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Abstract

In this paper, we study the problem of stochastic
linear bandits with finite action sets. Most of ex-
isting work assume the payoffs are bounded or sub-
Gaussian, which may be violated in some scenarios
such as financial markets. To settle this issue, we
analyze the linear bandits with heavy-tailed pay-
offs, where the payoffs admit finite 1 + ¢ moments
for some ¢ € (0,1]. Through median of means
and dynamic truncation, we propose two novel al-
gorithms which enjoy a sublinear regret bound of

\( : ﬁ) where g is the dimension of contex-
tua’mformatlon and” is the timg horizon. Mean-
while, we provide an € g <) lower bound,
which implies our upper bound matches the lower
bound up to polylogarithmic factors in the order of

and when e = 1. Finally, we conduct numerical
éxperiments to demonstrate the effectiveness of our
algorithms and the empirical results strongly sup-
port our theoretical guarantees.

1 Introduction

Bandit online learning is a powerful framework for modeling
various important decision-making scenarios with applica-
tions ranging from medical trials to advertisement placement
to network routing [Bubeck and Cesa-Bianchi, 2012]. In the
basic stochastic multi-arm bandits (MAB) [Robbins, 19521,
a learner repeatedly selects one from  arms to play, and
then observes a payoff drawn from a fixed but unknown dis-
tribution associated with the chosen arm. The learner’s goal
is to maxmize the cumulative payoffs through the trade-off
between exploration and exploitation, i.e., pulling the arms
that may potentially give better outcomes and playing the op-
timal arm in the past [Auer, 2002]. The classic upper con-
fidence bound (UCB) algorithm achieves a regret bound of
% log )over iterationsand arms, which matches the
minimax regret up to a logarithmic factor [Lai and Robbins,
1985].
One fundamental limitation of stochastic MAB is that it
ignores the side information (contexts) inherent in the afore-
mentioned real-world applications, such as the user and web-
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page features in advertisement placement [Abe et al., 2003],
which could guide the decision-making process. To ad-
dress this issue, various algorithms have been developed
to exploit the contexts, based on different structures of the
payoff functions such as Lipschitz [Kleinberg et al., 2008;
Bubeck et al., 2011] or convex [Agarwal et al., 2013; Bubeck
et al., 2015]. Among them, the stochastic linear bandits
(SLB) has received significant research interests [Auer, 2002;
Chu et al., 20111, in which the expected payoff at each round
is assumed to be a linear combination of features in the con-
text vector. More precisely, in each round of SLB, the learner
first observes feature vector ghe € R? for each arm .. After
that, he/she selects an arm -4 and receives payoff+ ; ,,, such
that

E[/ t,at ‘ {tvat] = i‘;—ato* (1)

where 6, € R? is a vector of unknown parameters. The met-
ric to measure the learner’s performance is expected regret,
defined as
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where «f = argmax,c( o . K} gt,a0+ and - is the action

chosen by the learner at round y.
While SLB has been explored extensively [Auer, 2002;
Chu et al., 2011; Abbasi-yadkori et al., 2011; Zhang et al.,
2016], most of the previous work assume the payoffs are
bounded or satisfy the sub-Gaussian property. However, in
many real-world scenarios such as financial markets [Cont
and Bouchaud, 2000] and neural oscillations [Roberts et al.,
2015], the payoffs 7 ; , fluctuate rapidly and do not exhibit
bounded or sub-Gaussian property but satisfy heavy-tailed
distributions [Foss et al., 2013], i
lim P{r o —Ef t4] >, }- -

c— 00

¢ =00, VA>0.

There exists a rich body of work on learning with heavy-
tailed distribution [Audibert and Catoni,
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the distributions have finite moments of order 1 + ¢ for some
€ (0,1]. Later, Shao et al. [2018] improve these bounds

to %g ) by developing two more delicate algorithms.
When 'the variance of payoff is finite (i. e., € = 1), this bound
becomes g/ ), which is nearly optimal in terms of
However, when the number of arms is finite, this upper bound
is sub-optimal as there exists an \(\/;) gap from the lower
bound Q(\/; ) [Chu et al., 2011]. Thus, an interesting chal-
lenge is to recover the regret of ¥\/g ) under the heavy-
tailed setting for linear bandits with finite arms.

To the best of our knowledge, this is the first work which
investigates heavy-tailed SLB with finite arms and our contri-
butions are highlighted as follows:

e We propose two novel algorithms to address the heavy-
tailed issue in stochastic linear bandits with finite arms.
One is developed based on median of means, and the
other adopts tlie trluncz%tion technique. Furthermore, we
establish an ‘v(;‘ T+¢) regret bound for both algo-
rithms.

1
e We provide an € T *+<) lower bound for heavy-
tailed SLB problem, which matches our upper bound in
terms of the dependence on . It also implies the de-
pendence on 4 in our upper bound is optimal up to a
logarithmic term when € = 1.

e We conduct numerical experiments to demonstrate the
performance of our algorithms. Through comparisons
with existing work, our proposed algorithms exhibit im-
provements on heavy-tailed bandit problem.

2 Related Work

In this section, we briefly review the related work on bandit
learning. The -norm of vector ;, € R%is || ||, = (| ;1]P +

.. 4| 4a|?)"/? and the @rnorm is denoted a§|||\
Y

2.1 Bandit Learning with Bounded/Sub-Gaussian
Payoffs

The celebrated work of Lai and Robbins [1985] derived a
lower bound of ( log ) for stochastic MAB, and pro-
posed an algorithm which achieves the lower bound asymp-
totically by making use of the upper confidence bound (UCB)
policies. Auer [2002] studied the problem of stochastic lin-
ear bandits, and developed a basic algorithm named LinRel
to solve this problem. However, he failed to provide a sub-
linear regret for LinRel since the analysis of the algorithm
requires all observed payoffs so far to be independent ran-
dom variables, which may be violated. To resolve this prob-
lem, he turned LinRel to be a subroutine which assumes in-
dependence among the payoffs, and then constructed a mas-
ter algorithm named SupLinRel to ensure the independence.
Theoretical analysis demonstrates that SupLinRel enjoys an
) regret bound, assuming the number of arms is finite.
Chu g’[ al. [2011] modified LinRel and SupLinRel slightly
to BaseLinUCB and SupLinUCB, which enjoy similar re-
gret bound but less computational cost and easier theoreti-
cal analysis. They also provided an (/g ) lower bound
for SLB. Dani et al. [2008] con51dered %e setting where
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the arm set is infinite, and proposed an algorithm named
ConfidenceBall, which enjoys a regret bound of V(’f ).
Later, Abbasi-yadkori et al. [2011] provided a new analysis
of ConfidenceBall,, and improved the worst case bound by a
logarithmic factor.

The main diffculty in bandit problem is the trade-off be-
tween exploitation and exploration. Most of the existing
work take advantage of UCB to settle this issue and adopt
the tool of ridge regression to estimate 6, [Auer, 2002;

Chu et al., 2011]. The least square estimator of Chu et al.
[2011] s
0; = argmin|| 0 — ¢||> + 0] )
0ER?

where ; = [ 74, ]rew, € RIY¢xd ig 3 matrix of the histor-
ical contexts, ¢ = [ 7.4, ]rew, € RIYtI¥1 s the historical
payoff vector and ¥, C {1,2,..., ' 1} is a filtered index
set. The confidence interval for arm " at round "is

T 4 T4
[{t,aat =t {t,aat + rjt,a:| 3

where F'Jt’a = (at + 1)1/ i’IaAt iﬁt,tnAt = Id + tT t

and oy = My/In( ). If ryq is small for all + €
{1,2,..., }, which means the estimations for coming pay-
offs are accurate enough, the arm with highest upper confi-
dence bound is played to execute exploitation. Otherwise, if
there exists an arm «with r/; ,, large enough, arm is played
to explore more information.

2.2 Bandit Learning with Heavy-tailed Payoffs

The classic paper of Bubeck et al. [2013] studied stochas-
tic MAB with heavy-tailed payoffs, and proposed a UCB-
type algorithm which enjoys a logarithmic regret bound, un-
der the assumption that the 1 4+ ¢ moment of the payoffs
is bounded for some ¢ € (0,1]. They also constructed a
matching lower bound. Medina and Yang [2016] extended
the anal?ysm to SLB, and developed two algorithms enjoying

\( #0557 and \(\/; Ty 1_+T) regret bounds re-
spectlvely In a sdbsequent work, Shao et al. [2018] con-
structed an (g, <) lower bound for SLB with heavy-tailed
payoffs, assuming the arm set is infinite, and developed algo-
rithms with matching upper bounds in terms of

An intuitive explanation for heavy-tailed distribution is that
extreme values are presented with high probability. One strat-
egy tackling the heavy-tailed problem is median of means
[Hsu and Sabato, 2016], whose basic idea is to divide all
samples drawn from the distribution into several groups, cal-
culate the mean of each group and take the median of these
means. Another strategy is truncation following the line of
research stemmed from Audibert and Catoni [2011], whose
basic idea is to truncate the extreme values. Most of the ex-
isting work for heavy-tailed bandits develop algorithms based
on median of means and truncation [Bubeck et al., 2013;
Medina and Yang, 2016; Shao et al., 2018].

For heavy-tailed SLB algorithms adopting median of
means, it is common to play the chosen arm multiple times

and get/ payoffs { / .a; J =1 ateachround. Different “means”
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is considered in existing work [Medina and Yang, 2016;
Shao et al., 2018]. The algorithm MoM [Medina and Yang,
2016] takes the median of {r { , }”_, to conduct least square
estimation by one time and the subsequent algorithm MENU
[Shao et al., 2018] adopts the median of means of least square
estimations. More precisely, for, =1,2,...,7, the, -th esti-
mator in MENU is

67 = argmin|| 0 — |* +[|6]*
0ER?

where = [yra ]iZh € RO and 7 = [ 1)) €

R(=DX1  Afger that, the median of means of least square
estimations is

'{’j = median of {Hég féngt = 1,000, }

where || [z, =/ A, for jeRéand A, = Iy + 7 4.
Then MENU select? the dstimator

0% where , = argmin {'5' it 4
Fe{1,2,...,m}

to predict the payoffs for all arms.

For heavy-tailed SLB algorithms adopting truncation, the
essential difference between existing work is the term cho-
sen to be truncated. The algorithm based on Confidence
Region with Truncation (CRT) [Medina and Yang, 2016]
conducts truncation on pa}goffs V t.a,] such that 7, =

/ t,atﬂln,a, |<ne for n; = "7 and obtains the least square
estimator through truncated payoffs+7; ,,. An improved algo-

rithm TOFU [Shao et al., 2018] truncates the term L, Y oran -
More precisely, let [',... .29 = AT and L' =
Jo gty gy fOr i =12, g The truncation is oper-
ated as
tl = [’ 17G1H\u’krl,a1 [<bpr- - 57 t—l,(lt,flﬂ|u§71rt,l,at71 |§bt]
1_

where 4; = ¥{"F) and Iy is the indicator function.
Then the estimator of TOFU is

g A2 1 "1 d.~d

Op=A, e = )
such that,al = ZT:&‘ # 7',aq—]I|uirT,aT [<b¢ for i =
L2, g

3 Algorithms

In this section, we demonstrate two novel bandit algorithms
based on median of means and truncation respectively and
illustrate their theoretical guarantees. Without loss of gen-
erality, we assume feature vectors and target coefficients are
contained in the unit ball, that is

||i’t7a|| S 17 Ho*” S 1.

Following the work of Chu et al. [2011], each of our two orig-
inal algorithms is divided into basic and master algorithms.
The main role of basic algorithms is providing confidence in-
tervals via filtered historical informations, and master algo-
rithm is responsible for ensuring the payoffs’ independence.

2938

3.1 Basic Algorithms

In the conventional setting where the stochastic payoffs are
distributed in [0, 1], Chu et al. [2011] ultilized the Azuma-
Hoeffing’s inequality to get the narrow confidence interval
(3). Here, we consider the heavy-tailed setting, i. e., for some
e € (0, 1], there exists a constant > 0, such that

E [} ta, —Ef t.a)]] <% . (6)

Note that in this case, Azuma-Hoeffing’s inequality is unap-
plicable as the bounded assumption is violated. The estima-
tor (2) and confidence interval (3) are not suitable for heavy-
tailed setting. Therefore, the challenge is how to establish a
robust estimator associated with proper confidence intervals.
The existing work estimate the payoffs for all arms with a
single estimator at each round [Auer, 2002; Chu et al., 2011;
Medina and Yang, 2016; Shao et al., 2018], while the expeted
payoff Ef' ; ,] depends not only on 6, but also on the contexts
t,a- Thus an intuitive conjecture is that it’s better to take esti-
ators adaptive to arms’ contexts, and the following example
confirms such conjecture.

Example 1. We assume 6, = [0.5, 0.5], the contextual infor-
mationis 4 1 = [1,0] forarm1and g2 = [0,1] for arm 2. If
we have two estimator 6} = [0.5,0] and 62 = [0, 0.5], it’s ob-
vious that 0} is a better estimator for g1 3 {;9; = @19*
and 67 is better for g2 '

The above example encourages us to design estimators
adaptive to contexts.

Median of Means

We first present the basic algorithm through median of means
(BMM) to get confidence intervals for coming payoffs. The
complete procedure is provided in Algorithm 1.

To adopt median of means in bandit learning, we play
the chosen arm + times and obtain » sequences of payoffs.
After that, BMM executes least square estimation for each
sequence of payoffs and gets + estimators (Step 1-3). For

~ =1,2,...,7,

0] = argmin|| 0 — /|| + 1|0 (7
9cRd

Wy xd

where ¢ = [ rq,]rcw, ER is a matrix of the histori-

cal contexts, "¢/ = [/ 7 , ] cw, is the historical payoff vector
and ¥, C {1,2,..., ' 1} is an index set filtered by the mas-
ter algorithm. Then, BMM selects an adaptive estimator ém
for each arm by taking the estimated payoffs as “means”
(Step 6). More specifically, the estimator for arm at current

round is 0, , € {67 }%_1 such that

;’Zaétva = median of {ijaéf};":l (®)

By ulilizing median of means, BMM constructs a reliable
confidence interval for the expected payoff (Step 6-7), which
is

{{Zaét,a - r’/t,am {Iaét,a + r’/t,a:| (9)
where rjt,a = (Oét —+ 1)@/ {Z{I.At {t,avAt = Id —+ tT t and
1, : '
ar= X{).
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Algorithm 1 Basic algorithm through Median of Means
(BMM)
Imput: oy e Ry ;v e N, U, C{1,2,..., {— 1}
Output: "y 4, rliq, «=1,2,..., :
1: At — Id + ZTE‘I& {T,U.T {_IQT

2 4] < Y eu," da, grars L, is the, -th payoff of play-
ing the arm - inrotind 7,, =1,2,...,s

3607 — A7, =1,2,.. .

4: Observe arm features, (t,l, {t’2""’(t’K e R4
5. for «=1,2,..., do * : :

6:

Tta 4Ia‘9t,a9 where J;Faﬂt,a is the median of
Sy 3 L
673"
i’tﬁa tJj=1

7: o (o +1)4/ {tT,aA;l oo

8: end for

When compared with existing algorithms, the main dif-
ference lies in how to combine median of means with least
square estimation. As we introduced in related work, MoM
of Medina and Yang [2016] and MENU of Shao et al. [2018]
take payoffs and the distance between different estimators
as “means” respectively, while BMM takes estimated pay-
offs (8) as “means” and predicts coming payoffs with esti-
mators adaptive to contexts. The theoretical guarantee for
our estimators is displayed as follows. The payoffs’ indepen-
dence for filtered set ¥, is ensured by the master algorithm
SupBMM and we will present it later.

Proposition 1. For fixed feature vectors ,., with 7 € U,
in BMM, the payoffs {+ 7 , }reu;y = 12,...,/ are inde-
pendent rand?m variables which satisfy (1) and (6). Then, if
a; = (12 )™ "% and+ = [81n 2KTInT] with proba-
bility at least 1 — ¢/ , forany «€ {1,2,..., }, we have

. T _
e — {t,a0*| < (ar+1) \/ {;l,—aAt 1{t,a-

Remark. The confidence interval of BMM depends on the
1+ € central moment of the payoff distribution, which is con-
structed at the cost of 7 times to play the chosen arm. When
the payoffs admit a finite variance, i.e., ¢ = 1, our algorithm
utilizes tighter confidence intervals with a; = v/1% , in con-
trast, Chu et al. [2011] constructed confidence intervals with
ar = My/In( )). The detailed proof can be found in the
full paper [Xue et al., 2020].

Truncation
In this section, we develop the basic algorithm through
truncation (BTC) to get confidence intervals for coming pay-
offs. The complete procedure is provided in Algorithm 2.
For heavy-tailed SLB algorithms adopting truncation, the
key point is how to combine the least square estimation with
truncation. The existing least square estimator (2) without
truncation does not take use of current epoch’s contexts ; 4,
while Example 1 encourages us to consider adaptive estilna-
tor. The estimated payoff of Chu et al. [2011] is a linear
combination of historical payoffs, i. e.,

T 41 T Z
i’t,aAt t t= 57’7'7%

TEW,
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Algorithm 2 Basic algorithm through Truncation (BTC)

Input: o, € Ry, ¥, C {1,2,..., {—
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probability at least 1 — 6/ , Ve {1,2,..., }, we have

I
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(a) Student’s t-Noise (b) Pareto Noise

Figure 1: Comparison of our algorithms versus the MoM, CRT, MENU and TOFU.

4 Lower Bound

In this section, we give the lower bound for finite-armed SLB
with heavy-tailed payoffs.
Theorem 3. For any algorithm A with L2 > 4 and

> (2g) 7, lety = ( /( +2 )™, there exists a
sequence’ of feature vectors { ,; ,}7_, for « = 1,2,...,
and a coefficient vector 6, such that the payoff for each arm
isin {0,1/~} with mean ,/ 0.. If g > . wehave

¢t

I P I I
— 3249 v ’

Remark. \ The above theorem essentially establishes an

Q(g™< ™) lower bound associated with 4 and  for
SLB under the heavy-tailed setting, which matcﬁes the upper
bounds of Theorems 1 and 2 in the sense of the polynomial
order on . To the best of our knowledge, this is the first
lower bound for finite-armed SLB with heavy-tailed payoffs.
The detailed proof can be found in the full paper [Xue et al.,
2020].

5 Experiments

In this section, we conduct experiments to evaluate the pro-
posed algorithms. All algorithms’ parameters are set to € = 1
and § = 0.01. We adopt MoM and CRT of Medina and Yang
[2016], MENU and TOFU of Shao et al. [2018] as baselines
for comparison.
Let the feature dimension g = 10, the number of arms
=20 and 0, = 1/\/; S ﬁd, where 1 is an all-1 vector
so that ||0.|| = 1. Each element of the vector ; , is sampled
from the uniform distribution of [0, 1], and thén the vector is
normalized to a unit vector (|| 4¢.q|| = 1). According to the
linear bandit model, the observdd payoff is

" ta = &:Za@* + Nt
where 7, is generated from the following two noises.
(1) Student’s "-Noise: The probability density function of

this noise is 7, ~ %()15) (

2941



2 ceed! dew e Twe sty L4l e die e o ladar B 1ge & (ycaI-20)

References

[Abbasi-yadkori et al., 2011] Yasin Abbasi-yadkori, Dédvid
Piél, and Csaba Szepesvari. Improved algorithms for lin-
ear stochastic bandits. In Advances in Neural Information
Processing Systems 24, pages 2312-2320. 2011.

[Abe et al., 2003] Naoki Abe, Alan W Biermann, and
Philip M Long. Reinforcement learning with immediate
rewards and linear hypotheses. Algorithmica, 37(4):263—
293, 2003.

[Agarwal et al., 2013] A. Agarwal, D. Foster, D. Hsu,
S. Kakade, and A. Rakhlin. Stochastic convex optimiza-
tion with bandit feedback. SIAM Journal on Optimization,
23(1):213-240, 2013.

[Audibert and Catoni, 2011] Jean-Yves Audibert and Olivier
Catoni. Robust linear least squares regression. The Annals
of Statistics, 39(5):2766-2794, 2011.

[Auer, 2002] Peter Auer.
exploitation-exploration trade-offs.
Learning Research, 3:397-422, 2002.

[Brownlees et al., 2015] Christian Brownlees, Emilien Joly,
and Gabor Lugosi. Empirical risk minimization for heavy-
tailed losses. The Annals of Statistics, 43(6):2507-2536,
2015.

[Bubeck and Cesa-Bianchi, 2012] Sébastien Bubeck and
Nicolod Cesa-Bianchi. Regret analysis of stochastic and
nonstochastic multi-armed bandit problems. Foundations
and Trends in Machine Learning, 5(1):1-122, 2012.

[Bubeck et al., 2011] Sébastien Bubeck, Gilles Stoltz, and
Jia Yuan Yu. Lipschitz bandits without the lipschitz con-
stant. In Proceedings of the 22Nd International Confer-
ence on Algorithmic Learning Theory, pages 144-158,
2011.

[Bubeck et al., 2013] S. Bubeck, N. Cesa-Bianchi, and
G. Lugosi. Bandits with heavy tail. IEEE Transactions
on Information Theory, 59(11):7711-7717, 2013.

[Bubeck et al., 2015] Sébastien Bubeck, Ofer Dekel, Tomer
Koren, and Yuval Peres. Bandit convex optimization: Na
regret in one dimension. In Proceedings of The 28th Con-
ference on Learning Theory, pages 266-278, 2015.

[Catoni, 2012] Olivier Catoni. Challenging the empirical
mean and empirical variance: A deviation study. Annales
de I’LLH.P. Probabilités et statistiques, 48(4):1148-1185,
2012.

[Chuetal.,2011] Wei Chu, Lihong Li, Lev Reyzin, and
Robert Schapire. Contextual bandits with linear payoff
functions. In Proceedings of the 14th International Con-
ference on Artificial Intelligence and Statistics, pages 208—
214, 2011.

[Cont and Bouchaud, 2000] Rama Cont and Jean-Philipe
Bouchaud. Herd behavior and aggregate fluctuations in
financial markets. Macroeconomic Dynamics, 4(02):170—
196, 2000.

[Dani et al., 2008] Varsha Dani, Thomas P. Hayes, and
Sham M. Kakade. Stochastic linear optimization under

Using confidence bounds for
Journal of Machine

2942

bandit feedback. In Proceedings of the 21st Annual Con-
ference on Learning, pages 355-366, 2008.

[Foss et al., 2013] Sergey Foss, Dmitry Korshunov, and Stan
Zachary. An Introduction to Heavy-Tailed and Subexpo-
nential Distributions. Springer, New York, 2013.

[Golub and Van Loan, 1996] Gene H. Golub and Charles F.
Van Loan. Matrix Computations (3rd Ed.). Johns Hopkins
University Press, USA, 1996.

[Hsu and Sabato, 2016] Daniel Hsu and Sivan Sabato. Loss
minimization and parameter estimation with heavy tails.
Journal of Machine Learning Research, 17(18):1-40,
2016.

[Kleinberg et al., 2008] Robert  Kleinberg, Aleksandrs
Slivkins, and Eli Upfal. Multi-armed bandits in met-
ric spaces. In Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, pages 681-690,
2008.

[Lai and Robbins, 1985] T. L. Lai and Herbert Robbins.
Asymptotically efficient adaptive allocation rules. Ad-
vances in Applied Mathematics, 6(1):4-22, 1985.

[Luetal., 2019] Shiyin Lu, Guanghui Wang, Yao Hu, and
Lijun Zhang. Optimal algorithms for Lipschitz bandits
with heavy-tailed rewards. In Proceedings of the 36th
International Conference on Machine Learning, pages
4154-4163, 2019.

[Medina and Yang, 2016] Andres Munoz Medina and Scott
Yang. No-regret algorithms for heavy-tailed linear ban-
dits. In Proceedings of the 33rd International Conference
on International Conference on Machine Learning, pages
1642-1650, 2016.

[Robbins, 1952] Herbert Robbins. Some aspects of the se-
quential design of experiments. Bulletin of the American
Mathematical Society, 58(5):527-535, 1952.

[Roberts et al., 2015] James A Roberts, Tjeerd W Boonstra,
and Michael Breakspear. The heavy tail of the human
brain. Current Opinion in Neurobiology, 31:164-172,
2015.

[Shao et al., 2018] Han Shao, Xiaotian Yu, Irwin King, and
Michael R. Lyu. Almost optimal algorithms for lin-
ear stochastic bandits with heavy-tailed payoffs. In Ad-
vances in Neural Information Processing Systems 32,
pages 8430-8439, 2018.

[Xue et al., 2020] Bo Xue, Guanghui Wang, Yimu Wang,
and Lijun Zhang. Nearly optimal regret for stochastic
linear bandits with heavy-tailed payoffs. arXiv preprint,
abs/2004.13465, 2020.

[Zhang and Zhou, 2018] Lijun Zhang and Zhi-Hua Zhou.
regression with heavy-tailed distributions. In Advances in
Neural Information Processing Systems 31, pages 1084—
1094, 2018.

[Zhang et al., 2016] Lijun Zhang, Tianbao Yang, Rong Jin,
Yichi Xiao, and Zhi-Hua Zhou. Online stochastic linear
optimization under one-bit feedback. In Proceedings of
the 33rd International Conference on Machine Learning,
pages 392401, 2016.



