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Abstract
Recently, several universal methods have been
proposed for online convex optimization, and at-
tain minimax rates for multiple types of convex
functions simultaneously. However, they need to
design and optimize one surrogate loss for each
type of functions, making it difficult to exploit
the structure of the problem and utilize existing
algorithms. In this paper, we propose a simple
strategy for universal online convex optimization,
which avoids these limitations. The key idea is
to construct a set of experts to process the origi-
nal online functions, and deploy a meta-algorithm
over the linearized losses to aggregate predictions
from experts. Specifically, the meta-algorithm
is required to yield a second-order bound with
excess losses, so that it can leverage strong con-
vexity and exponential concavity to control the
meta-regret. In this way, our strategy inherits the
theoretical guarantee of any expert designed for
strongly convex functions and exponentially con-
cave functions, up to a double logarithmic factor.
As a result, we can plug in off-the-shelf online
solvers as black-box experts to deliver problem-
dependent regret bounds. For general convex
functions, it maintains the minimax optimality
and also achieves a small-loss bound.

1. Introduction
Online convex optimization (OCO) has become a leading
online learning framework, and is able to model various real-
world problems such as online routing and spam filtering
(Hazan, 2016). OCO can be seen as a structured repeated
game, with the following protocol. At each round t, the
online learner chooses xt from a convex set X . After com-
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mitting to this choice, a convex cost function ft : X 7→ R is
revealed, and the loss incurred by the learner is ft(xt). The
learner aims to minimize the cumulative loss over T rounds,
i.e.,

∑T
t=1 ft(xt), which is equivalent to minimizing the

regret:
T∑
t=1

ft(xt)−min
x2X

T∑
t=1

ft(x) (1)

defined as the excess loss suffered by the learner compared
to the minimum loss of any fixed choice.

In the literature, there are plenty of algorithms for OCO
(Cesa-Bianchi & Lugosi, 2006; Shalev-Shwartz, 2011). For
example, online gradient descent (OGD) with O(1/

√
t)

step size achieves O(
√
T ) regret for general convex functi-

ons (Zinkevich, 2003); OGD with O(1/t) step size at-
tains O(log T ) regret for strongly convex functions (Shalev-
Shwartz et al., 2007); online Newton step (ONS) enjoys
O(d log T ) regret for exponentially concave (abbr. exp-
concave) functions, where d is the dimensionality (Hazan
et al., 2007). Besides, there exist more powerful online
algorithms such as ADAGRAD (Duchi et al., 2011) that are
equipped with problem-dependent regret bounds (Srebro
et al., 2010; Chiang et al., 2012; Kingma & Ba, 2015; Muk-
kamala & Hein, 2017; Reddi et al., 2018), which become
tighter when the problem has special structures. Although
we have rich theories for OCO, its application requires heavy
domain knowledge: Users must know the type of functions
in order to select an appropriate algorithm, and when dealing
with strongly convex functions and exp-concave functions,
they also need to estimate the moduli of strong convexity
and exponential concavity.

The lack of universality of previous algorithms motivates the
development of universal methods for OCO (Bartlett et al.,
2008; Do et al., 2009). One milestone is MetaGrad of van
Erven & Koolen (2016), which can handle general convex
functions as well as exp-concave functions. Later, Wang
et al. (2019) propose Maler, which further supports strongly
convex functions explicitly. In a subsequent work, Wang
et al. (2020b) develop UFO, which exploits smoothness
to deliver small-loss regret bounds, i.e., regret bounds that
depend on the minimal loss. However, the three aforemen-
tioned methods need to design one surrogate loss for each
possible type of functions, which is both tedious and chal-
lenging. Furthermore, because they rely on surrogate losses,
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it is difficult to produce problem-dependent regret bounds,
except the small-loss one.

To avoid the above limitations, we propose a simple yet
universal strategy for online convex optimization. First, we
create a set of experts to handle the uncertainty of the type
of online functions and (possibly) the associated parameters.
When facing unknown continuous variables, we discretize
them by constructing a geometric series to cover the range of
their values. The experts process the original online functi-
ons directly so that they can exploit the special structure of
these functions. Second, we run a meta-algorithm to track
the best expert on the fly, but use the linearized losses to
measure the performance. To benefit from strong convexity
and exponential concavity, we require the meta-algorithm to
yield a second-order bound with excess losses, and choose
Adapt-ML-Prod (Gaillard et al., 2014) as an example. Spe-
cifically, let `t and `it be the loss of the meta-algorithm and
the i-th expert in the t-th round, respectively. The regret of
the meta-algorithm satisfies

T∑
t=1

(`t − `it) = O


√√√√ T∑

t=1

(`t − `it)2

 , ∀i (2)

where for brevity we drop the dependence on the number of
experts.

By incorporating existing methods for strongly convex
functions, exp-concave functions and general convex functi-
ons as experts, we obtain a universal algorithm with the
following properties.

• For strongly convex functions, our algorithm is agnos-
tic to the modulus of strong convexity, at the price of
maintaining O(log T ) experts. More importantly, it
inherits the regret bound of any expert designed for
strongly convex functions, with a negligible additive
factor of O(log log T ). As a result, we can deliver
any problem-dependent or independent regret bound,
without prior knowledge of strong convexity.
• For exp-concave functions, the above statements are

also true.
• For general convex functions, the theoretical guaran-

tee is a mix of the regret bound of the expert and the
second-order bound of Adapt-ML-Prod. When the
functions are convex and smooth, it yields a small-loss
bound.

Compared to previous universal methods (van Erven &
Koolen, 2016; Wang et al., 2019; 2020b), our algorithm
has the following advantages.

• It decouples the loss used by the expert-algorithm and
that by the meta-algorithm. In this way, we can di-
rectly utilize existing online algorithms as black-box
subroutines, and do not need to design surrogate losses.

• For strongly convex functions and exp-concave functi-
ons, the regret bound of our algorithm achieves the
best of all worlds, provided that both the domain and
gradients are bounded.

2. Related Work
In this section, we review the related work in OCO, in-
cluding traditional algorithms, universal algorithms, and
parameter-free algorithms.

2.1. Traditional Algorithms

For general convex functions, the most popular algorithm
is online gradient descent (OGD), which attains O(

√
T )

regret by setting the step size as ηt = O(1/
√
t) (Zinkevich,

2003). For λ-strongly convex functions, the regret bound
can be improved to O( 1

� log T ) by running OGD with step
size ηt = O(1/[λt]) (Shalev-Shwartz et al., 2007). For
α-exp-concave functions, online Newton step (ONS), with
prior knowledge of the parameter α, achieves O( d� log T )
regret, where d is the dimensionality (Hazan et al., 2007).
These regret bounds for general convex functions, strongly
convex functions, and exp-concave functions are known to
be minimax optimal (Ordentlich & Cover, 1998; Abernethy
et al., 2008), which means that they cannot be improved
in the worst case. However, these bounds only exhibit the
relationship with problem-independent quantities, such as
the time horizon T and the dimensionality d, and thus do
not reflect the property of the online problem at hand.

To exploit the structure of the problem, various problem-
dependent (or data-dependent) regret bounds have been es-
tablished recently (Srebro et al., 2010; Duchi et al., 2010;
2011; Chiang et al., 2012; Orabona et al., 2012; Tieleman
& Hinton, 2012; Zeiler, 2012; Yang et al., 2014; Kingma
& Ba, 2015; Mukkamala & Hein, 2017; Reddi et al., 2018;
Wang et al., 2020a). The problem-dependent bounds reduce
to the minimax rates in the worst case, but can be better
under favorable conditions.

One well-known result is the small-loss bound which is very
popular in the studies of online learning (Littlestone & War-
muth, 1994; Auer et al., 2002; Shalev-Shwartz, 2007; Luo
& Schapire, 2015). When the functions are smooth and non-
negative, the regret for general convex functions, λ-strongly
convex functions, and α-exp-concave functions can be up-
per bounded by O(

√
L�T ), O( 1

� logL�T ), and O( d� logL�T )
respectively, where

L�T = min
x2X

T∑
t=1

ft(x) (3)

is the cumulative loss of the best point in X (Srebro et al.,
2010; Orabona et al., 2012; Zhang et al., 2019; Wang et al.,
2020b). These small-loss bounds could be much tighter
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when L�T is small, and still ensure the minimax optima-
lity otherwise. Another problem-dependent guarantee is
the gradient-variation bound for smooth functions (Chiang
et al., 2012; Yang et al., 2014; Mohri & Yang, 2016), which
replaces L�T in the upper bounds with the gradient variation:

VT =

T∑
t=1

max
x2X
‖∇ft(x)−∇ft�1(x)‖2. (4)

Then, the regret bounds become smaller if the online functi-
ons evolve gradually.

Besides smoothness, it is also possible to exploit other struc-
tural properties of the functions, such as the sparsity of
gradients. One representative work is ADAGRAD (Duchi
et al., 2010; 2011), which incorporates knowledge of the ge-
ometry of the data observed in earlier iterations to perform
more informative gradient-based learning. Let g1:T;j be the
vector obtained by concatenating the j-th element of the
gradient sequence ∇f1(x1), . . . ,∇fT (xT ). ADAGRAD
achieves

O

 d∑
j=1

‖g1:T;j‖

 and O

 1

λ

d∑
j=1

log ‖g1:T;j‖


regret for general convex functions and λ-strongly convex
functions, respectively (Duchi et al., 2010). These two
bounds match the minimax rates in the worst case, and be-
come tighter when gradients are sparse. Since the seminal
work of ADAGRAD, a series of problem-dependent online
algorithms have been developed, including RMSprop (Tiele-
man & Hinton, 2012; Mukkamala & Hein, 2017) and Adam
(Kingma & Ba, 2015; Reddi et al., 2018).

Although there exist abundant algorithms and theories for
OCO, how to choose them in practice is a nontrivial task. To
ensure good performance, we not only need to know the type
of functions, but also need to estimate the moduli of strong
convexity and exponential concavity. The requirement of
human intervention restricts the application of OCO to real-
world problems, and motivates the development of universal
algorithms for OCO.

2.2. Universal Algorithms

The first universal method for OCO is adaptive online gra-
dient descent (AOGD) (Bartlett et al., 2008), which interpo-
lates between theO(

√
T ) regret of general convex functions

and the O(log T ) regret of strongly convex functions auto-
matically. However, AOGD needs to know the modulus
of strong convexity in each round, and does not support
exp-concave functions. Do et al. (2009) develop a proximal
extension of AOGD, but it suffers the same limitations.

The studies of universal methods are advanced by the Met-
aGrad algorithm of van Erven & Koolen (2016), which

adapts to a much broader class of functions, including ge-
neral convex functions and exp-concave functions. Under
the framework of learning with expert advice (Cesa-Bianchi
& Lugosi, 2006), MetaGrad is a two-layer algorithm con-
sisting of a set of experts and a meta-algorithm. To handle
exponential concavity, each expert minimizes one surrogate
loss

`expt;� (x) = −η(xt − x)>gt + η2
[
(xt − x)>gt

]2 (5)

parameterized by the step size η, where gt = ∇ft(xt).
MetaGrad maintains O(log T ) experts to minimize (5) with
difith
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Besides supporting more types of functions, MetaGrad was
also extended to avoid the knowledge of the Lipschitz con-
stant G. Specifically, Mhammedi et al. (2019) first design
a basic algorithm called MetaGrad+C, which requires an
initial estimate of the Lipschitz constant, and then use a re-
starting scheme to set this parameter online. In this way, the
final algorithm, named as MetaGrad+L, adapts to the Lip-
schitz hyperparameter automatically. Furthermore, Mham-
medi et al. (2019) also remove the need to specify the num-
ber of rounds in advance. Recently, van Erven et al. (2021)
propose a refined version of MetaGrad+L, which only re-
starts the meta-algorithm but not the experts.
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(ii) the meta-algorithm chooses the linearized losses and
makes use of second-order bounds to control the meta-
regret.

In the following, we take strongly convex functions as an
example to explain the motivation.

Let xt and ut be the output of the meta-algorithm and an
expert in the t-th round, respectively. The regret of the meta-
algorithm can be decomposed as the sum of the meta-regret
and the expert-regret:

T∑
t=1

ft(xt)−min
x2X

T∑
t=1

ft(x)

=

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut)︸ ︷︷ ︸
:=meta-regret

+

T∑
t=1

ft(ut)−min
x2X

T∑
t=1

ft(x)︸ ︷︷ ︸
:=expert-regret

.

To bound the expert-regret, we can directly utilize theoreti-
cal guarantees of the expert-algorithm. So, the key is how
to ensure small meta-regret.

Instead of using the original function, our meta-algorithm
chooses the linearized loss

lt(x) = 〈∇ft(xt),x− xt〉 (14)

to measure the performance of the expert. From Defini-
tion 3.3, we have the following relationship between the
meta-regret in terms of ft(·) and the meta-regret in terms of
lt(·):

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut)

(12)

≤
T∑
t=1

〈∇ft(xt),xt − ut〉 −
λ

2

T∑
t=1

‖xt − ut‖2

(14)
=

T∑
t=1

(
lt(xt)− lt(ut)

)
− λ

2

T∑
t=1

‖xt − ut‖2.

(15)

Since we require the meta-algorithm to yield a second-order
bound in the form of (2), the meta-regret in terms of lt(·)
becomes

T∑
t=1

(
lt(xt)− lt(ut)

)
(2)
=O


√√√√ T∑

t=1

(
lt(xt)− lt(ut)

)2
(14)
= O


√√√√ T∑

t=1

〈∇ft(xt),xt − ut〉2

 .

(16)

From Assumption 3.1, we further have

T∑
t=1

(
lt(xt)− lt(ut)

)
(10);(16)

= O


√√√√G2

T∑
t=1

‖xt − ut‖2


=O

(
G2

λ

3.336(T52(6.97367(8.879(Td([{T}]TJ/F(9.9626(Tf(-4.36(-2.989(Td([{∑}]TJ/F(6.9738(Tf(.646(-2..+53(26.772(cm
[](d((J(8(.398(w(((m(5.82((l(S
Q
BT
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Algorithm 1 A Universal Strategy for Online Convex Opti-
mization (USC)

1: Input: Astr, Aexp, Acon, Pstr and Pexp
2: Initialize E = ∅
3: for each algorithm A ∈ Astr do
4: for each λ ∈ Pstr do
5: Create an expert E(A, λ)
6: E = E ∪ E(A, λ)
7: end for
8: end for
9: for each algorithm A ∈ Aexp do

10: for each α ∈ Pexp do
11: Create an expert E(A,α)
12: E = E ∪ E(A,α)
13: end for
14: end for
15: for each algorithm A ∈ Acon do
16: Create an expert E(A)
17: E = E ∪ E(A)
18: end for
19: for t = 1 to T do
20: Calculate the weight pit of each expert Ei by (21)
21: Receive xit from each expert Ei in E
22: Output the weighted average xt =

∑jEj
i=1 p

i
tx
i
t

23: Observe the loss function ft(·)
24: Send the required information of ft(·) to each expert

in E
25: end for

satisfies our requirements. To simplify notations, we as-
sume that experts in E are ordered, and use Ei to denote the
i-th expert. In the t-th round, we denote by pit the weight
assigned toEi, and xit the prediction ofEi. The weights are
determined according to Adapt-ML-Prod (Step 20). After
receiving predictions from all experts in E (Step 21), USC
submits the weighted average (Step 22):

xt =

jEj∑
i=1

pitx
i
t. (18)

Then, it observes the loss function ft(·) and sends the re-
quired information to all experts so that they can update
their predictions (Steps 23-24). If the expert is a first-order
algorithm, we only need to send the gradient of ft(·). Thus,
USC may query the gradient multiple times in each round.
It is worth to mention that allowing the online learner to ob-
serve multiple gradients does not affect the minimax rates in
the full-information setting (Abernethy et al., 2008), where
the leaner can observe the entire function. So, we can still
use existing minimax rates to verify the optimality of USC.

Finally, we briefly explain how to calculate the weights
of experts, i.e., pit’s. As we explained before, the meta-

algorithm uses the linearized loss in (14) to measure the
performance of each expert. In particular, the loss of Ei is
given by

lit := lt(x
i
t) = 〈∇ft(xt),xit − xt〉.

Under Assumptions 3.1 and 3.2, we have

|lit| ≤ ‖∇ft(xt)‖‖xit − xt‖
(10);(11)

≤ GD.

Because Adapt-ML-Prod requires the loss to lie in [0, 1], we
normalize lit in the following way

`it =
〈∇ft(xt),xit − xt〉+GD

2GD
∈ [0, 1]. (19)

Then, the loss of the meta-algorithm suffered in the t-th
round becomes

`t =

jEj∑
i=1

pit`
i
t

(18);(19)
=

1

2
. (20)

According to Adapt-ML-Prod (Gaillard et al., 2014), the
weight of expert Ei is determined by

pit =
ηit�1w

i
t�1∑jEj

j=1 η
j
t�1w

j
t�1

(21)

where

ηit�1 = min

{
1

2
,

√
ln |E|

1 +
∑t�1
s=1(`s − `is)2

}
, t ≥ 1, (22)

wit�1 =
(
wit�2

(
1 + ηit�2(`t�1 − `it�1)

)) �it−1

�i
t−2 , t ≥ 2.

In the beginning, we set wi0 = 1/|E|. As indicated by (22),
Gaillard et al. (2014) use an adaptive way to set multiple
time-varying learning rates.

3.4. Strongly Convex Functions

We present the regret bound of our strategy when encoun-
tering strongly convex functions. To apply USC in Al-
gorithm 1, we need to specify Astr, the set of candidate
algorithms, and Pstr, the set of possible values of the mo-
dulus of strong convexity. To build Astr, we can utilize any
existing algorithm for online strongly convex optimization,
such as

• OGD for strongly convex functions (SC-OGD) (Shalev-
Shwartz et al., 2007);

• ADAGRAD for strongly convex functions (Duchi et al.,
2010);

• Online extra-gradient descent (OEGD) for strongly
convex and smooth functions (Chiang et al., 2012);

• SC-RMSProp (Mukkamala & Hein, 2017);
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• SAdam (Wang et al., 2020a);
• S2OGD for strongly convex and smooth functions

(Wang et al., 2020b).

Chiang et al. (2012) only investigate OEGD for exp-
concave functions and general convex functions, under the
smoothness condition. In Appendix B, we extend OEGD to
strongly convex functions and obtain a gradient-variation
bound of order O(log VT ), which may be of independent
interest.

We proceed to construct Pstr. Without loss of generality,
we assume the unknown modulus λ is both lower bounded
and upper bounded. In particular, we assume λ ∈ [1/T, 1],
because there is no need to explicitly consider the cases that
λ < 1/T and λ > 1, as explained below.

1. The regret bound of strongly convex functions exhibits
an inverse dependence on λ. Thus, if λ < 1/T , the
bound becomes at least 
(T ), which is meaningless.
In this case, we cannot benefit from strong convexity
and should treat these functions as general convex.

2. From Definition 3.3, we know that λ-strongly convex
functions with λ > 1 are also 1-strongly convex. So,
they can be handled as 1-strongly convex, and the re-
sulting bound is optimal up to a constant (i.e., λ) factor.

Based on the interval [1/T, 1], we set Pstr to be an expo-
nentially spaced grid with a ratio of 2:

Pstr =

{
1

T
,

2

T
,

22

T
, · · · , 2N

T

}
, N = dlog2 T e. (23)

Pstr can approximate λ well in the sense that for any λ ∈
[1/T, 1], there must exist a λ̂ ∈ Pstr such that λ̂ ≤ λ ≤ 2λ̂.

In the following, we denote by R(A, λ̂) the regret bound,
predicted by theory, of expert E(A, λ̂) in Algorithm 1. Note
that the expert E(A, λ̂) assumes the online functions are
λ̂-strongly convex, which is true since λ̂ ≤ λ. Thus, the
regret bound R(A, λ̂) is valid, and it is also tight because
λ ≤ 2λ̂. We have the following theoretical guarantee.

Theorem 3.6. Under Assumptions 3.1 and 3.2, if the online
functions are λ-strongly convex with λ ∈ [1/T, 1], Algo-
rithm 1 satisfies

T∑
t=1

ft(xt)−min
x2X

T∑
t=1

ft(x)

≤ min
A2Astr

R(A, λ̂) + 2�GD

(
2 +

1√
ln |E|

)
+

�2G2

2λ ln |E|

= min
A2Astr

R(A, λ̂) +O

(
log log T

λ

)

where λ̂ ∈ Pstr, λ̂ ≤ λ ≤ 2λ̂, and

� =3 ln |E|+ ln

(
1 +
|E|
2e

(
1 + ln(T + 1)

))
(25)
= O(log log T ).

(24)

Remark: To reveal the order of the upper bound, we as-
sume the number of candidate algorithms is small, so |Astr|,
|Aexp| and |Acon| are all small constants. Thus,

|E| =|Astr| · |Pstr|+ |Aexp| · |Pexp|+ |Acon|
(23);(26)

= O(log T )
(25)

which is used in (24). When both the domain and gradients
are bounded, Theorem 3.6 shows that USC achieves the best
of all worlds for strongly convex functions, up to an additive
factor of O(log log T ).

Remark: The computational complexity of an expert per
iteration is generally independent from T , but may depend
on the dimensionality d (Duchi et al., 2010). To simplify
discussions, we hide the dependence on d, and assume the
complexity is O(1) per iteration. Since USC maintains
|E| = O(log T ) experts, its computational complexity is
O(log T ) per iteration, which is the same as that of previous
methods (van Erven & Koolen, 2016; Wang et al., 2019;
2020b).

To be more concrete, we use the small-loss bound and the
gradient-variation bound for smooth functions to give an
example. To this end, we need an additional assumption
(Srebro et al., 2010).

Assumption 3.7. All the online functions are nonnegative,
and H-smooth over X .

By using OEGD (Chiang et al., 2012) and S2OGD (Wang
et al., 2020b) as experts, we have the following corollary.

Corollary 3.8. Under Assumptions 3.1, 3.2, and 3.7, if the
online functions are λ-strongly convex with λ ∈ [1/T, 1],
we have

T∑
t=1

ft(xt)−min
x2X

T∑
t=1

ft(x)

=O

(
1

λ

(
min(logL�T , log VT ) + log log T

))
where L�T and VT are defined in (3) and (4) respectively,
provided OEGD, S2OGD ∈ Astr.

3.5. Exp-concave Functions

We move to exp-concave functions, and use the following
algorithms to build Aexp:

• Online Newton step (ONS) (Hazan et al., 2007);



Universal Online Convex Optimization

• ONS for exp-concave and smooth functions (Orabona
et al., 2012);

• OEGD for exp-concave and smooth functions (Chiang
et al., 2012).

Following the same arguments as in Section 3.4, we also
assume the modulus of exponential concavity α lies in
[1/T, 1], and use the same geometric series to construct
Pexp as

Pexp =

{
1

T
,

2

T
,

22

T
, · · · , 2N

T

}
, N = dlog2 T e. (26)

Then, for any α ∈ [1/T, 1], there must exist an α̂ ∈ Pexp
such that α̂ ≤ α ≤ 2α̂.

We denote by R(A, α̂) the regret bound of expert E(A, α̂)
in Algorithm 1. Similarly, R(A, α̂) is both valid and tight.
We have the following guarantee for exp-concave functions,
which is analogous to Theorem 3.6.

Theorem 3.9. Under Assumptions 3.1 and 3.2, if the online
functions are α-exp-concave with α ∈ [1/T, 1], Algorithm 1
satisfies

T∑
t=1

ft(xt)−min
x2X

T∑
t=1

ft(x)

≤ min
A2Aexp

R(A, α̂) + 2�GD

(
2 +

1√
ln |E|

)
+

�2

2β ln |E|

= min
A2Aexp

R(A, α̂) +O

(
log log T

α

)
where α̂ ∈ Pexp, α̂ ≤ α ≤ 2α̂, β = 1

2 min{ 1
4GD , α}, and

� is defined in (24).

Remark: Similar to the case of strongly convex functions,
USC inherits the regret bound of any expert designed for
exp-concave functions, with a negligible double logarithmic
factor. By using ONS (Orabona et al., 2012) and OEGD
(Chiang et al., 2012) as experts, we obtain the best of the
small-loss bound and the gradient-variation bound, up to a
double logarithmic factor.

Corollary 3.10. Under Assumptions 3.1, 3.2, and 3.7, if the
online functions are α-exp-concave with α ∈ [1/T, 1], we
have

T∑
t=1

ft(xt)−min
x2X

T∑
t=1

ft(x)

=O

(
1

α

(
dmin(logL�T , log VT ) + log log T

))
where L�T and VT are defined in (3) and (4) respectively,
provided ONS,OEGD ∈ Aexp.

3.6. General Convex Functions

Finally, we study general convex functions, and in this case,
we have various algorithms to constructAcon, such as OGD
(Zinkevich, 2003), ADAGRAD (Duchi et al., 2011), OEGD
for convex and smooth functions (Chiang et al., 2012), RM-
Sprop (Tieleman & Hinton, 2012), ADADELTA (Zeiler,
2012), Adam (Kingma & Ba, 2015), AO-FTRL (Mohri &
Yang, 2016), and SOGD (Zhang et al., 2019).

Let R(A) be the regret bound of expert E(A) in Algo-
rithm 1. The theoretical guarantee of USC for general con-
vex functions is stated below.

Theorem 3.11. Under Assumptions 3.1 and 3.2, for any
sequence of convex functions, Algorithm 1 satisfies

T∑
t=1

ft(xt)−min
x2X

T∑
t=1

ft(x)

≤ min
A2Acon

R(A)

+ 4�GD +
�D√
ln |E|

√√√√4G2 +

T∑
t=1

‖∇ft(xt)‖2

= min
A2Acon

R(A) +O
(√

T log log T
)

where � is defined in (24).

Remark: The above theorem is weaker than those for
strongly convex functions and exp-concave functions. That
is because we cannot eliminate the regret of the meta-
algorithm, and the final regret is the sum of the expert-regret
and the meta-regret. Nevertheless, Theorem 3.11 still im-
plies a small-loss bound for smooth functions, when SOGD
(Zhang et al., 2019) is used as the expert.

Corollary 3.12. Under Assumptions 3.1, 3.2, and 3.7, for
any sequence of convex functions, we have

T∑
t=1

ft(xt)−min
x2X

T∑
t=1

ft(x) = O
(√

L�T log log T
)

where L�T is defined in (3), provided SOGD ∈ Acon.

3.7. Parameter-Free Extensions

One limitation of USC is that it uses the product of G and
D to normalize the linearized loss in (19) so that Adapt-ML-
Prod can be applied. Besides, some experts in Algorithm 1
may also use G and D to tune their parameters. Generally
speaking, it is easy to estimate D since it only ties to the
domain, but difficult to evaluate G which depends on all the
online functions. In this section, we discuss how to extend
USC to avoid prior knowledge of G, provided that G is
bounded.
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Figure 1. Regret of different methods versus the number of iterations.

For the meta-algorithm, we just need to replace Adapt-ML-
Prod with more advanced methods which not only deliver
second-order bounds but also adapt to the unknown loss
range automatically, e.g., Squint+L (Mhammedi et al., 2019)
and MsMwC-Master (Chen et al., 2021). In this way, we
can directly use the (unnormalized) linearized loss in (14),
and have the same guarantee for the meta-regret.

Next, we choose experts that do not need to know the va-
lue of G. For strongly convex functions, we can use OGD
with step size ηt = 1/(λt) (Shalev-Shwartz et al., 2007),
and AOGD (Bartlett et al., 2008). For exp-concave functi-
ons, we can choose the Exponentially Weighted Online
Optimization (EWOO) algorithm (Hazan et al., 2007), and
MetaGrad+L (Mhammedi et al., 2019). For general convex
functions, we can use scale-free online learning (Orabona &
Pál, 2018) and FreeGrad (Mhammedi & Koolen, 2020).

4. Preliminary Experiments
We conduct preliminary experiments to evaluate the pro-
posed USC, and the detail is provided in Appendix C. We
investigate both strongly convex functions and general con-
vex functions, and present the results in Fig. 1. In both cases,
the regret of USC is very close to that of the best expert, and
smaller than MetaGrad and Maler.

5. Conclusion and Future Work
In this paper, we propose a simple strategy for universal
OCO, namely USC, which can handle strongly convex
functions, exp-concave functions and general convex functi-
ons simultaneously. To deal with the uncertainty of online
functions, we construct a set of experts by running existing
algorithms with different configurations, and combine them

by a meta-algorithm that enjoys a second-order bound with
excess losses. The key novelty is to let experts process
original functions, and let the meta-algorithm use lineari-
zed losses. Thanks to the second-order bound of the meta-
algorithm, USC attains the best of all worlds for strongly
convex functions and exp-concave functions, up to a double
logarithmic factor. For general convex functions, it main-
tains the minimax optimality and can achieve a small-loss
bound.

There are several directions for future research. First, USC
assumes that both the domain and gradients are bounded,
i.e., Assumptions 3.1 and 3.2. We note that there exist on-
line algorithms for unbounded domains or gradients (Chiang
et al., 2012; Cutkosky & Boahen, 2016). Thus, a natural
work is to design universal algorithms for the unbounded
case. Second, USC is designed for the purpose of regret
minimization, but regret itself may not be suitable for chan-
ging environments (Zhang, 2020; Cesa-Bianchi & Orabona,
2021). To address this limitation, recent developments in
online learning have proposed new performance metrics in-
cluding adaptive regret (Hazan & Seshadhri, 2007; Daniely
et al., 2015) and dynamic regret (Zinkevich, 2003; Zhang
et al., 2018). In the future, we will investigate how to modify
USC to support those stronger notions of regret. Third, USC
needs to fix the value of the time horizon T , which is then
used to construct Pstr and Pexp. We will study how to turn
USC into an anytime algorithm.
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A. Analysis
In this section, we present the analysis of all theorems.

A.1. Proof of Theorem 3.6

We first analyze the meta-regret of our strategy. According to the theoretical guarantee of Adapt-ML-Prod (Gaillard et al.,
2014, Corollary 4), we have

T∑
t=1

`t −
T∑
t=1

`it ≤
�√
ln |E|

√√√√1 +

T∑
t=1

(`t − `it)2 + 2�

for all expert Ei ∈ E , where � is given in (24). Combining with the definitions of `it and `t in (19) and (20), we arrive at

T∑
t=1

〈∇ft(xt),xt − xit〉

≤4�GD +
�√
ln |E|

√√√√4G2D2 +

T∑
t=1

〈∇ft(xt),xt − xit〉2

≤2�GD

(
2 +

1√
ln |E|

)
+

�√
ln |E|

√√√√ T∑
t=1

〈∇ft(xt),xt − xit〉2

(27)

where the last step follows from the basic inequality
√
a+ b ≤

√
a+
√
b.

To utilize the property of strong convexity in (12), we proceed in the following way:

T∑
t=1

〈∇ft(xt),xt − xit〉

≤2�GD

(
2 +

1√
ln |E|

)
+

�2G2

2λ ln |E|
+

λ

2G2

T∑
t=1

〈∇ft(xt),xt − xit〉2

≤2�GD

(
2 +

1√
ln |E|

)
+

�2G2

2λ ln |E|
+

λ

2G2

T∑
t=1

‖∇ft(xt)‖2‖xt − xit‖2

(10)

≤ 2�GD

(
2 +

1√
ln |E|

)
+

�2G2

2λ ln |E|
+
λ

2

T∑
t=1

‖xt − xit‖2

(28)

where the first step follows from the basic inequality 2
√
ab ≤ a+ b. According to Definition 3.3, the meta-regret in terms of

ft(·) is given by

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
i
t)

(12)

≤
T∑
t=1

(
〈∇ft(xt),xt − xit〉 −

λ

2
‖xt − xit‖2

)
(28)

≤ 2�GD

(
2 +

1√
ln |E|

)
+

�2G2

2λ ln |E|
.

(29)

Next, we study the expert-regret. Let Ei be the expert E(A, λ̂) where A ∈ Astr, λ̂ ∈ Pstr, and λ̂ ≤ λ ≤ 2λ̂. Since
λ-strongly convex functions are also λ̂-strongly convex, expert E(A, λ̂) makes a right assumption, and the following
inequality is true

T∑
t=1

ft(x
i
t)−min

x2X

T∑
t=1

ft(x) ≤ R(A, λ̂). (30)
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Combining (29) and (30), we have

T∑
t=1

ft(xt)−min
x2X

T∑
t=1

ft(x) ≤ R(A, λ̂) + 2�GD

(
2 +

1√
ln |E|

)
+

�2G2

2λ ln |E|
. (31)

We complete the proof by noticing that (31) holds for any A ∈ Astr.

A.2. Proof of Corollary 3.8

From the theoretical guarantee of OEGD for strongly convex and smooth functions in Theorem B.1, we have

R(OEGD, λ̂) = O

(
log VT

λ̂

)
��2�̂

= O

(
log VT
λ

)
. (32)

Similarly, from the regret bound of S2OGD (Wang et al., 2020b, Theorem 1), we have

R(S2OGD, λ̂) = O

(
logL�T

λ̂

)
��2�̂

= O

(
logL�T
λ

)
. (33)

We obtain the corollary by substituting (32) and (33) into Theorem 3.6.

A.3. Proof of Theorem 3.9

The analysis is similar to that of Theorem 3.6. To make use of the property of exponential concavity in (13), we change (28)
as follows:

T∑
t=1

〈∇ft(xt),xt − xit〉

≤2�GD

(
2 +

1√
ln |E|

)
+

�2

2β ln |E|
+
β

2

T∑
t=1

〈∇ft(xt),xt − xit〉2.

(34)

According to Lemma 3.5, the meta-regret in terms of ft(·) can be bounded by

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
i
t)

(13)

≤
T∑
t=1

(
〈∇ft(xt),xt − xit〉 −

β

2
〈∇ft(xt),xt − xit〉2

)
(34)

≤ 2�GD

(
2 +

1√
ln |E|

)
+

�2

2β ln |E|
.

The rest of the proof is identical to that of Theorem 3.6.

A.4. Proof of Corollary 3.10

From the theoretical guarantee of ONS for exp-concave and smooth functions (Orabona et al., 2012, Theorem 1), we have

R(ONS, α̂) = O

(
d logL�T

α̂

)
��2�̂

= O

(
d logL�T

α

)
. (35)

Similarly, from the regret bound of OEGD (Chiang et al., 2012, Theorem 15), we have

R(OEGD, α̂) = O

(
d log VT

α̂

)
��2�̂

= O

(
d log VT

α

)
. (36)

We obtain the corollary by substituting (35) and (36) into Theorem 3.9.
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A.5. Proof of Theorem 3.11

From the first-order condition of convex functions, we bound the meta-regret by

T∑
t=1

ft(xt)− ft(xit) ≤
T∑
t=1

〈∇ft(xt),xt − xit〉

(27)

≤ 4�GD +
�√
ln |E|

√√√√4G2D2 +

T∑
t=1

〈∇ft(xt),xt − xit〉2

≤4�GD +
�√
ln |E|

√√√√4G2D2 +

T∑
t=1

‖∇ft(xt)‖2‖xt − xit‖2

(11)

≤ 4�GD +
�D√
ln |E|

√√√√4G2 +

T∑
t=1

‖∇ft(xt)‖2.

We complete the proof by combining the above inequality with that of the expert-regret:

T∑
t=1

ft(x
i
t)−min

x2X

T∑
t=1

ft(x) ≤ R(A), ∀A ∈ Acon.

A.6. Proof of Corollary 3.12

We need the self-bounding property of smooth functions (Srebro et al., 2010, Lemma 3.1).

Lemma A.1. For a nonnegative and H-smooth function f : X 7→ R, we have

‖∇f(x)‖ ≤
√

4Hf(x), ∀x ∈ X . (37)

Combining Lemma A.1 and Theorem 3.11, we have

T∑
t=1

ft(xt)−min
x2X

T∑
t=1

ft(x) ≤ min
A2Acon

R(A) + 4�GD +
�D√
ln |E|

√√√√4G2 + 4H

T∑
t=1

ft(xt). (38)

From the theoretical guarantee of SOGD for convex and smooth functions (Zhang et al., 2019, Theorem 2), we have

R(SOGD) = 8HD2 +D
√

2δ + 8HL� (39)

where δ > 0 can be any small constant. Substituting (39) into (38), we obtain

T∑
t=1

ft(xt)− L� ≤ 8HD2 +D
√

2δ + 8HL� + 4�GD +
�D√
ln |E|

√√√√4G2 + 4H

T∑
t=1

ft(xt). (40)

To simplify the above inequality, we use the following lemma (Shalev-Shwartz, 2007, Lemma 19).

Lemma A.2. Let x, b, c ∈ R+. Then,
x− c ≤ b

√
x⇒ x− c ≤ b2 + b

√
c.

From (40), we have (
G2

H
+

T∑
t=1

ft(xt)

)
−
(
L� +D

√
2δ + 8HL� + 4�GD + 8HD2 +

G2

H

)

≤�D
√

4H√
ln |E|

√√√√G2

H
+

T∑
t=1

ft(xt),
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Lemma A.2 implies (
G2

H
+

T∑
t=1

ft(xt)

)
−
(
L� +D

√
2δ + 8HL� + 4�GD + 8HD2 +

G2

H

)

≤4�2D2H

ln |E|
+

�D
√

4H√
ln |E|

√
L� +D

√
2δ + 8HL� + 4�GD + 8HD2 +

G2

H
.

Thus,

T∑
t=1

ft(xt)−min
x2X

T∑
t=1

ft(x) =

T∑
t=1

ft(xt)− L�

≤�D
√

4H√
ln |E|

√
L� +D

√
2δ + 8HL� + 4�GD + 8HD2 +

G2

H
+D

√
2δ + 8HL�

+ 4�GD + 8HD2 +
4�2D2H

ln |E|

=O
(√

L� log log T
)
.

B. Online extra-gradient descent (OEGD) for strongly convex and smooth functions
In this section, we extend the OEGD algorithm of Chiang et al. (2012) to strongly convex functions.

B.1. The algorithm

There are two sequences of solutions {xt}Tt=1 and {ut}Tt=1, where ut is an auxiliary solution used to exploit the smoothness
of the loss function.

Based on the property of strong convexity in (12), we set

Rt(x) =
1

2ηt
‖x‖2

in Algorithm 1 of Chiang et al. (2012), where

ηt =
8G2

λ(
∑t�1
i=1 ‖∇fi(xi)−∇fi�1(xi�1)‖2 +G2/λ+ 4G2)

(10)
≤ 8G2

λ(
∑t
i=1 ‖∇fi(xi)−∇fi�1(xi�1)‖2 +G2/λ)

≤ 8,

(41)
and obtain the following updating rules:

ut+1 =�X
[
ut − ηt∇ft(xt)

]
,

xt+1 =�X
[
ut+1 − ηt+1∇ft(xt)

]
,

where �X [·] denotes the projection onto the nearest point in X .

Theorem B.1. Under Assumptions 3.1, 3.2, and 3.7, if the online functions are λ-strongly convex, we have

T∑
t=1

ft(xt)−min
x2X

T∑
t=1

ft(x) ≤ m
(

8G2

λ
+ 32G2

)
ln

(
2λ

G2
VT + 2

)
+
D2(8λ+ 3)

32
= O

(
log VT
λ

)

where VT is defined in (4), and

m =
log(512H2(1 + 4λ) + 1)

log( 2�
G2VT + 2)

+ 1 = O(1). (42)
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B.2. Proof of Theorem B.1

Based on Definition 3.3 and Lemma 5 of Chiang et al. (2012), we have

T∑
t=1

ft(xt)−
T∑
t=1

ft(x�)
(12)

≤
T∑
t=1

〈∇ft(xt),xt − x�〉 −
λ

2

T∑
t=1

‖x� − xt‖2

≤
T∑
t=1

〈∇ft(xt)−∇ft�1(xt�1),xt − ut+1〉︸ ︷︷ ︸
:=a

+

T∑
t=1

‖x� − ut‖2 − ‖x� − ut+1‖2

2ηt
− λ

2
‖xt − x�‖2︸ ︷︷ ︸

:=b

−
T∑
t=1

‖xt − ut‖2 + ‖xt − ut+1‖2

2ηt︸ ︷︷ ︸
:=c

(43)

where x� is the best decision in hindsight. In the following, we upper bound the three terms above respectively. For term a,
we have

a ≤
T∑
t=1

ηt‖∇ft(xt)−∇ft�1(xt�1)‖2

(41)

≤
T∑
t=1

8G2

λ(
∑t
i=1 ‖∇fi(xi)−∇fi�1(xi�1)‖2 +G2/λ)

‖∇ft(xt)−∇ft�1(xt�1)‖2

≤8G2

λ
ln

(
λ

G2

T∑
t=1

‖∇ft(xt)−∇ft�1(xt�1)‖2 + 1

)

≤8G2

λ
ln

(
2λ

G2
VT +

2λH2

G2

T∑
t=1

‖xt − xt�1‖2 + 1

)
(44)

where the 1st inequality is derived from Lemma 6 of Chiang et al. (2012), the 3rd inequality follows from Lemma 11 of
Hazan et al. (2007) for one dimension, and the 4th inequality is due to Lemma 12 of Chiang et al. (2012).

Similar to the proof of Lemma 14 of Chiang et al. (2012), we bound term b as

b
(11)

≤ D2

2η1
+

1

2

T∑
t=2

(
1

ηt
− 1

ηt�1

)
‖x� − ut‖2 −

λ

2

T∑
t=1

‖x� − xt‖2

(10);(41)

≤ D2(4λ+ 1)

16
+
λ

4

T�1∑
t=1

‖x� − ut+1‖2 −
λ

2

T∑
t=1

‖x� − xt‖2

≤ D2(4λ+ 1)

16
+
λ

2

T∑
t=1

‖ut+1 − xt‖2 (45)

≤ D2(4λ+ 1)

16
+
λ

2

T∑
t=1

η2t ‖∇ft(xt)−∇ft�1(xt�1)‖2

(44)

≤ D2(4λ+ 1)

16
+
λη1
2

8G2

λ
ln

(
2λ

G2
VT +

2λH2

G2

T∑
t=1

‖xt − xt�1‖2 + 1

)
(41)

≤ D2(4λ+ 1)

16
+ 32G2 ln

(
2λ

G2
VT +

2λH2

G2

T∑
t=1

‖xt − xt�1‖2 + 1

)

where the 3rd inequality is based on Proposition 1 of Chiang et al. (2012), the 4th inequality is derived from Proposition 7 of
Chiang et al. (2012), and the 5th inequality is based on the fact that ηt is non-increasing and (44).
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For term c, based on the proof of Lemma 21 of Chiang et al. (2012), we have

c =

T∑
t=1

‖xt − ut‖2

2ηt
+

T+1∑
t=2

‖xt�1 − ut‖2

2ηt�1
≥

T∑
t=2

‖xt − ut‖2

2ηt�1
+

T∑
t=2

‖xt�1 − ut‖2

2ηt�1

≥
T∑
t=2

‖xt − xt�1‖2

4ηt�1

(41)

≥ 1

32

T∑
t=2

‖xt − xt�1‖2.

(46)

Substituting (44), (45) and (46) into (43), we get

T∑
t=1

ft(xt)−
T∑
t=1

ft(x�)

≤
(

8G2

λ
+ 32G2

)
ln

(
2λ

G2
VT +

2λH2

G2

T∑
t=1

‖xt − xt�1‖2 + 1

)
− 1

32

T∑
t=2

‖xt − xt�1‖2 +
D2(4λ+ 1)

16

≤
(

8G2

λ
+ 32G2

)
ln

(
2λ

G2
VT +

2λH2

G2

T∑
t=1

‖xt − xt�1‖2 + 1

)
− 1

32

T∑
t=1

‖xt − xt�1‖2 +
D2(8λ+ 3)

32
.

To simplify the above inequality, we make use of the following fact

ln a ≤ a

b
+ ln b− 1, ∀a > 0, b > 0.

By setting

a =
2λ

G2
VT +

2λH2

G2

T∑
t=1

‖xt − xt�1‖2 + 1 and b =

(
2λ

G2
VT + 2

)m
,

where m > 0 is a factor depending on VT , we have

T∑
t=1

ft(xt)−
T∑
t=1

ft(x�)

≤
(

8G2

λ
+ 32G2

)( 2�
G2VT + 2�H2

G2

∑T
t=1 ‖xt − xt�1‖2 + 1

( 2�
G2VT + 2)m

+m ln

(
2λ

G2
VT + 2

)
− 1

)

− 1

32

T∑
t=1

‖xt − xt�1‖2 +
D2(8λ+ 3)

32

≤

[
16H2(1 + 4λ)

( 2�
G2VT + 2)m

− 1

32

]
T∑
t=1

‖xt − xt�1‖2 +

(
1

( 2�
G2VT + 2)m�1

− 1

)(
8G2

λ
+ 32G2

)
+

(
8G2

λ
+ 32G2

)
m ln

(
2λ

G2
VT + 2

)
+
D2(8λ+ 3)

32
.

(47)

From our choice of m in (42), we have

m ≥ log(512H2(1 + 4λ))

log( 2�
G2VT + 2)

⇒ 16H2(1 + 4λ)

( 2�
G2VT + 2)m

− 1

32
≤ 0, (48)

m ≥ 1⇒ 1

( 2�
G2VT + 2)m�1

− 1 ≤ 0. (49)

We complete the proof by combining (47), (48), and (49).

C. Experiments
In this part, we provide experimental details of Section 4.
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Settings We consider the problem of online linear classification. In each round t, the learner chooses a linear classifier
xt ∈ X . After submitting the decision, the learner observes a small set of m examples {w(i)

t , y
(i)
t }mi=1, where w

(i)
t ∈ Rd is

the feature vector of the i-th example, and y(i)t ∈ {−1,+1} is the corresponding label. Finally, the learner suffers a loss
ft(xt) and updates the classifier. To demonstrate the universality of USC, we consider two different loss functions: the
`2-regularized hinge-loss, i.e.,

ft(x) =
1

m

m∑
i=1

max
{

0, 1− y(i)t x>w
(i)
t

}
+
λ

2
‖x‖2

which is λ-strongly convex, and the standard hinge-loss, i.e.,

ft(x) =
1

m

m∑
i=1

max
{

0, 1− y(i)t x>w
(i)
t

}
which is convex. We conduct both experiments on the a9a dataset (Chang & Lin, 2011), which contains 32561 examples
and d = 123 features. During the learning process, we randomly sample m = 10 data points in each iteration. We configure
λ = 0.02, the diameter of the decision set D = 20, and the time horizon T = 10000. We also estimate the value of G based
on D and the gradient of the functions.

Algorithms We compare the performance of our proposed USC with existing universal methods MetaGrad (van Erven &
Koolen, 2016) and Maler (Wang et al., 2019). The candidate algorithms for USC are constructed as follows.

• The algorithm set for convex functions Acon includes OGD with step size ηt = G
D
p
t

(Zinkevich, 2003), and Adam
with hype-parameters β1 = 0.9, β2 = 0.999, and different step sizes in range {1, 10�1, . . . , 10�4} (Kingma & Ba,
2015).

• The algorithm set for exp-concave functions Aexp contains the ONS algorithm (Hazan et al., 2007). The set of possible
parameters Pexp is constructed following (26).

• The algorithm set for strongly convex functions Astr consists of SC-OGD with step size ηt = 1
�t (Shalev-Shwartz

et al., 2007), and SAdam with hype-parameters β1 = 0.9, β2 = 1− 0:9
t , and step size α = 0:1

� (Wang et al., 2020a).
The parameter set Pstr is constructed as in (23).

Results All the experiments are repeated 5 times and the averaged results are recorded. We present the regret v.s. the
number of iterations for optimizing strongly convex functions and convex functions in Fig. 1(a) and Fig. 1(b), respectively.
Apart from universal methods, we also report the best performance of each candidate algorithm in USC. As can be seen,
SC-OGD has the smallest regret for the strongly convex problem, while SAdam achieves the best performance for the
convex problem. In both experiments, the performance of USC nearly matches that of the best expert, and is better than
other universal methods such as MetaGrad and Maler.


