SVD-free Convex-Concave Approaches for Nuclear Norm Regularization

Abstract

Mara and the first from a second at the seco rtwy fit mer t ripi . Int p r, t rt v flitt 1'r111,1 1 1 r-1 1 т Тат т г f f 'г тат . W 1 1 1 r 1'111 1 ffi 1 1

1 Introduction

*E 1 C Trn 13.7

$$\min_{\boldsymbol{A} \in \mathbb{R}^{m \times n}} \quad (\boldsymbol{A}) = (\boldsymbol{A}) + \|\boldsymbol{A}\|_* \tag{1}$$

 $\mathbf{r}^{-}(\cdot)\mathbf{r}^{-}\mathbf{v}^{-1}$, $0\mathbf{r}^{-}\mathbf{r}^{-1}\mathbf{r}\mathbf{r}\mathbf{r}\mathbf{r}\mathbf{r}$

fir -[N try, 2004,] r 1 r 1 r 1 rr tratt Spr r, 2009; N r rv , 2013 .]Ar r r J *et al.*, 2010; J *j*, 2013.]

The table parts to the state, THE REPORT OF THE PARTY OF THE

- Robust Low-rank Matrix Approximation: T The first state of the state o

2 Related Work

2.1 Nuclear-norm Regularized Problems

***** (GD):

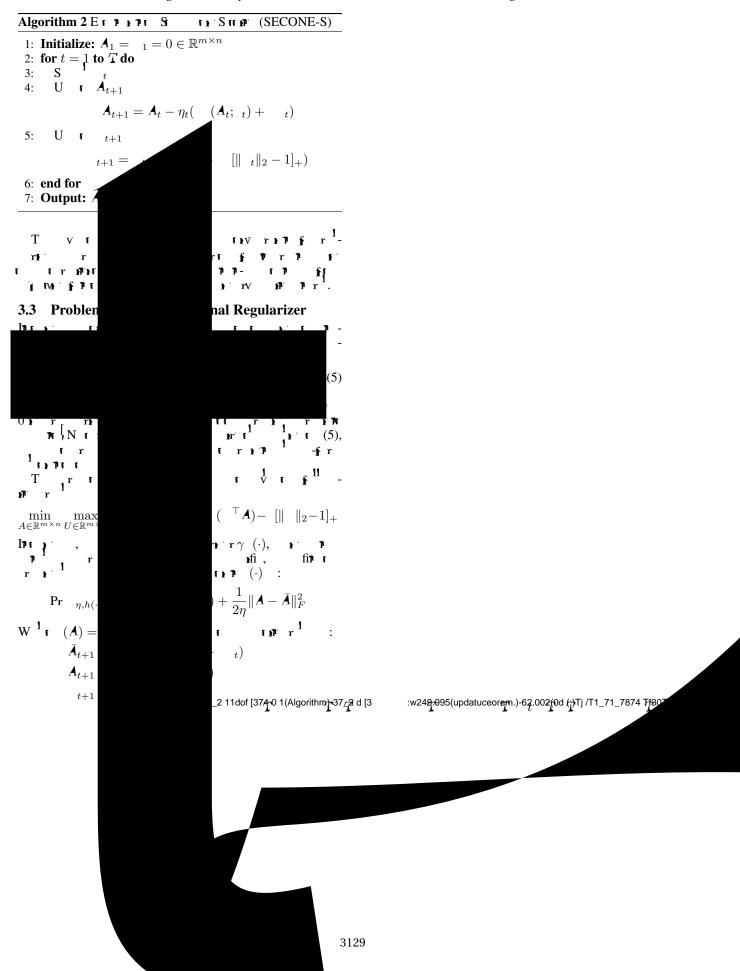
$$oldsymbol{A}_{t+1} = oldsymbol{A}_t - \eta_t \left(
abla \; \left(oldsymbol{A}_t
ight) + \; \left\| oldsymbol{A}_t
ight\|_*
ight)$$

Algorithm 1 SVD-fr E CON -C 7 v E A rf (SECONE)

- 1: Initialize: $\mathbf{A}_1 = \mathbf{1} = 0 \in \mathbb{R}^{m \times n}$
- $2: \ \mathbf{for} \ t = 1 \ \mathbf{to} \ T \ \mathbf{do}$
- 3: U \boldsymbol{A}_{t+1}

$$\mathbf{A}_{t+1} = \mathbf{A}_t - \eta_t ((\mathbf{A}_t) + \mathbf{b}_t)$$

4: U t = t+1


$$t+1 = t + t(A_t - [\|t\|_2 - 1]_+)$$

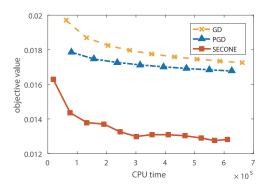
- 5: end for
- 6: Output: $\widehat{A}_T = \sum_{t=1}^T A_t T$

 $\min_{A \in \mathbb{R}^{m \times n}} \max_{U \in \mathbb{R}^{m \times n}} (A) + t (^{\top}A) - [\parallel \parallel_2 - 1]_+ (3)$

$$\mathbf{A}_{t+1} = \mathbf{A}_t - \eta_t ((\mathbf{A}_t) + t)
t+1 = t + *((\mathbf{A}_t - [||t||_2 - 1]_+))$$

Never ran $[\parallel \parallel_2 - 1]_+$ r

 $oldsymbol{T}$. $oldsymbol{T}$ $oldsymbol{T}$ $oldsymbol{T}$ $oldsymbol{T}$ $oldsymbol{T}$


 $T_{_{max}}$

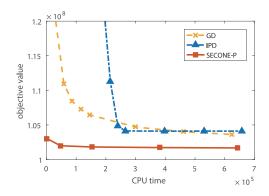
 $\leq \frac{1}{2n} (\| \boldsymbol{A}_* - \boldsymbol{A}_t \|_F^2 - \| \boldsymbol{A}_* - \boldsymbol{A}_{t+1} \|_F^2) + \frac{\eta_t}{2} \|_{t} \|_F^2$ $+\gamma((\mathbf{\Lambda}_t)-(\mathbf{\Lambda}_{t+1}))$

Unt runtriffTr nruntrrffitr.

5 Experiments

Wrnnry minning transfer to mere transfirm for mere in firm for mere

Frind: R t for t -ribby that ration


T 1	1: Sr 🕠	fr fr	(m)	r 1 111
Μſ	1	2	T	Tr 1 CPUr
SECONE PGD GD	1 7 1 6 1 6	1 4	8500 80 90	6 12 5 6 26 5 6 62 5

witt in Diff. r r f nr (GD) n : r ,) N **T** (PGD) D **T** Sp r, 2009 . W 20² 1 1, 1 1 11 =11,269 pr $^{\circ}$ =20~302 fr (1 fr 1 1711).A r#17 T r 1, r m A rs 1 $\eta_t = \sqrt{t}$ t $t = \sqrt{t}$ \sqrt{t} 11 11 T $\int \sqrt{t} \, \mathbf{1}^{-1}$ frGD 1 PGD. Will v **f** 1 $\mathbf{f} \{1 - 5 \ 1 - 4 \ 1 \ 10\} \mathbf{r} \mathbf{r}$ 1 11 T M V 1 I W V $\mathbf{tr} \quad \mathbf{f} \quad \mathbf{r} \quad \mathbf{f} \quad \mathbf{r} \quad \mathbf{f} \quad \mathbf{r} \quad \mathbf{f} \quad \mathbf{r} \quad$ -riby ff, lf frl V hrh P 1 M 1 . A 1 1, SECONE r SECONE 1 firi IGD I PGD.Tin SVD-fr 111 - ffilm, 1 T 1 T 1 f f) f) ' 1. A 1 SECONE: In 11'1 11

5.2 Sparse and Low-rank Link Prediction

$$\min_{\boldsymbol{A} \in \mathbb{R}^{m \times n}} \ \sum_{ij} \max(1 - (2 \ _{ij} - 1) \cdot \boldsymbol{A}_{ij} \ 0) + \gamma \|\boldsymbol{A}\|_1 + \ \|\boldsymbol{A}\|_*$$

 2 (c :// $^{\mathbf{p}}$. / $^{\mathbf{r}}$ $^{\mathbf{p}}/20$ N $^{\mathbf{r}}$ /

Frr 2: R 1 f r n 1 -rnh nh r stan

T 1	2: Sr	£3£3.	f	rlph	r	1117
-----	-------	-------	---	------	---	------

Mī	1 r	2	T	Tr 1 CPUra
SECONE-P	1	1 - 5	2000	6 43 5
IPD	0.1		50	$6\ 57\ 5$
GD	1		40	$6\ 25\ 5$

11 1 11 P R r et al., 2012,] n r 100 f f fn 1 a'r to 1 v r 🗗 🚹 554 🕫 firt W fly 15% f 15 000₁ r p¹ 1 1 1 1 1 1 1 P Nm' rl r l \mathbf{r} \mathbf{A}^{1} \mathbf{r} \mathbf{f} $\mathbf{f$ THE THE THE THE REPORT OF THE 1 PSECONE-P 1 GD r 1 191 f IPD 1 PS 11 1 5.1. Trir vrtrm. 1, SECONE-P $\gamma = 10 \, \, \gamma = 0 \, 4. \, \, A \, \, \, \gamma$ fire Pir r . Tripe f 2. A professional restrict SECONE-Par ri li r i

Acknowledgments

T 1 riv 11 r 1 NSFC (61603177),
J. 1 SF (BK20160658), 1 T C riv IIIV T. 1
C Tr f Nv S f r T 1 r III T 1 T 1
N T 1 S 1 T F 1 T 1 (IIS-1463988, IIS-1545995).

References

A rot et al., 2009 J A rot , From B ,
T r E rot fit rot : O re r to to to re
r r rot to Journal of Machine Learning Research, 10:803 826, 2009.

- Ar ro et al., 2008 Ar r Ar ro , T r E 11 , 1 M r 11 P M 1: C v 1 M 1 M 1 r ro ro Machine Learning, 73(3):243 272, 2008.
- A. F. r. A. 1-1 r. PCA 1 r. F. r. In Proceedings of the International Conference on Ordinal and Symbolic Data Analysis, 359 368, 1996.

- Cr PF1 r, 1998 Crnf Cr Pf r F1 r. R ff r TT f f trn. In Proceedings in Computational Statistics, 1998.
- D in et al., 2012 Mar v D in, 1 Hr 1, 1

 J'r M 1 n Luf r it T r r r r 11. In Proceedings of the

 15th International Conference on Artificial Intelligence and Statisticsy 22, 327 336, 2012.
- H, PO, 1, 2014 C -J, H, P rAO, 1.

 N rr r Proceedings of The 31st International Conference on Machine Learning, 575 583, 2014.
- In Proceedings of the 27th International Conference on Machine Learning, 471 478, 2010.

- Laret al., 2014 Qr. P. Lar, R. C. P., P. Jv. r. P. F. A. r. F. r. r. r. p. T. Computational Optimization and Applications, 58(2):455 482, 2014.
- N my hatet al., 1982 Arm IN my hat, Dy I Briton IV. IF, I E-R D I. Problem complexity and method efficiency in optimization. With June 1982.
- N T rv , 2004] rm N T rv . Introductory lectures on convex optimization: a basic coursey 87 f Applied optimization. K r A P r , 2004.
- N T rv , 2013] N T rv . Gr 17 T T fr 197-170 1 1 1 1 1 1 . Mathematical Programming, 140(1):125 161, 2013.
- Sr r. F t r. Proceedings of the 22nd International Conference on Machine Learning, 713 719, 2005.
- Refer et al., 2012 Edd Refer, Perrader, Sv 11, New York, Etc. Teleprotectings of the 29th International Conference on Machine Learning, 1351, 1358, 2012.
- Ship rivet al., 2013 Mr Ship rivet Cv r, I JAS hall Alver r r firetrial rivetrial r rivetr
- T S. J M S r P Try f Try 1. In Advances in Neural Information Processing Systems 17, 1329 1336, 2005.
- An , 1, 2010 K, -C , 1 T , 1 S , 1 1 .

 An , 1, 1, 2010 K, -C , 1 T , 1 S , 1 1 .

 I r r r r r r r r r r r r . Pacific Journal of Optimization, 6(615-640):15, 2010.