) =
m∑

i=1

Tr(Y SiLiS
T
i Y ) = Tr

(
Y

( m∑

i=1

SiLiS
T
i

)
Y T

)
(20)

Because our goal is to learn a projection matrix P such that Y = P T X, the
objective function in terms of P is

Tr
(

P T X
( m∑

i=1

SiLiS
T
i

)
XT P

)
(21)

Finally, we have

Deflnition 1. Locally Regressive Projections (LRP):

min
P

Tr(P T XLXT P )

s.t. P T XXT P = I

L =
∑m

i=1 SiLiS
T
i

(22)

The constraint P T XXT P = I is added to remove the arbitrary scaling factor
in the projection. The matrix L is similar to the Laplacian matrix in Ref. [4], as
indicated by the following theorem.

Theorem 3.1. L is a positive semi-definite matrix, and 1 is its eigenvector
with eigenvalue 0.

Proof: From Eq. (19), it is obvious that the matrix Li is positive

semi-definite[1]. Thus, the matrix L =
∑m

i=1 SiLiS
T
i is also positive semi-definite.

F]TJ/F56sitt1]TJ/F22 6.974 Tf 7.78 3.616 TD[(Tf5.707.963 Tfc91.199 0 TD7.iR.e0a/F20 9..96clud2(theor.124 0 TD[(Y)]TJ/F5 9.106.06.974d)-926.78 -1.495 [(1)]TJ/F5 96 -18.067 T1463 TD[())-277(=)]TJ6f 12.231 7.472  TD[(m)]TJ/F24 97963 Tf -3.66 -2.989 TD[(X)]TJ/F22 6..974 Tf 0.742 -21.219 TD[(i)]TJ/F2 63974 Tf 2.819 0 TD[(=1)]TJ/F20 9.9638Tf 12.49 11.755 TD[(S)]TJ/F22 6.974 Tf 6.109 -1.495 TD[(i)]TJ/F20 9.963 Tf 3.317 1.495 TD[(L)]TJ/F22 6.974 Tf 6.78 -1.495 TD[(i)]TJ/F20 9.963 Tf 3.317 1.495 TD[(S)]TJ/F22 6.974 Tf 6.683 4.113 TD[(T)]TJ -0.574 -6.576 TD[(i)]TJ/F24 9.963 Tf 6.85 10.532 [(1)]TJ/F5 96 963 Tf 7.998 1463 TD[())-277(=)]TJ6f 12.231 7.472  TD[(m)]TJ/F24 97963 Tf -3.66 -2.989 TD[(X)]TJ/F22 6..974 Tf 0.742 -21.219 TD[(i)]TJ/F2 63974 Tf 2.819 0 TD[(=1)]TJ/F20 9.9638Tf 12.49 11.755 TD[(S)]TJ/F22 6.974 Tf 6.109 -1.495 TD[(i)]TJ/F20 9.963 Tf 3.317 1.495 TD[(L)]TJ/F22 6.974 Tf 6.78 -1.495 TD[(i)]TJ/F20 9.963 Tf 3.317 1.495 [(1)]TJ/F5 92 6.974 Tf 6.78 1463 TD[())-277(=)]TJ6f 12.231 7.472[(1)]TJ/F5 9.6 -15.207 TD011.059 TD[(P)]TJ/F22728Tf 12.4;.495 TD[(is)-656(ptedTf 11.2643 T3 44.749 -269.626 TD[(The)ned)-333(ned7f 6.85 whetics,6(e)]TJ ET B6(e437(i36on.)-74B6(e673 (i36on.)24 0 TD[(Y)]TJ/F5 9.1F24 9.)-657( 3.616 TD[(T)]TJ -0.574 -6.209 TD[(i)]TJ/F5 9.963 Tf 125.029 19.78[(1)]TJ/F5 96 963 T7(p)-28(1463 TD[())-277(=)]9Tf 11.2641 7.472[(1)]TJ/F5 9.ted3 Tf 12.40 TD[(is)-391(its)-335.)-657("(V)86-33346 7.472[(1)]TJ/F5 927.1458.067 T1463 TD[())-277(=)]9Tf 11.2641 7.472[(1)]TJ/F5 9.ted3 Tf 12.40463 TD[())-277(=22728Tf 12.4Tf55-24So, 7.472[(1)]TJ/F5 9274 T2Tf 12.40 TD[(is)-391(its)-335.)-657(�(v)26-3a/F206on-294.972 -12.673 TD[)26-3088 0 TD[(P)]TJ/F5 988.186 10.683 0 TD[(is)-391(a)-39240)-28(osialue)(ob)-559.132333(b)27(y)-30.)]TJ ET BT/F13 9.9632Tf 57.8TD[91)]TJ/F5 9234(Tf 60Tf 4.56644.749 -269.626 TD[(The)-410(conf 8.122J/F22 6.974 Tf 7.78 3.61525(matri525(R2 9.9yl0.)h-Ritzri5249.963 Tf TD[(=1)]TJ/F20 916)]T59-6.209 TD[([17]0 TD[(=)]TJ/F20 9.9695.)3 Tf 10.547fc957(e)]TJ ET 5249kn]TJ ET61525(ma]TJ/525(matri525(optimal5 0 TD[(L)]TJ/F5 9.93]9T4f 7.78 3.615 T3(T)]TJ/F20 9.963 Tf 6.27656644.74 TD[(is)-656(p)-76 3 Tf 10.547.)24 0 T 3  8.4 Tf33(b)27(y)-3min-43ze(v)258D[(Tf5.5963 Tf 44)258D7(v)2596gnite.)]/F20Tf b 0 TyF20Tf .)-74B596smallest4)258D-294.972 -127673 TDsF20Tf ng)-3596.)-74B58rem.)]TJ ET BT/F158r94.er60.zedF2 6.974itt1]TJ/F220.

L TP
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(a) †-neighborhoods. xj is the neighbor of xi, if ‖xi − xj‖2 < †.

(b) k nearest neighbors. xj is the neighbor of xi, if xj is among the k nearest
points of xi.

Note that, if we are facing supervised dimensionality reduction problem, we can
make use of the label information by requiring that neighboring points must
belong to the same class.

Then, we calculate the matrix L =
∑m

i=1(SiLiS
T
i ), where Li is given by Eq. (18)

and Eq. (19).

2. Data centering and PCA projection: The mean of x is removed from each
xi:

x̄ =
1
m

m∑

i=1

xi (26)

x̂i = xi − x̄; for 1 6 i 6 m (27)

Then, we project each data point x̂i into the PCA subspace by throwing away
the smallest principal components. We denote the projection matrix of PCA by
PP CA. Through data centering, the trivial solution P T X = 1m is removed[5].
The role of PCA is to make the matrix XXT positive definite, which is necessary
in solving the generalized eigenvalue problem (24)[5]. We use X̂P CA denote the
data matrix after this step.

3. Calculating the Projection matrix: Compute the eigenvectors for the
following generalized eigenvalue problem:

X̂P CALX̂T
P CAα = ‚X̂P CAX̂T

P CAα (28)

Denote the projection matrix resulting from solving the eigenvectors from
Eq. (28) as PLRP .

4. Projection: The final projection matrix P is given by P = PP CAPLRP . Given
a test point xi, its projection value yi is

yi = P T (xi − x̄) = P T
LRP P T

P CA(xi − x̄) (29)

3.3 Complexity analysis of LRP

Supposing we use the k nearest neighbors way to construct the local patches, the
computational complexity of LRP is dominated by the following steps:

– Find the k nearest neighbors of each point, and compute L

{ O(m2n) is used to calculate the pairwise distances between the m

samples, and O(m2 log m) is used for finding k-nearest neighbors of all
the m samples.

{ O(m(nk2 + k3)) is used to calculate Li according to Eq. (19) for all the m

samples.
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– PCA Projection

{ The complexity is O(mn2 + n3).

– Solve the generalized eigenvalue problem (28)

{ The complexity is at most O(m2n + mn2 + n3).

In summary, the total cost of LRP is O
(
m2 log m+mn(k2 +m+n)+mk3 +n3

)
.

4 Theoretical Analysis

4.1 Connections to LLE and LLP

LLE, LLP and LRP are all local learning algorithms for dimensionality reduction.
The major difference of the three methods lies in their objective function. LLE and
LLP minimize the summation of the estimation (or reconstruction) errors of all the
data points. Thus, all the points are treated equally in LLE and LLP. On the other
hand, LRP minimize the summation of the fitting errors over all the local patches.
Since the fitting error at one patch contains the estimation errors of all the points in
this patch, and points sampled from dense regions will appear in more patches than
others, LRP actually assigns higher weights to points in dense regions. We expect in
this way, LRP can model the local geometry structure more accurately.

One interesting property of LRP is that it is equivalent to PCA and LDA in some
extreme cases. And we show this fact in the following.

4.2 Connection to PCA

Theorem 4.1. When ni = m, LRP is equivalent to PCA.
Proof: Using the fact that Xi = XSi holds for all i, and after some

mathematical derivations we have

XLXT =
m∑

i=1

(XSiLiS
T
i XT ) =

m∑

i=1

XiLiX
T
i

=
m∑

i=1

1
ni

Xi

(
Π−ΠXT

i (XiΠXT
i + ni‚I)−1XiΠ

)
XT

i

=
m∑

i=1

1
ni

(
XiΠXT

i −XiΠXT
i (XiΠXT

i + ni‚I)−1XiΠXT
i

)

=
m∑

i=1

1
ni

(
XiΠXT

i −XiΠXT
i (XiΠXT

i + ni‚I)−1(XiΠXT
i + ni‚I − ni‚I)

)

=‚
m∑

i=1

(
XiΠXT

i (XiΠXT
i + ni‚I)−1

)

(30)

ni = m means that the entire data set is treated as a neighborhood. So Xi = X

for all i, and Eq. (30) becomes:

XLXT = m‚
(
XΠXT (XΠXT + m‚I)−1

)
= XXT (

1
m‚

XΠXT + I)−1 (31)
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Since data centering is one preprocessing step in our algorithm, we can assume
that data has been centered for simplicity. Then, the data covariance matrix C

becomes:
C =

1
m

XΠXT =
1
m

XXT (32)

Substituting Eq. (31) and Eq. (32) into Eq. (24), we have

mC(
1
‚

C + I)−1α = °mCα ⇔ (
1
‚

C + I)−1α = °α ⇔ (
1
‚

C + I)α =
1
°

α (33)

Thus, the optimal projections of LRP is given by the largest eigenvectors of
( 1

‚ C + I). Since the eigenvectors of ( 1
‚ C + I) and C are the same, and with the same

orders, LRP is equivalent to PCA when ni = m. ¤

4.3 Connection to LDA

Theorem 4.2. In supervised dimensionality reduction case, if all the points
of the same class are treated as neighbors, then LRP converges to LDA as ‚ →∞.

Proof: Suppose the given m points are centered and belong to c classes. Let

ri denote the the number of samples in the i-th class, and Xi be the data matrix
consisting of samples in the i-th class. Then Eq. (30) becomes:

XLXT

=
c∑

i=1

ri‚
(

XiΠri
(Xi)T

(
XiΠri

(Xi)T + ri‚I
)−1

)

=
c∑

i=1

(
XiΠri

(Xi)T

(
1

ri‚
XiΠri

(Xi)T + I

)−1
) (34)

We have

lim
‚→∞

XLXT =
c∑

i=1

(
XiΠri

(Xi)T
)

(35)

In LDA, it is easy to check that the following relationships hold for the within-
class scatter matrix and between-class scatter matrix:

SW =
c∑

i=1

(
XiΠri

(Xi)T
)

(36)

SW + SB = XΠmXT (37)

Thus, the solution of LDA is also given by the smallest eigenvectors of the
following generalized eigenvalue problem[6,15]:

c∑

i=1

XiΠri
(Xi)T α = °XΠmXT α (38)

Following Eq. (4.35), we can conclude that as ‚ →∞, the eigenproblem (24) of
LRP converges to the eigenproblem (38) of LDA.

In practice, ‚ is much smaller than ∞, so LRP can project points into a subspace
whose dimensionality exceeds c− 1. ¤
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5 Experiments

In this section, we evaluate the performance of our proposed LRP algorithm for
both supervised dimensionality reduction (face recognition) and unsupervised
dimensionality reduction (face clustering). To demonstrate the effectiveness of our
proposed algorithm, we evaluate and compare five dimensionality reduction
methods:

– Principal Component Analysis (PCA)[3];

– Linear Discriminant Analysis (LDA)[8];

– Neighborhood Preserving Embedding (NPE)[11], which is a linear
approximation to Locally Linear Embedding (LLE)[18];

– Local Learning Projections (LLP)[24];

– Locally Regressive Projections (LRP), which is the method proposed in
this paper.

Two face images databases are used in the experiments: the CMU PIE face
database and the Extended Yale-B face database. The PIE face database contains
41,368 images of 68 people. The face images were captured under 13 different Poses,
43 different Illumination conditions, and with 4 different Expressions. We choose the
frontal pose (C27), which has 3329 face images. The Extended Yale-B face database
contains 16128 images of 38 human subjects under 9 poses and 64 illumination
conditions. We also choose the frontal pose, thus leaving us with 2414 images in
total.

All the face images are manually aligned and resized to 32× 32 pixels. So, each
image is represented as a 1024-dimensional vector. In our experiments we pre-process
the data by normalizing each face vector to unit length. We apply the k nearest
neighbors way to finding the local patches for NPE, LLP and LRP. k is empirically
set to 5 for all the methods. The parameter ‚ in LLP and LRP is set to 1.

5.1 Face recognition

For face recognition, we compare our algorithm with PCA[2], LDA[2], NPE[11],
and LLP[24]. Classification in the original 1024-dimensional space is referred to as
Baseline.

For each database, r images per class are randomly selected as training samples,
and the rest are used for testing. The training samples are used to learn the projection
matrix P ∈ Rn×p for each method. For PCA, NPE, LLP and LRP, the dimension of
the subspace (i.e., p) varies from 1 to 150. For LDA, p varies from 1 to c−1, where c is
the number of classes. To make use of the label information, in NPE, LLP, and LRP,
we require that the neighboring points belong to the same class. Both the training
and testing data are mapped into a low-dimensional subspace by the learned matrix
P . Then, 1-nearest neighbor (1-nn) classifier is used to classify the testing data. For
each given r, 20 training/testing splits are randomly generated and the average testing
error over these splits is used to evaluate the classification performance.

We show the error rate versus the dimension for each algorithm on the PIE and
Yale-B databases in Figs. 1 and 2, respectively. We can see that the performance of
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these algorithms varies with the number of dimensions. Tables 2 and Table 3 show the
best results together with the standard deviations obtained by these algorithms, while
the numbers in parentheses denote the optimal number of dimensions. As can be seen,
our LRP algorithm outperforms all the other algorithms on the entire range. And
the error rate of LRP decreases much faster than other algorithms as the dimension
increases.

20 40 60 80 1 00 1 20 1 40

5

1 0

1 5

20

25

Dimen s io n

E
rr

o
r 

ra
te

 (
%

)

 

 

B a s elin e

PCA

L DA

NPE

L L P

L R P

(a) 10 train

20 40 60 80 1 00 1 20 1 40

2

4

6

8

1 0

1 2

Dimen s io n

E
rr

o
r 

ra
te

 (
%

)

 

 

B a s elin e

PCA

L DA

NPE

L L P

L R P

(b) 20 train

20 40 60 80 1 00 1 20 1 40
1 .5

2

2.5

3

3.5

4

4.5

5

5.5

6

Dimen s io n

E
rr

o
r 

ra
te

 (
%

)

 

 

B a s elin e

PCA

L DA

NPE

L L P

L R P

(c) 30 train

Figure 1. Error rate vs. dimensionality reduction on CMU PIE database.

Table 2 Recognition error rate of difierent algorithms on the CMU PIE

database (mean±std-dev%)

Method 10 train 20 train 30 train

Baseline 23.1 ± 0.89 (1024) 9.22 ± 0.54 (1024) 4.33 ± 0.51 (1024)

PCA 24.5 ± 0.89 (150) 10.2 ± 0.57 (150) 4.9 ± 0.51 (150)

LDA 4.96 ± 0.40 (67) 4.21 ± 0.45 (67) 2.92 ± 0.45 (67)

NPE 5.23 ± 0.35 (147) 4.44 ± 0.59 (147) 2.44 ± 0.38 (63)

LLP 3.64 ± 0.43 (146) 2.72 ± 0.32 (150) 2.57 ± 0.42 (150)

LRP 3.29 ± 0.37 (100) 2.05 ± 0.33 (85) 1.6 ± 0.31 (78)
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Figure 2. Error rate versus dimension on Yale-B database.

Table 3 Recognition error rate of difierent algorithms on the Yale-B database

(mean±std- dev%).

Method 20 train 30 train 40 train

Baseline 30.8 ± 1.2 (1024) 22.6 ± 0.98 (1024) 18.1 ± 1.1 (1024)

PCA 34.9 ± 1.1 (150) 27.6 ± 1.0 (150) 23.6 ± 1.0 (150)

LDA 8.78 ± 0.87 (37) 13.0 ± 1.3 (37) 4.50 ± 0.72 (37)

NPE 7.2 ± 0.77 (146) 9.74 ± 0.96 (148) 2.47 ± 0.41 (139)

LLP 5.3 ± 0.55 (144) 3.72 ± 0.59 (146) 2.99 ± 0.67 (150)

LRP 4.28 ± 0.65 (114) 2.06 ± 0.42 (149) 1.32 ± 0.51 (130)

5.2 Face clustering

Face clustering is unsupervised and we compare our algorithm with PCA, NPE,
and LLP. In our experiments, the entire database in used to learn a projection
matrix P , and all the points are mapped into a low dimensional subspace. The low
dimensional representations are centered and normalized to unit length in the
projected subspace before clustering. We use k-means as our clustering algorithm.
The result of k-means in the original feature space is referred to as Baseline.

Since k-means algorithm can only find local minimum, and is sensitive to initial
points. So in each case we apply it 10 times with different start points and the
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best result in terms of the objective function of k-means is recorded. The clustering
performance is evaluated by comparing the obtained label of each image with that
provided by the ground truth. The normalized mutual information metric (MI) is
used to measure the clustering performance[5]. MI ranges from 0 to 1. It equals 1 if
two sets of clusters are identical, and equals 0 if two sets are independent.

Figure 3 plots the normalized mutual information versus the dimension for the
Baseline, PCA, NPE, LLP, and LRP on the two databases. We observe that our
proposed LRP outperforms other algorithms on both data sets. The performance
of LLP is bad when the dimension is low, but it increases quickly as the dimension
increases.
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Figure 3. Normalized mutual information versus dimension on the CMU PIE and Yale-B

databases.

5.3 Parameter selection

The size of the local patch is an essential parameter of all the local learning
methods. In the previous experiments, we construct the local patch by finding the k

nearest neighbors of each points and k is set to 5. In the following, we examine the
impact of k on the performance of NPE, LLP and LRP. For brevity, we just show the
results on the CMU PIE database, and the results on the Yale-B database is similar.
Since the CMU PIE database contains 68 classes, we fix the dimension of the subspace
at 67.

For face recognition, we select r = 30 images per class as training samples, and
report the average testing error over 20 training/testing splits. The experiment of
face clustering uses the whole database. Figure 4 shows the results of face recognition
and clustering versus k on the CMU PIE database. The performance of LRP for face
recognition is not sensitive to k. Specifically, the error rate of LRP only increases
a little as k increases from 2 to 20. That is probably because in the case of face
recognition, the label information is used to find the k nearest neighbors. On the
other hand, the performance of LRP for face clustering changes noticeably as k varies.
Nevertheless, our LRP outperforms all the other methods on the whole range of k for
both face recognition and clustering. And the best size of the local patch is around
5.
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Figure 4. The impact of the number of nearest neighbors k on the CMU PIE database.

6 Conclusions

This paper proposes a novel linear dimensionality reduction algorithm called
Locally Regressive Projections (LRP). Unlike previous methods, we assumes the low
dimensional representation of each point as well as its neighbors can be well estimated
using a locally fitted function. The optimal projections are found by minimizing
the summation of the fitting errors of all the local functions. Theoretical analysis
reveals that there are close connections between our proposed LRP algorithm and the
canonical methods PCA and LDA. Experimental results on two standard databases
show that our algorithm can significantly improve the performance of both supervised
face recognition and unsupervised face clustering.
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