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A. Proof of Lemma 1
We first prove the first part of Lemma 1. Let k = blogK tc. Then, integer t can be represented in the base-K number system
as

t =

k∑
j=0

βjK
j .

From the definition of base-K ending time, integers that are no larger than t and alive at t are



1 �K0 +

k∑
j=1

βjK
j , 2 �K0 +

k∑
j=1

βjK
j , . . . , β0 �K0 +

k∑
j=1

βjK
j

1 �K1 +

k∑
j=2

βjK
j , 2 �K1 +

k∑
j=2

βjK
j , . . . , β1 �K1 +

k∑
j=2

βjK
j

. . .

1 �Kk−1 + βkK
k, 1 �Kk−1 + βkK

k, . . . , βk−1 �Kk−1 + βkK
k

1 �Kk, 2 �Kk, . . . , βkK
k


.

The total number of alive integers are upper bounded by

k∑
i=0

βi � (k + 1)(K � 1) = (blogK tc+ 1)(K � 1).

We proceed to prove the second part of Lemma 1. Let k = blogK rc, and the representation of r in the base-K number
system be

r =

k∑
j=0

βjK
j .
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We generate a sequence of segments as

I1 = [t1, e
t1 � 1] =

 k∑
j=0

βjK
j , (β1 + 1)K1 +

k∑
j=2

βjK
j � 1

 ,
I2 = [t2, e

t2 � 1] =

(β1 + 1)K1 +

k∑
j=2

βjK
j , (β2 + 1)K2 +

k∑
j=3

βjK
j � 1

 ,
I3 = [t3, e

t3 � 1] =

(β2 + 1)K2 +

k∑
j=3

βjK
j , (β3 + 1)K3 +

k∑
j=4

βjK
j � 1

 ,
. . .

Ik = [tk, e
tk � 1] =

[
(βk−1 + 1)Kk−1 + βkK

k, (βk + 1)Kk � 1
]
,

Ik+1 = [tk+1, e
tk+1 � 1] =

[
(βk + 1)Kk,Kk+1 � 1

]
,

Ik+2 = [tk+2, e
tk+2 � 1] =

[
Kk+1,Kk+2 � 1

]
,

. . .

until s is covered. It is easy to verify that
tm+1 > tm +Km−1 � 1.

Thus, s will be covered by the first m intervals as long as

tm +Km−1 � 1 � s.

A sufficient condition is
r +Km−1 � 1 � s

which is satisfied when
m = dlogK(s� r + 1)e+ 1.

B. Proof of Theorem 1
From the second part of Lemma 1, we know that there exist m segments

Ij = [tj , e
tj � 1], j 2 [m]

with m � dlogK(s� r + 1)e+ 1, such that

t1 = r, etj = tj+1, j 2 [m� 1], and etm > s.

Furthermore, the expert Etj is alive during the period [tj , e
tj � 1].

Using Claim 3.1 of Hazan & Seshadhri (2009), we have

etj−1∑
t=tj

ft(wt)� ft(w
tj
t ) � 1

α

log tj + 2

etj−1∑
t=tj+1

1

t

 , 8j 2 [m� 1]

where w
tj
tj , . . . ,w

tj

etj−1
is the sequence of solutions generated by the expert Etj . Similarly, for the last segment, we have

s∑
t=tm

ft(wt)� ft(wtm
t ) � 1

α

(
log tm + 2

s∑
t=tm+1

1

t

)
.
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By adding things together, we have

m−1∑
j=1

etj−1∑
t=tj

ft(wt)� ft(w
tj
t )

+

s∑
t=tm

ft(wt)� ft(wtm
t )

� 1

α

m∑
j=1

log tj +
2

α

s∑
t=r+1

1

t
� m+ 2

α
log T.

(8)

According to the property of online Newton step (Hazan et al., 2007, Theorem 2), we have, for any w 2 Ω,

etj−1∑
t=tj

ft(w
tj
t )� ft(w) � 5d

(
1

α
+GB

)
log T, 8j 2 [m� 1] (9)

and
s∑

t=tm

ft(w
tm
t )� ft(w) � 5d

(
1

α
+GB

)
log T. (10)

Combining (8), (9), and (10), we have,

s∑
t=r

ft(wt)�
s∑
t=r

ft(w) �
(

(5d+ 1)m+ 2

α
+ 5dmGB

)
log T

for any w 2 Ω.

C. Proof of Lemma 2
The gradient of exp(�αf(w)) is

r exp(�αf(w)) = exp(�αf(w))�αrf(w) = �α exp(�αf(w))rf(w).

and the Hessian is

r2 exp(�αf(w)) =�α exp(�αf(w))�αrf(w)r>f(w)� α exp(�αf(w))r2f(w)

=α exp(�αf(w))
(
αrf(w)r>f(w)�r2f(w)

)
.

Thus, f(�) is α-exp-concave if
αrf(w)r>f(w) � r2f(w).

We complete the proof by noticing
λ

G2
rf(w)r>f(w) � λI � r2f(w).

D. Proof of Theorem 2
Lemma 2 implies that all the λ-strongly convex functions are also �

G2 -exp-concave. As a result, we can reuse the proof of
Theorem 1. Specifically, (8) with α = �

G2 becomes

m−1∑
j=1

etj−1∑
t=tj

ft(wt)� ft(w
tj
t )

+

s∑
t=tm

ft(wt)� ft(wtm
t ) � (m+ 2)G2

λ
log T. (11)

According to the property of online gradient descent (Hazan et al., 2007, Theorem 1), we have, for any w 2 Ω,

etj−1∑
t=tj

ft(w
tj
t )� ft(w) � G2

2λ
(1 + log T ), 8j 2 [m� 1] (12)
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and
s∑

t=tm

ft(w
tm
t )� ft(w) � G2

2λ
(1 + log T ). (13)

Combining (11), (12), and (13), we have,

s∑
t=r

ft(wt)�
s∑
t=r

ft(w) � G2

2λ

(
m+ (3m+ 4) log T

)
for any w 2 Ω.

E. Proof of Theorem 4
As pointed out by Daniely et al. (2015), the static regret of online gradient descent (Zinkevich, 2003) over any interval of
length τ is upper bounded by 3BG

p
τ . Combining this fact with Theorem 2 of Jun et al. (2017), we get Theorem 4 in this

paper.

F. Proof of Corollary 5
To simplify the upper bound in Theorem 3, we restrict to intervals of the same length τ , and in this case k = T/τ . Then, we
have

D-Regret(w∗1, . . . ,w
∗
T ) � min

1≤�≤T

k∑
i=1

(
SA-Regret(T, τ) + 2τVT (i)

)
= min

1≤�≤T

(
SA-Regret(T, τ)T

τ
+ 2τ

k∑
i=1

VT (i)

)

� min
1≤�≤T

(
SA-Regret(T, τ)T

τ
+ 2τVT

)
.

Combining with Theorem 4, we have

D-Regret(w∗1, . . . ,w
∗
T ) � min

1≤�≤T

(
(c+ 8

p
7 log T + 5)Tp
τ

+ 2τVT

)
.

where c = 12BG/(
p

2� 1).

In the following, we consider two cases. If VT �
√

log T/T , we choose

τ =

(
T
p

log T

VT

)2=3

� T

and have

D-Regret(w∗1, . . . ,w
∗
T ) �

(c+ 8
p

7 log T + 5)T 2=3V
1=3
T

log1=6 T
+ 2T 2=3V

1=3
T log1=3 T

�
(c+ 8

p
5)T 2=3V

1=3
T

log1=6 T
+ (2 + 8

p
7)T 2=3V

1=3
T log1=3 T.

Otherwise, we choose τ = T , and have

D-Regret(w∗1, . . . ,w
∗
T ) �(c+ 8

√
7 log T + 5)

p
T + 2TVT

�(c+ 8
√

7 log T + 5)
p
T + 2T

√
log T

T

�(c+ 9
√

7 log T + 5)
p
T .



Dynamic Regret of Strongly Adaptive Methods

In summary, we have

D-Regret(w∗1, . . . ,w
∗
T ) �max


(c+ 9

√
7 log T + 5)

p
T

(c+ 8
p

5)T 2=3V
1=3
T

log1=6 T
+ 24T 2=3V

1=3
T log1=3 T

=O
(

max
{√

T log T , T 2=3V
1=3
T log1=3 T

})
.

G. Proof of Corollary 6
The first part of Corollary 6 is a direct consequence of Theorem 1 by setting K = dT 1=e.

Now, we prove the second part. Following similar analysis of Corollary 5, we have

D-Regret(w∗1, . . . ,w
∗
T ) � min

1≤�≤T

{(
(5d+ 1)(γ + 1) + 2

α
+ 5d(γ + 1)GB

)
T log T

τ
+ 2τVT

}
.

Then, we consider two cases. If VT � log T/T , we choose

τ =

√
T log T

VT
� T

and have

D-Regret(w∗1, . . . ,w
∗
T ) �

(
(5d+ 1)(γ + 1) + 2

α
+ 5d(γ + 1)GB + 2

)√
TVT log T .

Otherwise, we choose τ = T , and have

D-Regret(w∗1, . . . ,w
∗
T ) �

(
(5d+ 1)(γ + 1) + 2

α
+ 5d(γ + 1)GB

)
log T + 2TVT

�
(

(5d+ 1)(γ + 1) + 2

α
+ 5d(γ + 1)GB

)
log T + 2T

log T

T

=

(
(5d+ 1)(γ + 1) + 2

α
+ 5d(γ + 1)GB + 2

)
log T.

In summary, we have

D-Regret(w∗1, . . . ,w
∗
T ) �

(
(5d+ 1)(γ + 1) + 2

α
+ 5d(γ + 1)GB + 2

)
max

{
log T,

√
TVT log T

}
=O

(
d �max

{
log T,

√
TVT log T

})
.

H. Proof of Corollary 7
The first part of Corollary 7 is a direct consequence of Theorem 2 by setting K = dT 1=e.

The proof of the second part is similar to that of Corollary 6. First, we have

D-Regret(w∗1, . . . ,w
∗
T ) � min

1≤�≤T

{
G2

2λ

(
γ + 1 + (3γ + 7) log T

)T
τ

+ 2τVT

}
� min

1≤�≤T

{
(γ + 5γ log T )G2T

λτ
+ 2τVT

}
where the last inequality is due to the condition γ > 1.
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Then, we consider two cases. If VT � log T/T , we choose

τ =

√
T log T

VT
� T

and have

D-Regret(w∗1, . . . ,w
∗
T ) �γG

2

λ

√
TVT
log T

+
5γG2

λ

√
TVT log T + 2

√
TVT log T

=
γG2

λ

√
TVT
log T

+

(
5γG2

λ
+ 2

)√
TVT log T .

Otherwise, we choose τ = T , and have

D-Regret(w∗1, . . . ,w
∗
T ) � (γ + 5γ log T )G2

λ
+ 2TVT

� (γ + 5γ log T )G2

λ
+ 2T

log T

T

=
γG2

λ
+

(
5γG2

λ
+ 2

)
log T.

In summary, we have

D-Regret(w∗1, . . . ,w
∗
T ) �max


γG2

λ
+

(
5γG2

λ
+ 2

)
log T

γG2

λ

√
TVT
log T

+

(
5γG2

λ
+ 2

)√
TVT log T

=O
(

max
{

log T,
√
TVT log T

})
.


