
Semi-Supervised Deep Hashing with a Bipartite Graph

Xinyu Yan, Lijun Zhang, Wu-Jun Li
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

{yanxy, zhanglj}@lamda.nju.edu.cn, liwujun@nju.edu.cn

Abstract
Recently, deep learning has been successfully ap-
plied to the problem of hashing, yielding remark-
able performance compared to traditional method-
s with hand-crafted features. However, most of
existing deep hashing methods are designed for
the supervised scenario and require a large num-
ber of labeled data. In this paper, we propose
a novel semi-supervised hashing method for im-
age retrieval, named Deep Hashing with a Bipar-
tite Graph (BGDH), to simultaneously learn em-
beddings, features and hash codes. More specifi-
cally, we construct a bipartite graph to discover the
underlying structure of data, based on which an em-
bedding is generated for each instance. Then, we
feed raw pixels as well as embeddings to a deep
neural network, and concatenate the resulting fea-
tures to determine the hash code. Compared to ex-
isting methods, BGDH is a universal framework
that is able to utilize various types of graphs and
losses. Furthermore, we propose an inductive vari-
ant of BGDH to support out-of-sample extensions.
Experimental results on real datasets show that our
BGDH outperforms state-of-the-art hashing meth-
ods.

1 Introduction
With the explosion in the volume of image data, it has been
raised as a big challenge about how to index and organize
these data efficiently and accurately. Approximate Nearest
Neighbor (ANN) search [Indyk and Motwani, 1998] has be-
come a popular way to retrieve content from images with both
computational efficiency and search quality. Among existing
ANN search methods, hashing is advantageous due to its fast
query speed and low memory complexity [Gionis et al., 1999;
Gong et al., 2013]. It aims to transform high-dimensional im-
ages into a set of short binary codes while maintaining simi-
larity of the original data.

Generally speaking, hashing methods can be divided into
two categories: unsupervised and supervised. Unsupervised
methods utilize some kinds of distance metrics to learn a hash
function from unlabeled data. Methods in this category in-
clude data-independent ones like Locally Sensitive Hashing

(LSH) [Gionis et al., 1999] and data-dependent ones like Iter-
ative Quantization (ITQ) [Gong et al., 2013], Spectral Hash-
ing (SH) [Weiss et al., 2009], Anchor Graph Hashing (AGH)
[Liu et al., 2011]. On the other hand, to deal with more com-
plicated semantic similarity, supervised hashing methods are
proposed to exploit label information to improve the hash-
ing quality. Representative supervised methods include La-
tent Factor Hashing (LFH) [Zhang et al., 2014], Fast Super-
vised Hashing (FastH) [Lin et al., 2014], Supervised Discrete
Hashing (SDH) [Shen et al., 2015]. However, labeling large-
scale image dataset is inefficient and time-consuming. As a
result, Semi-Supervised Hashing (SSH) [Wang et al., 2012]
has been developed to make use of labeled data as well as the
abundant unlabeled data.

In traditional hashing methods, images are represented
by hand-crafted features such as GIST [Oliva and Torralba,
2001], and the choice of features requires heavy manual in-
terventions. Motivated from the great success of deep neu-
ral networks in image analysis [Krizhevsky et al., 2012], re-
cently some deep hashing methods have been proposed to
learn features and hash codes simultaneously [Li et al., 2016;
Zhu et al., 2016; Liu et al., 2016]. Although those deep hash-
ing methods yield better performance compared with the tra-
ditional methods, they usually need a large number of labeled
instances as training data. To address this limitation, a semi-
supervised deep hashing, named SSDH, have been develope-
d [Zhang et al., 2016]. SSDH is fundamentally built upon
graph-based semi-supervised learning [Zhou et al., 2004] and
the loss function contains a graph regularization term which
involves both the labeled and unlabeled data. In theory, SS-
DH needs to construct a nearest neighbor graph of all the da-
ta. Unfortunately, this step takes O(n2) time, where n is the
number of instances, and thus intractable for large scale data.

In this paper, we propose a novel semi-supervised hash-
ing method, named Deep Hashing with a Bipartite Graph
(BGDH), which performs graph embedding, feature learning
and hash code learning in a unified framework. First, we con-
struct a bipartite graph to capture the information hidden in
the labeled and unlabeled data. The bipartite graph could be
a semantic graph that describes relationships between images
and concepts, an anchor graph that describes similarities be-
tween images and landmarks [Liu et al., 2010], or a tradition-
al nearest neighbor graph. Then, inspired by the recent work
on graph embedding [Yang et al., 2016], we learn an embed-

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3238

ding for each instance to predict the neighborhood context in
the graph. Finally, we feed both raw pixels and embeddings
to a deep neural network, and concatenate the corresponding
hidden layers when producing binary codes. BGDH is a gen-
eral learning framework in the sense that any loss function of
hashing and any type of graph can be incorporated.

Graph-based methods are usually transductive, because
they can only handle instances that are already appeared in
the graph. Since embeddings of instances are learnt from
the graph, the basic BGDH is also transductive. To address
the out-of-sample problem, we further propose an inductive
variant of BGDH, in which the embeddings are defined as
a parametric function of the raw features. In this way, we
can produce hash codes for new instances that have not seen
during training. To demonstrate the effectiveness of our ap-
proach, we conduct extensive experiments on two large-scale
datasets: CIFAR-10 and NUS-WIDE. Experimental result-
s show that BGDH outperforms other methods and achieves
the state-of-the-art performance in image retrieval.

Finally, we emphasize that although both BGDH and SS-
DH are semi-supervised deep hashing methods, the proposed
BGDH differs from SSDH in the following two aspects:
a. While SSDH is built upon graph regularization, our

BGDH relies on graph embedding.
b. SSDH uses graphs to exploit the unlabeled data, in con-

tract BGDH makes use of bipartite graphs, which can
be constructed more efficiently since building an anchor
graph only costs O(n) time.

2 Notations and Problem Definitions
In this section, we introduce notations and problem defini-
tions.

2.1 Notations
We use script letters likeX to denote sets, boldface lowercase
letters like e to denote vectors and boldface uppercase letters
like E to denote matrices. We denote the element at the i-th
row and j-th column of E by Eij . ET is the transpose of E.
‖·‖2 denotes the Euclidean norm of a vector and ‖·‖F denotes
the Frobenius norm of a matrix. sgn(·) is an element-wise
sign function and σ(·) is the sigmoid function. [u;v] denotes
the concatenation of two vectors u and v.

2.2 Problem Definitions
Given a set of n instances/images X = {xi}ni=1 where xi is
the feature vector of the i-th instance. Without loss of gener-
ality, we assume the first l instances {x1, . . . ,xl} are labeled
and the rest are unlabeled. We assume the supervised infor-
mation is given in term of pairwise labels, though our method
can also support other kinds of labels. Specifically, for the
first l instances, we have a set of pairwise labels S = {sij}
with sij ∈ {0, 1}, where sij = 1 means that xi and xj are
similar, sij = 0 means that xi and xj are dissimilar. In ad-
dition, a bipartite graph G = (X ,O, E) between n instances
and m objects are given, where O is a set of objects such as
concepts or landmarks, and E is the set of edges.

The goal of our semi-supervised hashing method is to learn
a mapping function H : xi → {−1, 1}c, which encodes each

point xi into a c-dimensional binary code bi = H(xi) =
[h1(xi), h2(xi), · · · , hc(xi)]T ∈ {−1, 1}c. The binary codes
B = {bi}ni=1 should preserve the semantic similarity and
structure similarity in the Hamming space.

3 Semi-Supervised Deep Hashing with a
Bipartite Graph

In this section, we first present the details of our semi-
supervised Deep Hashing with a Bipartite Graph (BGDH),
then introduce an inductive variant and finally discuss the
learning procedure.

3.1 The Proposed BGDH Framework
The end-to-end deep learning architecture of our BGDH is
shown in Figure 1, which includes three main components:
graph embedding, feature learning, and hash code learning.
Similar to other semi-supervised learning methods [Yang et
al., 2016], the loss function of BGDH can be expressed as

Ls + λLg (1)

where Ls is a supervised loss designed to preserve the simi-
larity between pairwise instances, and Lg is an unsupervised
loss of predicting the graph context. In the following, we
first introduce Lg which aims to learn embeddings from the
bipartite graph G, then formulate Ls which is used to learn
both features and binary codes from hidden layers of deep
networks.

Graph embedding
We propose to use a bipartite graph G = (X ,O, E) to cap-
ture the information hidden in the unlabeled data. It can be
constructed in different ways as stated below.
• An anchor graph constructed from the dataset X . In this

case,O contains m landmarks and the construction of G
takes O(n) time [Liu et al., 2010].
• A nearest neighbor graph. In this case, O = X and the

construction of G takes O(n2) time.
• A semantic graph constructed from external data. In this

case, O may contain m concepts, styles, or owners.
In the following, we briefly introduce one way to construct an
anchor graph. We first randomly sample m instances from X
as landmarks, denoted by O = {o1, . . . ,om}. Then, we put
an edge between xi and oj if oj is among k nearest landmarks
of xi, or if the distance between them is smaller than some
threshold ε. Let A ∈ Rn×m be the similarity matrix of G,
where Aij denotes the weight of the edge between xi and oj .
The value of Aij may be binary, that is, Aij = 1 if there is
an edge, otherwise 0. If a real value is preferred, Aij can be
set according to the heat kernel: Aij = e−‖xi−oj‖2

2/ρ, where
ρ > 0 is a parameter.

The goal of graph embedding is to learn an embedding for
each instance that predicts the context in the graph. Given an
instance and its context, the objective of graph embedding is
usually formulated as minimizing certain loss of predicting
the context using the embedding of an instance as input fea-
ture [Weston et al., 2012; Mikolov et al., 2013]. The context
of an instance can be simply defined as its neighbors in the
graph, or generated by sophisticated methods such as random

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3239

Labeled
Training Set

Graph

Feature Learning Hash Code Learning

Predict pairw
ise

labels

Embeddings Prediction Loss

Predict graph
 context

labeled

unlabeled

{u
i}

ψ(e, θe)

Graph Embedding

φ(x,θ
x)

Figure 1: The end-to-end deep learning architecture of BGDH.

walk [Perozzi et al., 2014]. Following previous studies [Yang
et al., 2016], we present a simple procedure for context gen-
eration in Algorithm 1, where the parameter d is the length
of the random walk and r ∈ (0, 1) determines the ratio of
positive contexts.

By invoking Algorithm 1 t times, we obtain a set of triples
{(ij , cj , γj)}tj=1 where γj = 1 indicates node cj is a context
of node ij , and γj = −1 indicates cj is not a context. Let
eij be the embedding of node ij , and wcj be the parameters
for predicting node cj as a context. We define the objective
function of graph embedding

Lg =
1

t

t∑
j=1

`(e>ijwcj , γj) (2)

where `(·, ·) is a loss that measures the discrepancy between
e>ijwcj and γj . In machine learning, the following losses are
commonly used.
• The square loss

`(e>ijwcj , γj) =
(
γj − e>ijwcj

)2

• The logistic loss

`(e>ijwcj , γj) = log
(

1 + e
−γje>

ij
wcj

)
To constrain the solution space, we may further impose sparse
constraints or nonnegative constraints [Lee and Seung, 1999].

Feature learning and hash code learning
We utilize deep neural network model to learn features from
the raw pixels and embeddings of labeled instances, and then
combine them together to learn the hash codes. BGDH con-
tains a CNN model to learn features from raw image pixels,
and the model has seven layers as those of CNN-F [Chatfield
et al., 2014] while other networks like AlexNet [Krizhevsky
and Hinton, 2009] can be used too. The configuration of the

Algorithm 1 Context generation based on random walk

1: Input: A bipartite graph G = (X ,O, E), parameters r
and d

2: Uniformly sample an instance i from X
3: Uniformly sample a random variable u from [0, 1]
4: if u < r then
5: γ ← +1
6: Uniformly sample a random walk sequence S of

length d started from i
7: Uniformly sample a context c from S except i
8: else
9: γ ← −1

10: Uniformly sample context c from X
11: end if
12: return (i, c, γ)

network is presented in Table 1, and a detailed explanation
can be found in [Li et al., 2016]. The output of the last fea-
ture learning layer (full7) of labeled instance xi is represent-
ed by φ(xi; θx), where θx denotes all the parameters in the
seven layers of feature learning part. In contrast with exist-
ing supervised hashing methods, we also learn features from
embeddings of labeled instances. The output associated with
embedding ei is denoted by ψ(ei; θe), where θe contains all
the parameters in hidden layers. In this paper, we only add
one fully-connected layer for embeddings, of which the size
is determined by the dimension of embeddings.

We concatenate φ(xi; θx) and ψ(ei; θe) as a new feature
for instance i, then send it to a hash code learning layer as:

ui = MT [φ(xi; θx);ψ(ei; θe)] + v (3)

where M ∈ R(4096+d)×c denotes a weight matrix, d is the
dimension of embedding, and v ∈ Rc×1 is a bias vector. Note
that any supervised loss function of hashing can be used in
our framework to learn parameters M and v. In this paper, we

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3240

Table 1: Configuration of the feature learning network
Layer Configuration
conv1 filter 64×11×11, stride 4×4, pad 0, LRN, pool 2×2
conv2 filter 256×5×5, stride 1×1, pad 2, LRN, pool 2×2
conv3 filter 256×3×3, stride 1×1, pad 1
conv4 filter 256×3×3, stride 1×1, pad 1
conv5 filter 256×3×3, stride 1×1, pad 1, pool 2×2
full6 4096
full7 4096

choose the loss function of deep pairwise-supervised hashing
(DPSH) [Li et al., 2016], and Ls is given by

Ls = −
∑
sij∈S

(
sijΘij − log(1 + eΘij)

)
+ η

l∑
i=1

‖bi − ui‖22

(4)
where Θij = 1

2u
T
i uj and η > 0 is a regularization parameter.

By substituting Eq. (3) into Eq. (4), we obtain the final loss
function of the supervised part:

Ls =−
∑
sij∈S

(
sijΘij − log(1 + eΘij)

)
+ η

l∑
i=1

∥∥bi − (MT [φ(xi; θx);ψ(ei; θe)] + v)
∥∥2

2
.

(5)

The objective of BGDH
We combine the supervised part and unsupervised part to for-
m the transductive version of BGDH. From (2) and (5), the
loss function of BGDH is

Ls + λLg = −
∑
sij∈S

(
sijΘij − log(1 + eΘij)

)
+ η

l∑
i=1

∥∥bi − (MT [φ(xi; θx);ψ(ei; θe)] + v)
∥∥2

2

+
λ

t

t∑
j=1

`(e>ijwcj , γj)

(6)
where λ > 0 is a constant weighting factor. The first t-
wo terms are the loss of predicting pairwise labels and the
third one is the loss of predicting context. As a result, our
BGDH can simultaneously learn embeddings, features, and
hash codes. During the training phase, semantic similarity
can affect graph embeddings, at the same time structure of
data also influence the prediction of pairwise labels.

3.2 An Inductive Variant
Note that the basic BGDH is transductive, because the em-
beddings of instances are learnt from the graph. Since the
hash code of an instance depends on both the raw pixels and
its embedding, we need to design a way to infer the embed-
ding of a unseen instance. To this end, we insert hidden layers
to connect the raw pixels and embedding [Yang et al., 2016],
and in this way, the embedding ei becomes a parameterized
function of xi, denoted by ξ(xi;ϑx). The loss function of

inductive hashing model can be written as:

Ls + λLg = −
∑
sij∈S

(
sijΘij − log(1 + eΘij)

)
+ η

l∑
i=1

∥∥bi − (MT [φ(xi; θx);ψ(ξ(xi;ϑx); θe)] + v
)∥∥2

2

+
λ

t

t∑
j=1

`(e>ijwcj , γj)

(7)
We can predict the hash code of any point xq /∈ X as:

bq = sgn(MT [φ(xq; θx);ψ(ξ(xq;ϑx); θe)] + v). (8)

3.3 Learning
In the transductive version of BGDH, the optimization vari-
ables include M, v, {bi}, θx, θe, {ei} and {wc}. We adopt
stochastic gradient descent (SGD) [Bottou, 2010] to train our
model.

First, we sample a batch of labeled instances of which set
I1 contains indexes. A gradient step is then taken to optimize
the supervised loss Ls. For all i ∈ I1, bi can be directly
optimized as follow:

bi = sgn(ui) = sgn
(
MT [φ(xi; θx);ψ(ei; θe)] + v

)
(9)

For other parameters in Ls, i.e., M, v, θx, θe, and {ei : i ∈
I1}, we use back propagation (BP) to optimize them. Deriva-
tives of Ls w. r. t. ui are presented as follows:

∂Ls
∂ui

=
1

2

∑
j:sij∈S

(aij − sij)uj +
1

2

∑
j:sji∈S

(aji − sji)uj

+ 2η(ui − bi)
(10)

where aij = σ(1
2u

T
i uj). We can then update other parame-

ters according to

∂Ls
∂M

= [φ(xi; θx);ψ(ei; θe)]

(
∂Ls
∂ui

)T
, (11)

∂Ls
∂v

=
∂Ls
∂ui

, (12)

∂Ls
∂φ(xi; θx)

=
∂Ls

∂ψ(ei; θe)
= M

∂Ls
∂ui

. (13)

Then, we perform a gradient step to optimize the unsuper-
vised graph embedding lossLg calculated by sampling triples
generated in Algorithm 1. In this case parameters {ei,wc :
(i, c) ∈ I2} will be updated where I2 denotes the set con-
taining indexes of sampled instances and contexts. The above
procedures are repeated for T1 and T2 iterations respectively.

The whole learning algorithm of BGDH is summarized in
Algorithm 2. Notice that before training jointly, we first train
unsupervised part for a number of iterations to learn the ini-
tialization embeddings {ei}. For the inductive variant, we
will update parameters ϑx instead of embeddings {ei}.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3241

Algorithm 2 Learning algorithm for BGDH

1: Input: A bipartite graph G = (X ,O, E), images X =
{xi}ni=1, pairwise labels S = {sij}, parameters η, λ,
batch iterations T1, T2 and sizes N1, N2

2: Output: Binary codes B = {bi}ni=1
3: Initialization: Initialize θx with the pre-trained CNN-F

model on ImageNet; Initialize each entry of M, v, and θe
by randomly sampling from a Gaussian distribution with
mean 0 and variance 0.01.

4: REPEAT
5: for t← 1 to T1 do
6: Randomly sample N1 labeled images, and let I1 be

the set containing indexes of sampled instances
7: Calculate φ(xi; θx) and ψ(ei; θe) for all i ∈ I1 by

forward propagation
8: Compute ui = MT [φ(xi; θx);ψ(ei; θe)] +v and the

binary code of xi with bi = sgn(ui) for all i ∈ I1

9: Compute the derivative of Ls w. r. t. {ui : i ∈ I1}
10: Update parameters M, v, θx, θe, and {ei : i ∈ I1}

by back propagation
11: end for
12: for t← 1 to T2 do
13: Randomly generate a batch of triples by invoking Al-

gorithm 1 N2 times, and let I2 be the set containing in-
dexes of sampled instances and contexts

14:

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3242

Table 2: Accuracy in terms of MAP. The best MAPs for each category are shown in boldface. Training size for supervised method is 5000
for CIFAR-10 and 10500 for NUS-WIDE.

Method CIFAR-10 (MAP) NUS-WIDE (MAP)
12-bits 24-bits 32-bits 48-bits 12-bits 24-bits 32-bits 48-bits

BGDH-T 0.805 0.824 0.826 0.833 0.803 0.818 0.822 0.828
BGDH-I 0.803 0.818 0.822 0.829 0.801 0.815 0.816 0.825
SSDH 0.801 0.813 0.812 0.814 0.773 0.779 0.778 0.778
DSH 0.604 0.746 0.781 0.810 0.751 0.765 0.767 0.773
DHN 0.692 0.703 0.726 0.735 0.751 0.785 0.792 0.799
DPSH 0.684 0.734 0.750 0.767 0.788 0.809 0.817 0.823

COSDISH 0.522 0.590 0.599 0.615 0.691 0.749 0.745 0.765
SDH 0.525 0.671 0.686 0.696 0.752 0.745 0.744 0.730
FastH 0.291 0.351 0.367 0.390 0.622 0.660 0.670 0.687
LFH 0.335 0.433 0.509 0.515 0.749 0.751 0.775 0.780
ITQ 0.163 0.170 0.173 0.176 0.447 0.465 0.468 0.473
LSH 0.152 0.167 0.170 0.200 0.367 0.394 0.413 0.416
IsoH 0.158 0.162 0.166 0.169 0.436 0.454 0.461 0.465
SpH 0.141 0.153 0.154 0.158 0.399 0.437 0.454 0.465

Table 3: Accuracy in terms of MAP. The best MAPs for each category are shown in boldface. Training size for supervised method is 2500
for CIFAR-10 and 5000 for NUS-WIDE.

Method CIFAR-10 (MAP) NUS-WIDE (MAP)
12-bits 24-bits 32-bits 48-bits 12-bits 24-bits 32-bits 48-bits

BGDH-T 0.755 0.791 0.800 0.812 0.772 0.798 0.806 0.816
BGDH-I 0.746 0.776 0.787 0.796 0.768 0.794 0.801 0.811
SSDH 0.581 0.589 0.595 0.596 0.743 0.745 0.746 0.749
DSH 0.617 0.707 0.737 0.761 0.749 0.769 0.771 0.786
DHN 0.591 0.646 0.640 0.662 0.741 0.763 0.766 0.773
DPSH 0.576 0.634 0.642 0.668 0.762 0.789 0.791 0.803

COSDISH 0.312 0.348 0.373 0.398 0.648 0.678 0.699 0.713
SDH 0.327 0.357 0.374 0.377 0.574 0.597 0.591 0.595
FastH 0.267 0.298 0.320 0.341 0.604 0.634 0.650 0.667
LFH 0.244 0.288 0.311 0.391 0.611 0.644 0.653 0.669

outperforms all the other methods. Specifically, compared to
the best baseline in Table 2, we conclude that when labeled
data are insufficient, BGDH is able to leverage unlabeled data
to deliver a good result.

4.3 Parameter Selection

In BGDH, there is a hyper-parameter λ which controls the
tradeoff between supervised loss and unsupervised loss. Fig-
ure 2 displays the impacts of λ on the performance of BGDH
with the experiment settings being the same as those in Table
3. As can be seen, there is a wide range of λ that BGDH per-
forms well. Thus, to a large extent, BGDH is insensitive to
λ and the parameter selection is not a crucial problem in our
algorithm. Additionally, by comparing the MAP of λ = 0
and λ = 1, we verify the importance of graph embedding.

0 10-3 10-2 10-1 100
0.5

0.6

0.7

0.8

0.9

M
AP

48bits
12bits

(a) CIFAR-10

0 10-3 10-2 10-1 100

0.74

0.76

0.78

0.8

M
AP

0
(b) NUS-WIDE

Figure 2: Hyper-parameter Sensitivity

5 Conclusion
In this paper, we propose a novel semi-supervised hash-
ing method, named Deep Hashing with a Bipartite Graph
(BGDH). To the best of our knowledge, BGDH is the first
method that performs graph embedding, feature learning, and
hash code learning simultaneously. BGDH constructs a bi-
partite graph to discover the underlying structure of data, and
is much more efficient than methods based on neighborhood
graph. Experimental results demonstrate that BGDH outper-
forms state-of-the-art methods in image retrieval.

Acknowledgements
This work was partially supported by the NSFC (61603177,
61472182), JiangsuSF (BK20160658), and the Collaborative
Innovation Center of Novel Software Technology and Indus-
trialization of Nanjing University.

References
[Bottou, 2010] Léon Bottou. Large-scale machine learning with

stochastic gradient descent. In Proceedings of 19th Interna-
tional Conference on Computational Statistics, pages 177–186.
Springer, 2010.

[Chatfield et al., 2014] Ken Chatfield, Karen Simonyan, Andrea
Vedaldi, and Andrew Zisserman. Return of the devil in the de-

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3243

tails: Delving deep into convolutional nets. In Proceedings of
British Machine Vision Conference, 2014.

[Deng et al., 2009] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li,
Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical im-
age database. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 248–255, 2009.

[Gionis et al., 1999] Aristides Gionis, Piotr Indyk, Rajeev Mot-
wani, et al. Similarity search in high dimensions via hashing.
In Proceedings of 25th International Conference on Very Large
Data Bases, volume 99, pages 518–529, 1999.

[Gong et al., 2013] Yunchao Gong, Svetlana Lazebnik, Albert Gor-
do, and Florent Perronnin. Iterative quantization: A procrustean
approach to learning binary codes for large-scale image retrieval.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 35(12):2916–2929, 2013.

[Heo et al., 2012] Jae-Pil Heo, Youngwoon Lee, Junfeng He, Shih-
Fu Chang, and Sung-Eui Yoon. Spherical hashing. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2957–2964, 2012.

[Indyk and Motwani, 1998] Piotr Indyk and Rajeev Motwani. Ap-
proximate nearest neighbors: towards removing the curse of di-
mensionality. In Proceedings of the thirtieth annual ACM sym-
posium on Theory of computing, pages 604–613, 1998.

[Kang et al., 2016] Wang-Cheng Kang, Wu-Jun Li, and Zhi-Hua
Zhou. Column sampling based discrete supervised hashing. In
Proceedings of the Thirtieth AAAI Conference on Artificial Intel-
ligence, pages 1230–1236, 2016.

[Kong and Li, 2012] Weihao Kong and Wu-Jun Li. Isotropic hash-
ing. In Advances in Neural Information Processing Systems,
pages 1646–1654, 2012.

[Krizhevsky and Hinton, 2009] Alex Krizhevsky and Geoffrey
Hinton. Learning multiple layers of features from tiny images.
2009.

[Krizhevsky et al., 2012] Alex Krizhevsky, Ilya Sutskever, and Ge-
offrey E Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing
Systems, pages 1097–1105. 2012.

[Lai et al., 2015] Hanjiang Lai, Yan Pan, Ye Liu, and Shuicheng
Yan. Simultaneous feature learning and hash coding with deep
neural networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3270–3278,
2015.

[Lee and Seung, 1999] Daniel D. Lee and H. Sebastian Seung.
Learning the parts of objects by non-negative matrix factoriza-
tion. Nature, 401(6755):788–791, 1999.

[Li et al., 2016] Wu-Jun Li, Sheng Wang, and Wang-Cheng Kang.
Feature learning based deep supervised hashing with pairwise la-
bels. In Proceedings of the Twenty-Fifth International Joint Con-
ference on Artificial Intelligence, pages 1711–1717, 2016.

[Lin et al., 2014] Guosheng Lin, Chunhua Shen, Qinfeng Shi, An-
ton van den Hengel, and David Suter. Fast supervised hashing
with decision trees for high-dimensional data. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1963–1970, 2014.

[Liu et al., 2010] Wei Liu, Junfeng He, and Shih-Fu Chang. Large
graph construction for scalable semi-supervised learning. In Pro-
ceedings of the 27th International Conference on Machine Learn-
ing, pages 679–686, 2010.

[Liu et al., 2011] Wei Liu, Jun Wang, Sanjiv Kumar, and Shih-Fu
Chang. Hashing with graphs. In Proceedings of the 28th Inter-
national Conference on Machine Learning, pages 1–8, 2011.

[Liu et al., 2016] Haomiao Liu, Ruiping Wang, Shiguang Shan, and
Xilin Chen. Deep supervised hashing for fast image retrieval. In
Proceedings of IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 2064–2072, 2016.

[Mikolov et al., 2013] Tomas Mikolov, Ilya Sutskever, Kai Chen,
Greg S Corrado, and Jeff Dean. Distributed representations of
words and phrases and their compositionality. In Advances in
Neural Information Processing Systems, pages 3111–3119, 2013.

[

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3244

