Supplementary Material: Online Kernel Learning with a Near Optimal Sparsity Bound

L un Z an			ZHANGLIJ MSU EDU
JnnY			YIJINFEN MSU EDU
on Jn			RONGJIN CSE MSU EDU
Dp mno Compl	n n n n	n n n	n n 💆 🏲 A
n Ln			LIN M 8 MAILS TSINGHUA EDU CN
Dp mno Alom on	n / n	B n 🔻 C n	
X ao H			XIAOFEIHE CAD. ZJU. EDU. CN

o o o CAD C Co o Compl n Z n n n o l C n

A. Proof of Theorem 2

po`ovolnon n/molppooo opm`oln

B on \mathcal{T}_1 is on l no \mathcal{T}_2 , $u \in \mathcal{T}_2$ nn $j \in n$ n in on $\xi \in \mathcal{H}$ l

$$\kappa , \cdot \kappa \mathbf{x} , \cdot \mathbf{u} \xi, u y, n \langle \xi, \kappa \mathbf{x} , \cdot \rangle_{\mathcal{H}_{\kappa}} , \forall i \in n.$$

$$f_* = \frac{R}{\sqrt{n}} \sum_{i=1}^n y \kappa \mathbf{x}_i$$

 $\mathbf{m}_{n} \mathbf{m}$ in i = 0 on T = n n \mathbf{m}_{p}

$$f_* \qquad \inf_{\| \ \| \mathcal{H}_{\kappa} \leq \ =1} \ell \ u \ , f \qquad \qquad \inf_{\| \ \| \mathcal{H}_{\kappa} \leq \ =1} \ell \ u \ , \langle f, \kappa \ , \cdot \ \rangle_{\mathcal{H}_{\kappa}} \qquad \inf_{\| \ \| \mathcal{H}_{\kappa} \leq \ =1} \sum_{i=1}^{n} \ell \ y \ , \langle f, \kappa \ \mathbf{x} \ , \cdot \mathbf{\Psi} \ \xi \ \rangle_{\mathcal{H}_{\kappa}} \ ,$$

n mn m o n

$$\epsilon$$
 T in \mathbf{v} p $-R/\sqrt{n}$.

C oo n

$$R = \sqrt{n} \ln \frac{T}{n},$$

V.

$$\epsilon \leq T$$
 p $-R/\sqrt{n}$ n

 $\epsilon \ge I \quad p - n/\sqrt{n} \quad n.$ $l \quad op \quad n \quad o \quad l \quad on \quad f_* \quad n \quad l \quad ppo \quad o \quad n \quad o \quad o \quad O \quad n$

v mn pomnoAo m Fom o m v nov o n n/m o/ppo o o on o o

$$O \in \mathbb{R}^2$$
 $O n n T^2$.

Fn v on n o m o p q n o n f f_1, \dots, f' v no mo n n - ppo o B o q on q o n m m m m T/n n m mp n q n - ppo o B o q on q o n m m q m T/n n n mp n

$$\frac{T}{n}$$
 in $\left(\frac{T}{n}\right)$.

B. Proof of Lemma 1

f Bnnnqlonn CBn lo v. onnl o in on

or (Bernstein's inequality for martingales). Let X_1, \ldots, X_n be a bounded martingale difference sequence with respect to the filtration \mathcal{F} $\mathcal{F}_{1 \leq \leq n}$ and wit

C. Proof of Lemma 2

$$\begin{pmatrix} \geq \sqrt{GA \ \tau} - K\tau \end{pmatrix} \\ \begin{pmatrix} \geq \sqrt{GA \ \tau} - K\tau, A \ \leq G_1T \end{pmatrix} \\ \begin{pmatrix} \geq \sqrt{GA \ \tau} - K\tau, A \ \leq G_1T \end{pmatrix} \\ \begin{pmatrix} \geq \sqrt{GA \ \tau} - K\tau, \ ^2 \leq GA \ , A \ \leq G_1T \end{pmatrix} \\ \leq \begin{pmatrix} \geq \sqrt{GA \ \tau} - K\tau, \ ^2 \leq GA \ , A \ \leq T \end{pmatrix} \\ \downarrow \sum_{i=1}^{r} \begin{pmatrix} \geq \sqrt{GA \ \tau} - K\tau, \ ^2 \leq GA \ , A \ \leq T \end{pmatrix} \\ \leq \begin{pmatrix} A \ \leq T \end{pmatrix} - K\tau \sum_{i=1}^{r} \begin{pmatrix} \geq \sqrt{GA \ \tau} - K\tau, \ ^2 \leq GA \ , T \end{pmatrix} \\ \leq \begin{pmatrix} A \ \leq T \end{pmatrix} - K\tau = I \\ = I \end{pmatrix} \\ \leq \begin{pmatrix} A \ \leq T \end{pmatrix} = I \\ = I \end{pmatrix} \\ \leq \begin{pmatrix} A \ \leq T \end{pmatrix} = I \\ = I \end{pmatrix}$$