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A. Proof of Theorem 2

We here prove a lower bound on the number of support vectors to achieve the optimal regret bound.

First, we construct a set of n examples T1 = {(xi, yi)}n
i=1, where 〈κ(xi, ·), κ(xj , ·)〉Hκ

= δij and yi ∈ {1,−1}. To
make the construction, consider the degree-d polynomial kernel κ(x,y) = (xTy)d and an Euclidean space R

m

where m > n. Since m > n, we can find a set of orthonormal vectors {x1, . . . ,xn} in R
m such that xT

i xj = 0
when i 6= j and xT

i xi = 1. It is easy to verify that this construction satisfies our assumption κ(xi,xj) = δij . For
the Gaussian kernel, when the distance between xi and xj are large enough, we also have κ(xi,xj) ≈ δij .

Based on T1, we construct another set T2: (z, u) ∈ T2 if there exist an index j ∈ [n] and a function ξ ∈ Hκ such
that

κ(z, ·) = κ(xj , ·) + ξ, u = yj , and 〈ξ, κ(xi, ·)〉Hκ
= 0, ∀i ∈ [n]. (13)

Thus, for each (z, u) ∈ T2, there is a corresponding (xj , yj) ∈ T1 such that the relationships in (13) hold. The
existence of T2 can be proved in a similar way as that of T1.
Second, we select T distinct training examples (z1, u1), . . . , (zT , uT ) from T2 such that, for each (x, y) ∈ T1 there
are T/n examples constructed from it. Taking logit loss ℓ(y, z) = ln(1 + exp(−yz)) as an example. From the
above constructions, it is easy to check that

f∗ =
R√
n

n
∑

i=1

yiκ(xi, ·)

minimizes the cumulative loss on the T training examples, i.e.,

f∗ = argmin
‖f‖Hκ

≤R

T
∑

i=1

ℓ(ui, f(zi)) = argmin
‖f‖Hκ

≤R

T
∑

i=1

ℓ(ui, 〈f, κ(zi, ·)〉Hκ
) = argmin

‖f‖Hκ
≤R

n
∑

j=1

T/n
∑

k=1

ℓ(yj , 〈f, κ(xj , ·) + ξjk〉Hκ
),

and the minimal loss is given by
ǫ = T ln(1 + exp(−R/

√
n)).

Choosing

R =
√
n ln

T

n
,
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we have
ǫ ≤ T exp(−R/

√
n) = n.

Thus, the optimal solution f∗ has n support vectors and the associated loss is O(n).

Third, we examine the performance of Algorithm 1. From Theorem 1, we know that both the regret and the
number of support vectors of OSKL is on the order of

O(ǫ+R2) = O(n[lnT ]2).

Finally, we consider any algorithm that outputs a sequence of kernel classifiers f ′
1, . . . , f

′
T with no more than

n− 1 support vectors. By our construction, this algorithm must misclassify at least T/n training examples, and

the cumulative loss
∑T

i=1
ℓ(ui, f

′
i(zi)) must be larger than

T

n
ln 2 = Ω

(

T

n

)

.

Recall that the cumulative loss of f∗ is O(n). So, the regret of this algorithm is also larger than Ω(T/n), which
is significantly worse than O(n[lnT ]2) for large T .

B. Proof of Lemma 1

We first state the Bernstein’s inequality for martingales (Cesa-Bianchi & Lugosi, 2006), which lays the foundation
of the main results.

Theorem 3. (Bernstein’s inequality for martingales). Let X1, . . . , Xn be a bounded martingale difference se-
quence with respect to the filtration F = (Fi)1≤i≤n
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C. Proof of Lemma 2

We use the same definitions of Xt, ΛT , K and Σ2
T in Appendix B. Notice that AT in the upper bound for Σ2

T is
a random variable, thus we cannot direct apply Theorem 3. To handle this challenge, we make use of the peeling
process described in (Bartlett et al., 2005), and have

Pr

(

ΛT ≥ 2
√

GAT τ +
2

3
Kτ

)

=Pr

(

ΛT ≥ 2
√

GAT τ +
2

3
Kτ,AT ≤ G1T

)

=Pr

(

ΛT ≥ 2
√

GAT τ +
2

3
Kτ,Σ2

T ≤ GAT , AT ≤ G1T

)

≤Pr

(

ΛT ≥ 2
√

GAT τ +
2

3
Kτ,Σ2

T ≤ GAT , AT ≤ 1

T

)

+

m
∑

i=1

Pr

(

ΛT ≥ 2
√

GAT τ +
2

3
Kτ,Σ2

T ≤ GAT ,
2i−1

T
< AT ≤ 2i

T

)

≤Pr

(

AT ≤ 1

T

)

+

m
∑

i=1

Pr

(

ΛT ≥
√

2
G2i

T
τ +

2

3
Kτ,Σ2

T ≤ G2i

T

)

≤Pr

(

AT ≤ 1

T

)

+me−τ ,

where m = ⌈log2(G1T
2)⌉, and the last step follows the Bernstein’s inequality for martingales. We complete the

proof by setting τ = ln(m/δ), and using the assumption AT > 1/T .


