
A Richer Theory of Convex Constrained Optimization
with Reduced Projections and Improved Rates

Tianbao Yang 1 Qihang Lin 1 Lijun Zhang 2

Abstract
This paper focuses on convex constrained opti-
mization problems, where the solution is subject
to a convex inequality constraint. In particular,
we aim at challenging problems for which both
projection into the constrained domain and a lin-
ear optimization under the inequality constraint
are time-consuming, which render both projected
gradient methods and conditional gradient meth-
ods (a.k.a. the Frank-Wolfe algorithm) expen-
sive. In this paper, we develop projection reduced
optimization algorithms for both smooth and
non-smooth optimization with improved conver-
gence rates under a certain regularity condition
of the constraint function. We first present a gen-
eral theory of optimization with only one pro-
jection. Its application to smooth optimization
with only one projection yields O(1=�) iteration
complexity, which improves over the O(1=�2)
iteration complexity established before for non-
smooth optimization and can be further reduced
under strong convexity. Then we introduce a lo-
cal error bound condition and develop faster al-
gorithms for non-strongly convex optimization at
the price of a logarithmic number of projections.
In particular, we achieve an iteration complex-
ity of Õ(1=�2(1−θ)) for non-smooth optimization
and Õ(1=�1−θ) for smooth optimization, where
� 2 (0; 1] appearing the local error bound con-
dition characterizes the functional local growth
rate around the optimal solutions. Novel applica-
tions in solving the constrained ‘1 minimization
problem and a positive semi-definite constrained
distance metric learning problem demonstrate
that the proposed algorithms achieve significant
speed-up compared with previous algorithms.
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1. Introduction
In this paper, we aim at solving the following convex con-
strained optimization problem:

min
x∈Rd

f(x); s:t: c(x) � 0; (1)

where f(x) is a smooth or non-smooth convex function and
c(x) is a lower-semicontinuous and convex function. The
problem can find applications in machine learning, signal
processing, statistics, marketing optimization, and etc. For
example, in distance metric learning one needs to learn a
positive semi-definite (PSD) matrix such that similar ex-
amples are close to each other and dissimilar examples are
far from each other (Weinberger et al., 2006; Xing et al.,
2003), where the positive semi-definite constraint can be
cast into a convex inequality constraint. Another example
arising in compressive sensing is to minimize the ‘1 norm
of high-dimensional vector subject to a measurement con-
straint (Candès & Wakin, 2008). Although general interior-
point methods can be applied to solve the problem with lin-
ear convergence, they suffer from exceedingly high com-
putational cost per-iteration. Another solution is to em-
ploy the projected gradient (PG) method (Nesterov, 2004)
or the conditional gradient (CG) method (Frank & Wolfe,
1956), where the PG method needs to compute the pro-
jection into the constrained domain at each iteration and
CG needs to solve a linear optimization problem under
the constraint. However, for many constraints (e.g., PSD,
quadratic constraints) both projection into the constrained
domain and the linear optimization under the constraint are
time-consuming, which restrict their capabilities to solving
these problems.

Recently, there emerges a new direction towards address-
ing the challenge of expensive projection that is to reduce
the number of projections. In the seminal paper (Mahdavi
et al., 2012), the authors have proposed two algorithms with
only one projection at the end of iterations for non-smooth
convex and strongly convex optimization, respectively. The
idea of both algorithms is to move the constraint function
into the objective function and to control the violation of
constraint for intermediate solutions. While their devel-
oped algorithms enjoy an optimal convergence rate for non-
smooth optimization (i.e., O(1=�2) iteration complexity)
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and a close-to-optimal convergence rate for strongly con-
vex optimization (i.e., Õ(1=�) 1), there still lack of theory
and algorithms with reduced projections and faster rates
for smooth convex optimization and for convex optimiza-
tion without strong convexity assumptions.

In this paper, we make significant contributions by devel-
oping a richer theory of convex constrained optimization
with reduced projections and faster rates. To be specific,

� we develop a general framework and theory of opti-
mization with only one projection, where any favorable
smooth or non-smooth convex optimization algorithms
can be employed to solve the intermediate augmented
unconstrained objective function. We discuss in full de-
tails the applicability of the proposed algorithms to prob-
lems with polyhedral, quadratic or PSD constraints.

� Applying the general theory to smooth convex opti-
mization 2 with Nesterov’s accelerated gradient meth-
ods yields an iteration complexity of O(1=�) with only
one projection. In addition, when equipped with an opti-
mal algorithm for strongly convex optimization the gen-
eral theory implies the optimal iteration complexity of
O(1=�) for strongly convex optimization with only one
projection. For smooth and strongly convex optimiza-
tion, the general theory implies an iteration complexity
of O(1=�β) where � 2 (1=2; 1) with only one projection
and a sufficiently large number of iterations.

� Building on the general framework and theory, we fur-
ther develop an improved theory with faster convergence
rates for non-strongly convex optimization at the price
of a logarithmic number of projections. In particular, we
show that under a mild local error bound condition, the
iteration complexities can be reduced to Õ(1=�2(1−θ))

for non-smooth optimization and Õ(1=�1−θ) for smooth
optimization, where � 2 (0; 1] is a constant in the local
error bound condition that characterizes the local growth
rate of functional values. To our knowledge, these are the
best convergence results with only a logarithmic number
of projections for non-strongly convex optimization. We
also demonstrate their effectiveness for solving compres-
sive sensing and distance metric learning problems.

2. Related Work
The issue of high projection cost in projected gradient
descent has received increasing attention in recent years.
Most studies are based on the Frank-Wolfe technique that
eschews the projection in favor of a linear optimization
over the constrained domain (Jaggi, 2013; Hazan & Kale,
2012; Lacoste-Julien et al., 2013; Garber & Hazan, 2015).
It happens that for many bounded domains (e.g., bounded

1where eO() suppresses a logarithmic factor.
2where the constraint function is assumed to be smooth.

balls for vectors and matrices, a PSD constraint with a
bounded trace norm) the linear optimization over the con-
strained domain is much cheaper than projection into the
constrained domain (Jaggi, 2013). However, there still ex-
ist many constraints that render both projection into the
constrained domain and linear optimization under the con-
straint are comparably expensive. Examples include poly-
hedral constraints, quadratic constraints and a PSD con-
straint 3.

To tackle these complex constraints, the idea of optimiza-
tion with a reduced number of projections was explored in
several studies since (Mahdavi et al., 2012). In a recent pa-
per (Chen et al., 2016), the authors show that for stochastic
strongly convex optimization, the optimal convergence rate
can be achieved using a logarithmic number of projections.
In contrast, the developed theory in this paper implies that
only one projection is sufficient to achieve the optimal con-
vergence rate for strongly convex optimization, and a log-
arithmic number of projections can be used to accelerate
convergence rates for non-strongly convex optimization.
Cotter et al. (2016) proposed a stochastic algorithm for
solving heavily constrained problems with many constraint
functions by extending the work of (Mahdavi et al., 2012).
Nonetheless, their focus is not to improve the convergence
rates. Zhang et al. (2013) studied the smooth and strongly
convex optimization and they proposed a stochastic algo-
rithm withO(� log(T )) projections and proved anO(1=T )
convergence rate, where � is the condition number and T
is the total number of iterations. Nonetheless, if the con-
dition number is high the number of projections could be
very large. In addition, their algorithm utilizes the mini-
batch to avoid frequent projections in stochastic optimiza-
tion, which is different from the present paper.

We note that several recent works also exploit different
forms of error bound conditions to improve the conver-
gence (Wang & Lin, 2014; So, 2013; Hou et al., 2013; Zhou
et al., 2015; Yang & Lin, 2016; Xu et al., 2016). Most
notably, the technique used in our work is closely related
to (Yang & Lin, 2016). However, for constrained optimiza-
tion problems the methods in (Yang & Lin, 2016) still need
to conduct projections at each iteration.

Finally, we comment on the differences between the pro-
posed methods and the classical penalty methods that also
move the constraint into the objective using a penalty func-
tion (Bertsekas, 1996). The major differences are that (i)
the classical penalty methods typically require solving each
subproblem exactly while our methods do not require that;
and (ii) the classical penalty methods typically guarantee
asymptotic convergence while our methods have explicit
convergence rates.

3Indeed, a linear optimization over a PSD constraint is ill-
posed because the PSD domain is unbounded.
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3. Preliminaries
Let 
 = fx 2 Rd : c(x) � 0g denote the constrained do-
main, 
∗ denote the optimal solution set and f∗ denote the
optimal objective value. We denote by rf(x) the gradient
and by @f(x) the subgradient of a smooth or non-smooth
function, respectively. When f(x) is a non-smooth func-
tion, we consider the problem as non-smooth constrained
optimization. When both f(x) and c(x) are smooth, we
consider the problem as smooth constrained optimization.
A function f(x) is L-smooth if it has a Lipschitz continu-
ous gradient, i.e., krf(x)�rf(y)k � Lkx� yk, where
k � k denotes the Euclidean norm. A function f(x) is �-
strongly convex if it satisfies f(x) � f(y) + @f(y)>(x�
y) + µ

2 kx� yk2.

In the sequel, dist(x;
) denotes the distance of x to a set

, i.e., dist(x;
) = minu∈Ω kx�uk. Let [s]+ be a hinge
operator that is defined as [s]+ = s if s � 0, and [s]+ = 0
if s < 0.

Throughout the paper, we make the the following assump-
tions to facilitate the development of our algorithms and
theory.

Assumption 1. For a convex minimization problem (1), we
assume (i) there exists a positive value � > 0 such that
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Remark: It is worth mentioning that we omit some con-
stant factors in the convergence boundBT ( ; x ; x1) that
are irrelevant to our discussions. The notationBT ( ; x ; x1)
emphasizes that it is a function of and depends onx1

and a target solutionx and it will be referred to asBT . In
the next several subsections, we will see that by carefully
choosing the penalty functionh (x) we are able to provide
nice convergence for smooth and non-smooth optimization
with only one projection. In the above theorem, we assume
the optimization algorithmA is deterministic. However, a
similar result can be easily extended to a stochastic opti-
mization algorithmA.

Proof. First, we considerc(bxT ) � 0, which implies that
bxT = exT . Due to the certi�cate ofh (x), F (exT ) �
f (exT ) and F (x � ) � f (x � ) + C . Hencef (exT ) �
F (bxT ) � F (x � ) + BT ( ; x1; x � ) � f (x � ) + C +
BT ( ; x1; x � ). Then (7) follows due to��= (�� � G) � 1.
Next, we assumec(bxT ) > 0. Inequality (6) implies that

f (bxT ) + � [c(bxT )]+ � f (x � ) + C + BT ( ; x � ; x1): (8)

By Assumption 1(i), we have[c(bxT )]+ � � kbxT � exT k.
Combined with (8) we have

�� kbxT � exT k � f (x � ) � f (bxT ) + C + BT ( ; x � ; x1)

� GkbxT � exT k + C + BT ( ; x � ; x1);

where the last inequality follows that factf (x � ) � f (bxT ) �
f (x � ) � f (exT ) + f (exT ) � f (bxT ) � GkbxT � exT k because
the Lipschitz property andf (x � ) � f (exT ). Therefore we
have

kbxT � exT k �
C + BT ( ; x � ; x1; )

�� � G
:

Finally, we obtain

f (exT ) � f (x � ) � f (exT ) � f (bxT ) + f (bxT ) � f (x � )

� GkbxT � exT k + C + BT ( ; x � ; x1)

�
��

�� � G
(C + BT ( ; x � ; x1)) :

4.1. Non-smooth Optimization

Since an optimal convergence rate for general non-smooth
optimization with only one projection has been attained
in (Mahdavi et al., 2012), in this subsection we present an
optimal convergence result for strongly convex problems.
For non-smooth optimization, we can choose

h(x) = � [c(x)]+ ;

and hence = 0 . We will use deterministic subgradi-
ent descent as an example to demonstrate the convergence
for f (x), though many other optimization algorithms de-
signed for non-smooth optimization are applicable (e.g.,

the stochastic subgradient method). The update of subgra-
dient descent method is given by the following

x t +1 = x t � � t @F(x t ); t = 1 ; : : : ; T; (9)

where� t is an appropriate step size. Iff (x) is � -strongly
convex, the step size can be set as� t = 1=(�t ) and
the �nal solution can be computed by the� -suf�x aver-
aging bxT = 1

�T

P T
t =(1 � � )T +1 x t with � > 0 (Rakhlin

et al., 2012), or by the polynomial decay averaging with
bx t = (1 � s+1

s+ t )bx t � 1 + s+1
s+ t x t ands � 1 (Shamir & Zhang,

2013). Both schemes can attainBT = O(1=(�T )) for
the convergence ofF (x) whenf (x) is � -strongly convex.
Combining this with Theorem 1, we have the following
convergence result with the proof omitted due to its sim-
plicity.

Corollary 2. Suppose that Assumption 1 holds andf (x) is
� -strongly convex. SetF (x) = f (x) + � [c(x)]+ with � �
G=� . Let (9) run forT iterations with� t = 1=(�t ). LetbxT

be computed by� -suf�x averaging or the polynomial decay
averaging. Then with only one projectionexT = � 
 (bxT ),
we achieve

f (exT ) � f � �
��

�� � G
(G + �G c)2O(1)

�T
:

Remark: We note that theO(1=(�T )) is also achieved for
strongly convex optimization in (Zhang et al., 2013; Chen
et al., 2016) but with a logarithmic number of projections.
In contrast, Corollary 2 implies only one projection is suf-
�cient to achieve the optimal convergence for strongly con-
vex optimization.

4.2. Smooth Optimization

For smooth optimization, we consider bothf (x) andc(x)
to be smooth4. Let the smoothness parameter off (x) and
c(x) be L f and L c, respectively. In order to ensure the
augmented functionF (x) to be still a smooth function,
we construct the following penalty function

h (x) =  ln (1 + exp ( �c (x)= )) : (10)

The following proposition shows thath (x) is a smooth
function and obeys the condition in (4).

Proposition 1. Supposec(x) is L c-smooth andGc-
Lipschitz continuous. The penalty function in (10) is a
(�L c + � 2 G2

c
4 )-smooth function and satis�es (i)h (x) �

� [c(x)]+ and (ii) h (x) �  ln 2, 8x such thatc(x) � 0.

ThenF (x) is a smooth function and its smoothness pa-

rameter is given byL F = L f + �L c + � 2 G2
c

4 . Next, we will

4it can be extended to whenf (x ) is non-smooth but its proxi-
mal mapping can be easily solved.
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Quadratic constraint. A quadratic constraint can take
the form of kAx � yk2 � � , where A 2 Rm×d and
y 2 Rm. Such a constraint appears in compressive sens-
ing (Candès & Wakin, 2008)5, where the goal is to re-
construct a sparse high-dimensional vector x from a small
number of noisy measurements y = Ax + " 2 Rm with
m� d. The corresponding optimization problem is

minx∈Rd kxk1; s:t: kAx� yk2 � �: (14)

where � � k"k2 is an upper bound on the magnitude of the
noise. To check the Assumption 1(i), we note that c(x) =
kAx�yk2�� andrc(x) = A>(Ax�y). Let us consider
that A has a full row rank 6 and denote by v = Ax � y,
then on the boundary c(x) = 0 we have kvk =

p
� and

kA>vk �
√
��min(AA>), where �min(AA>) > 0 is the

minimum eigenvalue of AA> 2 Rm×m. Therefore the
Assumption 1(i) is satisfied with � =

√
��min(AA>). It

is notable that the projection and the linear optimization
under the quadratic constraint require solving a quadratic
programming problem and therefore could be expensive.

PSD constraint. A PSD constraintX � 0 forX 2 Rd×d
can be written as an inequality constraint ��min(X) � 0,
where �min(X) denotes the minimum eigen-value of X .
The subgradient of c(X) = ��min(X) when �min(X) =
0 is given by Convf�uu>jkuk = 1; Xu = 0g, i.e., the
convex hull of the outer products of normalized vectors in
the null space of the matrix X . In (Yang et al., 2017), we
show that if the dimension of the null space of X is r with
1 � r � d, the norm of the subgradient of c(X) on the
boundary c(X) = 0 is lower bounded by � = 1√

r
� 1√

d
.

Finally, we note that computing a subgradient of [c(X)]+
only needs to compute one eigen-vector corresponding to
the smallest eigen-value. In contrast, both projection and
linear optimization under a PSD constraint could be very
expensive for high-dimensional problems. In particular, the
projection onto a PSD domain needs to conduct a singular
value decomposition. The linear optimization over a PSD
cone is ill-posed due to that PSD cone is not compact (the
solution is either 0 or infinity). One may add an artificial
constraint on the upper bound of the eigen-values. Accord-
ing to (Jaggi, 2013), the time complexity for solving this
linear optimization problem approximately up to an accu-
racy level �′ is O(Nd1.5=�′

2.5
) with N being the number

of non-zeros in the gradient and �′ decreasing iteratively
required in the Frank-Wolfe method, which could be much
more expensive especially for high-dimensional problems
and in later iterations than computing the first eigen-pairs
at each iteration in our methods.

5Here we use the square constraint to make it a smooth func-
tion so that the proposed algorithms for smooth optimization are
applicable by using proximal gradient mapping to handle the ‘1
norm.

6which is reasonable because m � d.

7. Applications
7.1. Compressive Sensing
We first consider a compressive sensing problem in (14).
Becker et al. (2011) proposed an optimization algorithm
based on the Nesterov’s smoothing and the Nesterov’s op-
timal method for the smoothed problem, known as NESTA.
It needs to perform the projection into the domain kAx �
yk2 � � at every iteration and has an iteration complexity
of O(1=�). In contrast, the presented algorithm with only
one projection in Section 4.2 using Nesterov’s accelerated
proximal gradient method (Beck & Teboulle, 2009) to solve
the unconstrained problem enjoys an iteration complexity
ofO(1=�). Moreover, we present a theorem below showing
that the problem (14) satisfies the local error bound con-
dition with � = 1=2, and hence the presented LoPNAG
enjoys an Õ(1=

p
�) iteration complexity with only a loga-

rithmic number of projections.

Theorem 6. Let f(x) = kxk1; c(x) = kAx � yk2 � � ,

∗ denote the optimal set and f∗ be the optimal solution
to (14). Assume that there exists x0 such that kAx0�yk2 <
� and 0 62 
∗. Then for any � > 0, x 2 Rd such that
c(x) � 0 and f(x) � f∗ + �, there exists 0 < � < 1
such that dist(x;
∗) � �(f(x) � f∗)

1/2. Hence, LoP-
NAG can have an iteration complexity of Õ(1=

p
�) with

only O(log(1=�)) projections.

Next, we demonstrate the effectiveness of the LoPNAG for
solving the compressive sensing problem in (14) by com-
paring with NESTA. We generate a synthetic data for test-
ing. In particular, we generate a random measurement ma-
trix A 2 Rm×d with m = 1000 and d = 5000. The en-
tries of the matrix A are generated independently with the
uniform distribution over the interval [�1;+1]. The vector
x∗ 2 Rd is generated with the same distribution at 100 ran-
domly chosen coordinates. The noise " 2 Rm is a dense
vector with independent random entries with the uniform
distribution over the interval [��; �], where � is the noise
magnitude and is set to 0:01. Finally the vector y was ob-
tained as y = Ax∗ + ".

We use the Matlab package of NESTA 7. For fair compari-
son, we also use the projection code in the NESTA package
for conducting projection. To handle the unknown smooth-
ness parameter in the proposed algorithm, we use the back-
tracking technique (Beck & Teboulle, 2009). The param-
eter  is initially set to 0:001 and decreased by half every
5000 iterations after a projection and the target smoothing
parameter in NESTA is set to 10−5. For the value of � in
LoPNAG, we tune it from its theoretical value to several
smaller values and choose the one that yields the fastest
convergence. We report the results in Table 7.1, which
include different number of iterations, the corresponding

7http://statweb.stanford.edu/˜candes/
nesta/

http://statweb.stanford.edu/~candes/nesta/
http://statweb.stanford.edu/~candes/nesta/
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Table 1. LoPNAG vs. NESTA for solving the compressive sensing problem.
LoPNAG NESTA

Iters - Projs Rec. Err. Objective Time (s) Iters - Projs Rec. Err. Objective Time (s)
5000 - 1 0:018017 52:042878 18:04 1000 - 2000 0:137798 52:703275 48:49
10000 - 2 0:018038 52:042418 35:88 3000 - 6000 0:018669 52:050051 93:84
15000 - 3 0:018043 52:042358 53:09 5000 - 10000 0:018659 52:050046 245:23
20000 - 4 0:018043 52:042358 70:24 8000 - 16000 0:018657 52:050045 404:72
25000 - 5 0:018043 52:042358 87:32 10000 - 20000 0:018657 52:050044 501:65

Table 2. LoPGD vs. OPGD and PGD for solving the considered distance metric learning problem.
LoPGD OPGD PGD

Iters - Projs Objective Time (h) Iters - Projs Objective Time (h) Iters - Projs Objective Time (h)
1000 - 1 0:0953 0:22 1000 - 1 0:1707 0:20 1000 - 1000 0:1491 7:97
2000 - 2 0:0695 0:43 2000 - 1 0:1583 0:40 2000 - 2000 0:1278 15:46
4000 - 4 0:0494 0:87 4000 - 1 0:1469 0:80 4000 - 4000 0.1072 29.39
6000 - 6 0:0428 1:33 6000 - 1 0:1398 1:22 6000 - 6000 0:0957 43:36
8000 - 8 0:0405 1:89 8000 - 1 0:1343 1:64 8000 - 8000 0:0879 57:43

number of projections, the recovery error of the found so-
lution compared to the underlying true sparse solution, the
objective value (i.e., the ‘1 norm of the found solution) and
the running time. Note that each iteration of NESTA re-
quires two projections because it maintains two extra se-
quence of solutions. From the results, we can see that LoP-
NAG converges significantly faster than NESTA. Even with
only one projection, we are able to obtain a better solution
than that of NESTA after running 10000 iterations.

7.2. High-dimensional Distance Metric Learning
Consider the following distance metric learning problem:

min
A�0

1

2jEj
∑

(i,j)∈E

(1�yij�kxi�xjk2A)2 + �kAkoff
1 ; (15)
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