Supplementary of SVD-free Convex-Concave Approaches for Nuclear Norm Regularization

Yichi Xiao¹, Zhe Li², Tianbao Yang², Lijun Zhang¹ ¹National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China fxiaoyc, zhangljg@lamda.nju.edu.cn ²Department of Computer Science, the University of Iowa, Iowa City, IA 52242, USA fzhe-li-1, tianbao-yang g@uiowa.edu

Proof of Theorem 2 1

5(@Td0 -2epartme250(Lxp-25J/F69 TJ/F7and TJ/F7c10(ex-Con)-250(Lx(of)-250(Io)11.951 Tf 0 -14.77dd7.021@uio)25(L)9.96

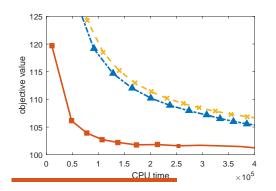


Figure 1: Results of robust low-rank matrix approximation

0500NF		1.0		
Method	<i>C</i> ₁	<i>C</i> ₂	Т	Total CPU time
Table 1	: Statist	tics to	r matrix	approximation

Iviethou	C1	ι2	1	
SECONE	1 <i>e</i> 9	10	36000	4:05 <i>e</i> 5
PGD	1 <i>e</i> 9		500	4:10 <i>e</i> 5
GD	1 <i>e</i> 9		500	3 <i>:</i> 93 <i>e</i> 5

is insensitive to . As can be seen, SECONE decreases much faster than GD and PGD. This is as expected as SECONE is SVD-free and time-efficient, which is also convinced by the statistics shown in Table 1. As can be seen, each iteration of SECONE takes much less time than other two methods.

2.2 Sparse and Low-rank Link Prediction

Following the setting in [Richard *et al.*, 2012], we perform experiments on the Facebook100 dataset which contains the friendship relations between students. We select a single university with 41:554 students and keep only the 10% users with the highest degree (e.g. m = n = 4155). We flip 15% of randomly chosen entries and the goal is to learn a sparse and low-rank matrix from the noisy adjacency matrix *Y*.

We compare Algorithm 3 (SECONE-P) with subgradient descent (GD) and Incremental Proximal Decent (IPD), which is an iterative algorithm designed for the above problem but with no theoretical guarantees [Richard *et al.*, 2012]. The step sizes in SECONE-P and GD are set in the same way as in Section 2.1. The parameter of IPD is searched in the range of $f10^{-3}$; 10^{-2} ; 10g.

In Fig. 2, we plot objective value versus the running time when = 8 and = 0.4. As can be seen, SECONE-P converges much faster than other methods, and GD performs the worst. The statistics of different methods are shown in Table 2. Again, the running time per iteration of SECONE-P is much smaller than other methods.

References

- [Baccini *et al.*, 1996] A. Baccini, Ph. Besse, and A. de Falguerolles. A *l*₁-norm PCA and a heuristic approach. In *Proceedings of the International Conference on Ordinal and Symbolic Data Analysis*, pages 359–368, 1996.
- [Croux and Filzmoser, 1998] Christophe Croux and Peter Filzmoser. Robust factorization of a data matrix. In

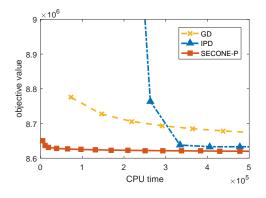


Figure 2: Results of sparse and low-rank link prediction

Table 2: Statistics for link prediction

Tuble 2. Statistics for fink prediction								
Method	c ₁ or	<i>C</i> ₂	Т	Total CPU time				
SECONE IPD GD	1 0:01 1	1 <i>e</i> 5	$15500 \\ 450 \\ 420$	5:02 <i>e</i> 5 5:13 <i>e</i> 5 5:10 <i>e</i> 5				

Proceedings in Computational Statistics, pages 245–250, 1998.

- [Duchi and Singer, 2009] John Duchi and Yoram Singer. Efficient online and batch learning using forward backward splitting. *Journal of Machine Learning Research*, 10(Dec):2899–2934, 2009.
- [Ke and Kanade, 2005] Qifa Ke and Takeo Kanade. Robust *I*₁ norm factorization in the presence of outliers and missing data by alternative convex programming. In *Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, volume 1, pages 739–746, 2005.
- [Richard *et al.*, 2012] Emile Richard, Pierre-Andre Savalle, and Nicolas Vayatis. Estimation of simultaneously sparse and low rank matrices. In *Proceedings of the 29th International Conference on Machine Learning*, pages 1351– 1358, 2012.