Multi-Objective Generalized Linear Bandits

Shiyin Lu^1 , Guanghui Wang¹, Yao Hu² a d Lijun Zhang¹

¹Na, i al Ke Labra, r Kr N el S K are-Telei I, Na i U er, Na i 210023, È i a ²Y K C i rea d I rell è Lab, Al baba Gr, Be i 100102, È i a

 $\{1, a, b, b, a^{-1}\}$ @1a dat .ed .ot, a b @a1 baba-t c.c

Abstract

I $\frac{1}{4}$ a ef, e, d $\frac{1}{4}$ e $\frac{1}{4}$ - b ec₄ e bà d'₄ (MOB) r b e , e e a e at e r e e a e d e e c₄ 1 e-ar i a a d i d rece e are ard ec r c1 i K i e bec e. MOB a K 1 d ă real-rida i cari a areda i i erec de da i d di e, r r d . O f e f e f k d d, e e a l ca i , call ci tai ci te -ta d Kr a i f a cà de f e e e at i r -ce k d f, e e c, i red b , Ke f i r . T f e f i Kr a i, e a ca e eat ar eale ar haci te cetra da ente-re-ard K^{II} he deta ed rear de (GLM). We ad the et it KPares re-ress e a ase releaŭer'erKrăce-ădde-elaĭ elalr Kritt Kree e ja dea sa -Ta ară, Kreilre-Ne, i se se jase de ara exer, ba ed 1 k & e 1 eke er c'i fide ce-b 1 d (UCB), c, c'i r cr $\dot{a}_{1} = r_{1} = a_{1} + K_{1} + Pare_{4} + K_{1} + \dot{a}_{4} +$ f_{a} for edal f_{a} at one a $O(\sqrt{)}$ Pares re-res, cee fee er i ad ged e i Krises, e aseefee a a re-1, Kr i le beck e ci ke k a bà d' r ble. N ercale er de de 1 staselse ekkecter Kreitd.

1 Introduction

rid Meretar k le dia la ble i ke ee il alar.

Al a, ra e, d i KMAB i e i beccelar ar ed bà d', (MOMAB), r ed b Dr à à d N [2013], e e e e re ard e al i à ar a d', d i a e c, r i e ead Ka ca'ar a' e. I i e e i , d'Here, ar are-c ared acc rdi Pare, rder bee e e e re ard e c, r à d'i e ar i e re ard arei i Kerr i a, Kà i e ar are-called Pare, a ar , al Ki e ci i e e ar e e e e e a dard erc i e Pare, re re, i e e ear e e e c a e a be, e e e e e ard Ke e ear e a d'i a, Ke Pare, Ki Fe-a e e e ard Ke e ear e a d'i a, Ke Pare, Ki Fe-a e e e ard Ke e ear e a d'i a, Ke Pare, ki Fe-a e e e de i i i e e a ri e e e a ar a be e e e e e a e i e e a i Pare, a ar ba ed i e r cal be a ar a a e al a be. MOMAB a a e be real r'd a cai i e d'i e e e e a i becce, e a i e a d'i e i rec è da i e e (R dr e é 2012]. O e e e e a d'i e e ar i kr ai (ci e) a ca i cal ci ai a ar i Kr ai (ci e) a ca i e e e e i e e i e e i e e a e r fie i rec è da i e e i e e i e e a e r fie i rec è da i e e e e e i e e a e r fie i rec è da i e e i e a e r fie i rec e d'a i e e i e e e e e i e e a e r fie i rec e d'a i e e (L é e 2010], e e i red b MOMAB.

K er a r b b add at . T addre $\frac{1}{4}$ b add at . T addre $\frac{1}{4}$ b a r b er a d **K** f a **e** f - b er e - ar a c a b a d f 1 def a d **K** f a f a f - b er a - a c er ed real ab a f a f 1, b er a be e - a - e a d ed t 1 e - b er e - c 1 e - a b a d a [A ef, 2002; Dà $\frac{1}{4}$, 2008]. Cì creat, e de la ecirera cared la ar a a d' e i a ecari $\in \mathbb{R}^d$ à d'Kr le a e Kolar, de tela e b i. R'ere ard ecar eral i à ar cì K bect e R'a e d'i ear de [Neder à d'Wedderb i , 1972] e la a

$$\mathbb{E}\begin{bmatrix}i \\ i\end{bmatrix} = \mu_i(\theta_i^\top), \quad = 1, \dots$$

k efe⁻ⁱre-re-d⁻ⁱre k e^{-j}rc ¹d⁻ⁱ K , θ ,..., θ_m areec_ir K ¹ ¹ ¹ c effice⁻ⁱr, a d μ ,..., μ_m are-¹ Ki c_i ¹ . We-refe⁻ⁱr Kr⁻¹a_i ¹ a⁻¹ra⁻¹bec_i e^{-j} d⁻efa⁻ ed⁻¹i ear bà d⁻_i (MOGLB), ^k e⁻ e⁻ d⁻efa⁻ à dc e⁻ a derà e⁻ Kr⁻¹be⁻, e⁻ a e⁻ d⁻efa⁻ à dc e⁻ a derà e⁻ Kr⁻be⁻, e⁻ a e⁻ d⁻efa⁻ bà d⁻ [A e⁻, 2002; Da⁻ 4, 2008] a d⁻¹i e⁻ e⁻ a ic⁻¹i ear a⁻ a⁻ 1 der bi ar Kedbac [2] a⁻ 4, 2016], ^k e⁻ e⁻ e⁻ i⁻ Ki c_i ¹ are e⁻ d⁻ a⁻ Ki c_i ¹ a d⁻ k e⁻ - i⁻ c Ki c_i ¹ re⁻ ec_i e⁻. T⁻ e⁻ be⁻ K r⁻ 1 ed e⁻ k⁻⁻ e⁻ fir a⁻ r⁻ a_i

The beam K r 1 led e, for the first right and the end of the end

ses, R bid bieari re 6[(2 r)-341.002 (Keedbarc3rd 96 6.002 ()-9.997 (e eral ed002 ()- K-359 Td[(seed66995 (),

3.1 Notation

The stead, e et e bars dat h $dt \mathbf{K} \in \mathcal{C}_{\mathbf{k}}$ bec_k (e. ., ca¹ar, ec_kr, $\mathbf{K} \in \mathcal{L}$) at $d = \mathbf{K}$ ercraa de Klec Ida Ka beca Frea let $\frac{i}{t}$ rescale the let \mathbf{K} be easy t. Frie a e Kelar, e de e^{2} e i r b $\|\cdot\|$. Feid ced ar in a cared a redefi-fi ed a $\mathcal{W}[$] := arg min_{$u \in \mathcal{W}$} (-1)^T (-1). Fi a^{ll}, $[] := \{1, 2, \ldots, \}.$

3.2 Learning Model

Wei e-a Krałde-crał Kiełeanti del 1 e-raredi aref.

Problem Formulation

We-ci defie i becrebadr r ble-i defie GLM real ab a i Ler de relier ber K bec, e a d $\mathcal{X} \subset \mathbb{R}^d$ be e a e. I cal r i d, a cal c c c a a r $\cdot_t \in \mathcal{X}$ a a d $\mathcal{X} \subset \mathbb{R}^d$ Least created ectr $t \in \mathbb{R}^m \operatorname{cl}$ i K beck e. We a e-each beck e $\frac{i}{t}$ decaded acc rdi $\frac{i}{t}$ e GLM & $a_{k} \dot{K}r = 1, 2, ..., ,$

$$\Pr(\begin{array}{c}i\\t\end{array}|_{t}) = i\begin{pmatrix}i\\t\end{array}, \tau_{i}) \exp\left(\frac{i\theta_{i}^{\top} + t - i\theta_{i}^{\top} + t}{\tau_{i}}\right)$$

k efe- τ_i k e-d eff, ara exet, i al r al a_i i ki c_i i, j_i a c i e- ki c_i i, a d θ_i a ec₄ r k i -i c e ki c_4 i. Let $\mu_i = j_i'$ de set e- called i ki c_4 i. μ_i e i μ_i creat d e- μ_i e-c i e K i L ea $\mathbb{E}\begin{bmatrix}i\\t\end{bmatrix} = \mu_i(\theta_i^\top t)$. A re a abe e be K e GLM K i e i e i e

de 1 k & general 1 e-b₄, i.e., $\in \{0, 1\}$ [Z at 1 4, 2016], à d a fie-

$$\Pr(=1|_{-}) = \frac{1}{1 + \exp(-\theta^{\top}_{-})}.$$

Al her ell-1 1 biar de belii, he-GLM herbindel, hera e herklii Kr

$$\mathsf{Pr}(=1|_{\mathsf{P}}) = (\theta^{\top})$$

kere () ke-c laredrobrikicrikke-radardi rald rb i.

Performance Metric

Accrdi , her ere Khe-GLM, Krat ar $\in \mathcal{X}$ is a finite of the second relation of the second relation \mathbf{K} is a finite of the second relation \mathbf{K} is a finite of the second relation of the second relation \mathbf{K} is a finite of the second relation of the second relation \mathbf{K} is a finite of the second relation of the second re et ar b here eckedre and a dad kher ki K Pares rder.

E ed Le Pare, rder, e-cà i defie e Påren ratar. r

Definition 2 (Pareto optimality)
$$\in \mathcal{X}$$
 i \ldots
 $\lambda_{\mu_{x}} \neq \mu_{x}^{\prime}$. $\forall i \neq 1$
 $\mathcal{X}, \mu_{x} \neq \mu_{x}^{\prime}$. $\forall i \neq 1$
 $\mathcal{X}, \mu_{x} \neq \mu_{x}^{\prime}$. $\forall i \neq 1$
 \mathcal{O}^{*} .

Is clearly as all ar i's e-Pares Kisareic arable. I i le beck ebà dik r ble, he kà dard er ch gearele e eater e Kr à ce re re, defied a le d'Ker-≰a^lar.

Definition 3 (Pareto suboptimality gap, PSG)

$$\mathcal{X}$$
.
 \mathcal{X} .

We e a $a_{1}e^{\frac{1}{2}}e^{-\frac{1}{2}}e^{\frac{1}{2}}e^{\frac{1}{2}}e^{\frac{1}{2}}$ of Kr at $ce^{-\frac{1}{2}}$ $\frac{1}{2}e^{-\frac{1}{2}}(e^{-\frac{1}{2}}d)$ Parez re-rez [Dr à à d N e, 2013] defi ed a z e-c late-Paret bi alt a Kite-ar Hedbielead er.

Definition 4 (Pareto regret, PR)

$$\begin{array}{c} & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ &$$

3.3 Algorithm

ter ed a rt, see ed MOGLB-UCB, it ed \mathbf{A} \mathbf{A} ad à ce, e-c dc se e-Pares Ki drech à daa ¹¹¹ge-Paren ratar, ke-Paren brata are-ef. Ma ared b befari, e-airai

at ar O_t at a r a_t a_t b_t e Pare, $K_{1,t}O^*$ at d at a a a r O_t . To crace Kate, eda at ar t K O_t r Kr a_t rad a a $(S_{4}e^{-3})$. For a r a_te^{-2} Pare, $K_{1,t}$ r a_t rad d_t be \mathcal{X} at d_t da_t ed a K

٠

I call r I d , affer b cf i i c-re-ard cc₄ r t, e-a c-a c-i a i d c- c d b $\hat{\theta}_t$ i fread c c fread $\hat{\theta}_i$ (Sec-4-7). Let $\mathcal{H}_t := \{(0, 1), (0, 1), \dots, (0, t, t)\}$ be-c-call i c-r r I d . Al as raise rate i c-fread i

$$\hat{\theta}_{t} \quad _{,i} = \underset{\|\theta\| \le D}{\operatorname{arg\,max}} \quad \underset{s=}{\overset{t}{\operatorname{log}}} \operatorname{Pr}\left(\begin{array}{c} i\\s \end{array}\right| \quad _{s}\right)$$
$$= \underset{\|\theta\| \le D}{\operatorname{arg\,min}} \quad \underset{s=}{\overset{t}{\operatorname{log}}} - \begin{array}{c} i\\s \theta^{\top} \quad _{s} + \ldots \\ i(\theta^{\top} \quad _{s}). \end{array}$$

$$t_{t,i}(\theta) := - {i \atop t} \theta^\top t_{t-t} + i (\theta^\top t_{t-t}).$$

Wee a ara, KellieNe i se adc **4**0- $\hat{\theta}_t$, *i* b

$$\hat{\theta}_{t} \quad _{,i} = \underset{\|\theta\| \le D}{\operatorname{arg\,min}} \frac{\|\theta - \hat{\theta}_{t,i}\|_{Z_{t+1}}}{2} + \theta^{\top} \nabla_{t,i}(\hat{\theta}_{t,i})$$

$$= \frac{Z_{t+1}}{\mathcal{B}_{D}} [\hat{\theta}_{t,i} - \frac{-}{t} \nabla_{t,i}(\hat{\theta}_{t,i})]$$
(1)

k ere-

$$t = t + \kappa$$

 \mathbf{X}_t^{\top}

Mine in the interview of the second s

Corollary 1 \checkmark $r' \geq 0, \gamma = \nu$

$$\log \frac{\det \left(\begin{array}{c}t\end{array}\right)}{\det \left(\begin{array}{c}t\end{array}\right)} \leq \log \left(1 + \frac{\kappa}{2\lambda}\right)$$

$$\gamma_t \leq O(\log).$$

Fiall, e red le Pare, rere, bid Kralrk, ke bl, i i kere 1.

Theorem 2
$$f = \int \frac{4\pi}{\kappa} \int \frac{4\pi}{\kappa} \int \frac{4\pi}{2\lambda} \int \frac{1-\delta}{\gamma_T}$$

() $\leq 4L = \frac{1-\delta}{\kappa} \log\left(1+\frac{\kappa}{2\lambda}\right)\gamma_T$

Remark. The ab effected is a rain of a parent refer bid $KO(\sqrt{)}$, the affective a reference bid $KO(\sqrt{)}$, the affective reference bid KT refe

Proof of Theorem 2. B F e-re- 1,

$$\theta_i \in \mathcal{C}_{t,i}, \forall \in [], \forall \geq 1$$
 (9)

h $d = \frac{1}{4}$ r bab $d = \frac{1}{4}$ a $\frac{1}{4}$ ea $\frac{1}{4} - \delta$. Freak bec, $e \in [$] a deak r $1 d \ge 1$, e-defie-

$$\theta_{t,i} \coloneqq \underset{\theta \in \mathcal{C}_{t,i}}{\operatorname{arg\,max}} \theta^{\top_{t-t}}.$$
(10)

Recall \mathbf{k} $\mathbf{a}_{\mathbf{k}+t}$ elected \mathbf{k} \mathcal{O}_t , \mathbf{k} is independent of \mathbf{k} is \mathcal{O}_t , \mathbf{k} is independent of \mathbf{k} is \mathbf{k} if \mathbf{k} is \mathcal{O}_t , \mathbf{k} is \mathcal{O}_t , \mathbf{k} is \mathcal{O}_t , \mathbf{k} is \mathbf{k} is \mathbf{k} .

$$\hat{\mu}_{t,x_t}^j \ge \hat{\mu}_{t,x}^j. \tag{11}$$

B defi <u>i</u> i (5) à d (10), et a e-

$$\mu_{t,x_t}^j = \theta_{t,j^{-}t}^\top, \quad \mu_{t,x}^j = \max_{\theta \in \mathcal{C}_{t,j}} \theta^\top \stackrel{()}{=} \vartheta_{j^{+}}^\top.$$
(12)

C bì ì (11) à d(12), e b₄aì

$$\theta_{t,j^{|} t}^{\top} \ge \theta_{j^{|}}^{\top} . \tag{13}$$

$$\mu_j(\theta_{j+1}^\top) - \mu_j(\theta_{j+1}^\top) \le 0$$

ice- μ_j i ficall icreat . Frige-lasses cale, eic a e-

$$\begin{split} & \mu_{j}(\theta_{j^{+}}^{\top}) - \mu_{j}(\theta_{j^{+}t}^{\top}) \\ & \leq L(\theta_{j^{+}}^{\top} - \theta_{j^{+}t}^{\top}) \stackrel{(.)}{\leq} L(\theta_{t,j^{+}t}^{\top} - \theta_{j^{+}t}^{\top}) \\ & = L(\theta_{t,j} - \hat{\theta}_{t,j})^{\top_{+}t} + L(\hat{\theta}_{t,j} - \theta_{j})^{\top_{+}t} \\ & \leq L(\|\theta_{t,j} - \hat{\theta}_{t,j}\|_{Z_{t}} + \|\hat{\theta}_{t,j} - \theta_{j}\|_{Z_{t}})\|_{t}\|_{Z_{t}^{-1}} \\ \stackrel{()}{\leq} 2L\sqrt{\gamma_{t}}\|_{t}\|_{Z_{t}^{-1}} \leq 2L\sqrt{\gamma_{T}}\|_{t}\|_{Z_{t}^{-1}} \end{split}$$

Kuj, $\mathbf{\hat{k}}$ efficit, \mathbf{e} alt, \mathbf{d} et $\mathbf{\hat{k}}$ et \mathbf{c} it is \mathbf{K}_{μ_j} , $\mathbf{\hat{k}}$ efficit, \mathbf{e} alt, \mathbf{K}_{μ_j} is \mathbf{k}_{μ_j} , \mathbf{k}_{μ_j} efficit, \mathbf{k}_{μ_j} is \mathbf{k}_{μ_j} .

$$\mu_j(\theta_{j^{\top}}^{\top}) - \mu_j(\theta_{j^{\top}}^{\top}) \le 2L\sqrt{\gamma_T} \|_{t=t} \|_{Z_t^{-1}}.$$

Si ce i e ab e i e al i i d Kr à $\in \mathcal{X}$, et a e $t \leq 2L\sqrt{\gamma_T} \| t \|_{Z_t^{-1}}$, i e ed a e d a e

$$() = \begin{bmatrix} T & & \\ & t \leq 2L\sqrt{\gamma_T} & \\ t = & t = \end{bmatrix} (t = t = t)$$
 (14)

Webidige-RHS bige-Cale Se ar i e- alige-

B Le- a 11 i Abba - Yad r / & [2011], & a e-

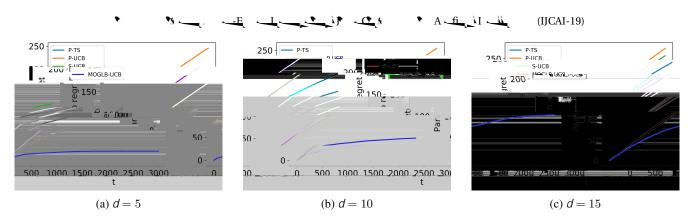
$$\prod_{t=1}^{T} \| \|_{Z_{t}^{-1}} \leq \frac{4}{\kappa} \log \frac{\det(T)}{\det(T)}.$$
 (16)

C bit (14)-(16) at d C r II ar 1 fi II e II e r K \Box

4 **Experiments**

I $f_{1}^{2} = e_{f_{1}}^{2} f_{1}^{2} e_{f_{1}}^{2} e_{f$

• P-UCB [Dr à à d N e, 2013]: 17 - 4 e-Pare, UCB al r 4 , 4 e c are d'Méré , ar b 4 e-P20163136ade assaig(149369019955 (EQ)9)a36098(2 (W620tme))7890.9



F re-1: Pares re-res Kd Kkerd-s es d

References

- [Abba Yad r , 4, 2011] Ya i Abba Yad r , Da d Pa, a d C aba S e e ar . I r ed a r , Kr i , ear , e a c ba d . I A v r M & J

- [A $e_f = \frac{4}{2002b}$] Peref A e_f , N c^{-1} Co-a-B $a^{-1}e^{-1}$, Y a Freid, $a^{-1}d$ R be_f E Se a ref f $e^{-1}f^{-1}e^{-1}d$, $a^{-1}d^{-1}e^{-1}d$, $a^{-1}d^$
- [A e_{f} (2016] Pere A e_{f} (2 a -Ka (2 a , R) a'd Orl e_{f} a d Mada'i a Dr à . Pare, Ki , de , ficar i K, , e a , c bà d', Keedbac . I , i , a e 939 947, 2016.
- [A ef, 2002] Peref A ef. U1 c1 fide ce by 1 d Kr e- ra_{4} 1 e- ra_{4} 1 grade- Kr. 4 for the field of the
- [B bec (4, 2009)] Seba $(0^{-1}B)$ B bec $(G^{-1}B)$ (-5) (
- [Dă , 2008] Vark a Dă , F a P. Ha e-, ă d S a M. Ka ade- Sank a r c ¹1 ear , r a î î dec bă d **ke**edbac . I **1** f , r a e-355, 2008.
- [Dr \dot{a} \dot{a} d N e, 2013] MM Dr \dot{a} \dot{a} d A N e: De-1 \dot{a} - \dot{b} ec. e - \dot{a} - ar ed b \dot{a} d , ar r^{2}_{2} : ad . I - \dot{a} -
- [Dr a à d N $e_7 2014$] Madali a M Dr à à d Ali N $e_7 Scalar a i ba ed are ri a re Kar r dd$ rificari a ri . I ri ri a re france ri a re ri dd-M <math>M = M, a $e_7 2690 2697, 2014.$
- [F¹, 2010] Sará F¹, O¹ e Ca e, A rebe Gar e, à d C aba S e e ar, Para er c bàrd : R è e a ed a ca e. I A v M & J 23, a e 586 594, 2010.

- [JI 4, 2017] K a -SI JI, AIT de a Baraa, R ber N a, a d Rebecca W¹¹e₄₄. Scalable d eraled I ear bad d_{4} : Or I e-c rai 1 a de a I . I A v r m 4 of d_{4} : 0, 1 e-c rai 1 a de a 1 . I A v r m 4 of d_{4} : 0, 1 e-c rai 1 a de a 1 . I A v r m 4 of d_{4} : 0, 1 e-c rai 1 a de a 1 . I A v r m 4 of d_{4} : 0, 1 e-c rai 1 a de a 1 . I A v r m 4 of d_{4} : 0, 1 e-c rai 1 a de a 1 . I A v r m 4 of d_{4} : 0, 1 e-c rai 1 a de a 1 . I A v r m 4 of d_{4} : 0, 1 e-c rai 1 a de a 1 . I A v r m 4 of d_{4} : 0, 1 e-c rai 1 a de a 1 . I A v r m 4 of d_{4} : 0, 1 e-c rai 1 a de a 1 . I A v r m 4 of d_{4} : 0, 1 e-c rai 1 a de a 1 . I A v r m 4 of d_{4} : 0, 1 e-c rai 1 a de a 1 . I A v r m 4 of d_{4} : 0, 1 e-c rai 1 a de a 1 . I
- [K¹et bef $\langle \cdot, 2008$] R bef, K¹et bef, A¹e à dr S¹ i , à d E¹ U K¹. M¹ ar ed bà de i err c ace. I $\langle \cdot, 1 \rangle$ a e 681 690, 2008.
- [La Krdad Za , 2008] Jei La Krd ad Ti Za . Ree E-reed a right Kr $\frac{1}{1}$ are d bad $\frac{1}{2}$. $\frac{1$

- $\begin{bmatrix} L & \stackrel{}{\leftarrow} 2019a \end{bmatrix} \overset{\bullet}{S} \stackrel{\bullet}{\leftarrow} L , G \overset{\bullet}{a} \stackrel{\bullet}{\leftarrow} W \overset{\bullet}{a} , Ya H , \overset{\bullet}{a} d \overset{\bullet}{L} \stackrel{\bullet}{\leftarrow} \overset{\bullet}{e} \overset{\bullet}$
- [L 4, 2019b] S 1 L G a Wa , Ya H , a d L 1 Z a . O a a a r Kr L e ba d r 36 r 4154 4163, 2019.
- [R dr e- 2, 2012] Mar R dr e-, Čr ša P e, a d E a Z a . M s e- b eck e- s as i i recd f def s - c . I , a e- 11 18. ACM, 2012.
- [S¹ 1, 2014] A¹e à dr S¹ 1, C¹ e ra¹ bà dr ar i Kr ar 1. 1, C¹ e ra¹ bà dr , 15(1):2533 2568, 2014.
- [Tra 4,2018] Era Tra, Dr Oe, ad Ce Tei. Mi-beckeciencience a bad serrie de fi are i Kraki. I fi 4 - fi 4 -
- [Ya aa a d Ma deer c, 2015] Saba Ya aa a d Beu ard Ma deer c. \mathbf{F} i a i \mathbf{K} i - b ee er i ar ed ba d r b e . I i i - b e - i fi M M j i , a e 47 52, 2015.
- $\begin{bmatrix} 2 & a & & \\ &$