
Published as a conference paper at ICLR 2020

SADAM: A VARIANT OF ADAM FOR
STRONGLY CONVEX FUNCTIONS

Guanghui Wang1, Shiyin Lu1, Quan Cheng1, Wei-Wei Tu2 and Lijun Zhang1,�
1National Key Laboratory for Novel Software Technology, Nanjing University, China
24Paradigm Inc., Beijing, China
{wanggh,lusy,chengq,zhanglj}@lamda.nju.edu.cn,tuwwcn@gmail.com

ABSTRACT

The Adam algorithm has become extremely popular for large-scale machine learn-
ing. Under convexity condition, it has been proved to enjoy a data-dependent
O(
√
T) regret bound where T is the time horizon. However, whether strong con-

vexity can be utilized to further improve the performance remains an open problem.
In this paper, we give an affirmative answer by developing a variant of Adam
(referred to as SAdam) which achieves a data-dependent O(log T) regret bound
for strongly convex functions. The essential idea is to maintain a faster decaying
yet under controlled step size for exploiting strong convexity. In addition, under a
special configuration of hyperparameters, our SAdam reduces to SC-RMSprop, a
recently proposed variant of RMSprop for strongly convex functions, for which
we provide the first data-dependent logarithmic regret bound. Empirical results on
optimizing strongly convex functions and training deep networks demonstrate the
effectiveness of our method.

1 INTRODUCTION

Online Convex Optimization (OCO) is a well-established learning framework which has both theoret-
ical and practical appeals (Shalev-Shwartz et al., 2012). It is performed in a sequence of consecutive
rounds: In each round t, firstly a learner chooses a decision xt from a convex set D ⊆ Rd, at the
same time, an adversary reveals a loss function ft(·) : D 7→ R, and consequently the learner suffers a
loss ft(xt). The goal is to minimize regret, defined as the difference between the cumulative loss of
the learner and that of the best decision in hindsight (Hazan et al., 2016):

R(T) :=

T∑
t=1

ft(xt)−min
x2D

T∑
t=1

ft(x):

The most classic algorithm for OCO is Online Gradient Descent (OGD) (Zinkevich, 2003), which
attains an O(

√
T) regret. OGD iteratively performs descent step towards gradient direction with a

predetermined step size, which is oblivious to the characteristics of the data being observed. As a
result, its regret bound is data-independent, and can not benefit from the structure of data. To address
this limitation, various of adaptive gradient methods, such as Adagrad (Duchi et al., 2011), RMSprop
(Tieleman & Hinton, 2012) and Adadelta (Zeiler, 2012) have been proposed to exploit the geometry
of historical data. Among them, Adam (Kingma & Ba, 2015), which dynamically adjusts the step size
and the update direction by exponential average of the past gradients, has been extensively popular
and successfully applied to many applications (Xu et al., 2015; Gregor et al., 2015; Kiros et al.,
2015; Denkowski & Neubig, 2017; Bahar et al., 2017). Despite the outstanding performance, Reddi
et al. (2018) pointed out that Adam suffers the non-convergence issue, and developed two modified
versions, namely AMSgrad and AdamNC. These variants are equipped with data-dependent regret
bounds, which are O(

√
T) in the worst case and become tighter when gradients are sparse 1.

∗Lijun Zhang is the corresponding author.
1We note that, as very recently pointed out by Tran et al. (2019), there still exists a minor theoretical flaw in the

analysis of Reddi et al. (2018), and such issue in fact appears in many of recent variants of AMSgrad/AdamNC.
In this paper, we provide a simple way to fix this problem. The details can be found in Appendix G.

1

Published as a conference paper at ICLR 2020

While the theoretical behavior of Adam in convex cases becomes clear, it remains an open problem
whether strong convexity can be exploited to achieve better performance. Such property arises, for
instance, in support vector machines as well as other regularized learning problems, and it is well-
known that the vanilla OGD with an appropriately chosen step size enjoys a much better O(log T)
regret bound for strongly convex functions (Hazan et al., 2007). In this paper, we propose a variant
of Adam adapted to strongly convex functions, referred to as SAdam. Our algorithm follows the
general framework of Adam, yet keeping a faster decaying step size controlled by time-variant
heperparameters to exploit strong convexity. Theoretical analysis demonstrates that SAdam achieves
a data-dependent O(log T) regret bound for strongly convex functions, which means that it converges
faster than AMSgrad and AdamNC in such cases, and also enjoys a huge gain in the face of sparse
gradients.

Furthermore, under a special configuration of heperparameters, the proposed algorithm reduces

Published as a conference paper at ICLR 2020

essentially limited to recent few gradients. Since the invention of RMSprop, many EMA variants of
Adagrad have been developed (Zeiler, 2012; Kingma & Ba, 2015; Dozat, 2016). One of the most
popular algorithms is Adam (Kingma & Ba, 2015), where the first-order momentum acceleration,
shown in (2), is incorporated into RMSprop to boost the performance:

ĝt = �1ĝt�1 + (1− �1)gt (2)

Vt = �2Vt�1 + (1− �2)diag(gtg
>
t) (3)

xt+1 = xt −
�√
t
Vt
�1/2ĝt (4)

While it has been successfully applied to various practical applications, a recent study by Reddi
et al. (2018) shows that Adam could fail to converge to the optimal decision even in some simple
one-dimensional convex scenarios due to the potential rapid fluctuation of the step size. To resolve
this issue, they design two modified versions of Adam. The first one is AMSgrad,

V̂t = max
{
V̂t�1; Vt

}
xt+1 = xt −

�√
t
V̂
�1/2
t ĝt

where an additional element-wise maximization procedure is employed before the update of xt to
ensure a stable step size. The other is AdamNC, where the framework of Adam remains unchanged,
yet a time-variant �2 (i.e., �2t) is adopted to keep the step size under control. Theoretically, the two
algorithms achieve data-dependentO(

√
T
∑d
i=1 vT,i+

∑d
i=1 ‖g1:T,i‖ log T) andO(

√
T
∑d
i=1 vT,i+∑d

i=1 ‖g1:T,i‖) regrets respectively. In the worst case, they suffer O(d
√
T log T) and O(d

√
T)

regrets respectively, and enjoy a huge gain when data is sparse.

Note that the aforementioned algorithms are mainly analysed in general convex settings and suffer
at least O(d

√
T) regret in the worst case. For online strongly convex optimization, the classical

OGD with step size proportional to O(1=t) (referred to as strongly convex OGD) achieves a data-
independent O(d log T) regret (Hazan et al., 2007). Inspired by this, Mukkamala & Hein (2017)
modify the update rule of Adagrad in (1) as follows

xt+1 = xt −
�

t
Vt
�1gt

so that the step size decays approximately on the order of O(1=t), which is similar to that in strongly
convex OGD. The new algorithm, named SC-Adagrad, is proved to enjoy a data-dependent regret
bound of O(

∑d
i=1 log(‖g1:T,i‖2)), which is O(d log T) in the worst case. They further extend this

idea to RMSprop, and propose an algorithm named SC-RMSprop. However, as pointed out in Section
3, their regret bound for SC-RMSprop is in fact data-independent, and in this paper we provide the
first data-dependent regret bound for this algorithm.

Very recently, several modifications of Adam adapted to non-convex settings have been developed
(Chen et al., 2019; Basu et al., 2018; Zhang et al., 2018; Shazeer & Stern, 2018). However, to our
knowledge, none of these algorithms are particularly designed for strongly convex functions, nor
enjoy a logarithmic regret bound.

3 SADAM

In this section, we first describe the proposed algorithm, then state its theoretical guarantees, and
finally compare it with the SC-RMSprop algorithm.

3.1 THE ALGORITHM

Before proceeding to our algorithm, following previous studies, we introduce some standard defini-
tions (Boyd & Vandenberghe, 2004) and assumptions (Reddi et al., 2018).
Definition 1. A function f(·) : D 7→ R is �-strongly convex if ∀x1; x2 ∈ D;

f(x1) ≥ f(x2) +∇f(x2)>(x1 − x2) +
�

2
‖x1 − x2‖2: (5)

3

Published as a conference paper at ICLR 2020

Algorithm 1 SAdam

1: Input: {�1t}Tt=1; {�2t}Tt=1; �

2: Initialize: ĝ0 = 0, V̂0 = 0d�d; x1 = 0.
3: for t = 1; : : : ; T do
4: gt = ∇ft(xt)
5: ĝt = �1tĝt�1 + (1− �1t)gt
6: Vt = �2tVt�1 + (1− �2t)diag(gtg>t)

7: V̂t = Vt + δ
t Id

8: xt+1 = �V̂t

D

(
xt − α

t V̂
�1
t ĝt

)
9: end for

Assumption 1. The infinite norm of the gradients of all loss functions are bounded by G1, i.e., their
exists a constant G1 > 0 such that maxx2D ‖∇ft(x)‖1 ≤ G1 holds for all t ∈ [T].
Assumption 2. The decision set D is bounded. Specifically, their exists a constant D1 > 0 such
that maxx1,x22D ‖x1 − x2‖1 ≤ D1.

We are now ready to present our algorithm, which follows the general framework of Adam and is
summarized in Algorithm 1. In each round t, we firstly observe the gradient at xt (Step 4), then
compute the first-order momentum ĝt (Step 5). Here �1t a time-variant hyperparameter. Next, we
calculate the second-order momentum Vt by EMA of the square of past gradients (Step 6). This
procedure is controlled by �2t, whose value will be discussed later. After that, we add a vanishing
factor δt to the diagonal of Vt and get V̂t (Step 7), which is a standard technique for avoiding too large
steps caused by small gradients in the beginning iterations. Finally, we update the decision by ĝt and
V̂t, which is then projected onto the decision set (Step 8).

While SAdam is inspired by Adam, there exist two key differences: One is the update rule of xt in
Step 8, and the other is the configuration of �2t in Step 6. Intuitively, both modifications stem from
strongly convex OGD, and jointly result in a faster decaying yet under controlled step size which
helps utilize the strong convexity while preserving the practical benefits of Adam. Specifically, in the
first modification, we remove the square root operation in (4) of Adam, and update xt at Step 8 as
follows

xt+1 = xt −
�

t
V̂ �1t ĝt: (6)

In this way, the step size used to update the i-th element of xt is α
t v̂
�1
t,i , which decays in general on

the order of O(1=t), and can still be automatically tuned in a per-feature basis via the EMA of the
historical gradients.

The second modification is made to �2t, which determines the value of Vt and thus also controls the
decaying rate of the step size. To help understand the motivation behind our algorithm, we first revisit
Adam, where �2t is simply set to be constant, which, however, could cause rapid fluctuation of the
step size, and further leads to the non-convergence issue. To ensure convergence, Reddi et al. (2018)
propose that �2t should satisfy the following two conditions:
Condition 1. ∀t ∈ [T] and i ∈ [d];

√
tv

1/2
t,i

�
−
√
t− 1v

1/2
t�1,i

�
≥ 0:

Condition 2. For some � > 0 and ∀t ∈ [T], i ∈ [d],√√√√t

t∑
j=1

�t�j
k=1�2(t�k+1)(1− �2j)g2j,i ≥

1

�

√√√√ t∑
j=1

g2j,i:

The first condition implies that the difference between the inverses of step sizes in two consecutive
rounds is positive. It is inherently motivated by convex OGD (i.e., OGD with step size αp

t
, where

� > 0 is a constant factor), in which
√
t

�
−
√
t− 1

�
≥ 0;∀t ∈ [T]

4

Published as a conference paper at ICLR 2020

is a key condition used in the analysis. We first modify Condition 1 by mimicking the behavior
of strongly convex OGD as we are devoted to minimizing regret for strongly convex functions. In
strongly convex OGD (Hazan et al., 2007), the step size at each round t is set as α

t with � ≥ 1
λ for

�-strongly convex functions. Under this configuration, we have

t

�
− t− 1

�
≤ �;∀t ∈ [T]: (7)

Motivated by this, we propose the following condition for our SAdam, which is an analog to (7).

Condition 3. Their exists a constant C > 0 such that for any � ≥ C
λ , we have ∀t ∈ [T] and i ∈ [d],

tvt,i
�
− (t− 1)vt�1,i

�
≤ �(1− �1): (8)

Note that the extra (1 − �1) in the righthand side of (8) is necessary because SAdam involves the
first-order momentum in its update.

Finally, since the step size of SAdam scales with 1=t rather than 1=
√
t in Adam, we modify Condition

2 accordingly as follows:

Condition 4. For some � > 0, ∀t ∈ [T] and i ∈ [d],

t

t∑
j=1

t�j∏
k=1

�2(t�k+1)(1− �2j)g2j,i ≥
1

�

t∑
j=1

g2j,i: (9)

3.2 THEORETICAL GUARANTEES

In the following, we give a general regret bound when the two conditions are satisfied.

Theorem 1. Suppose Assumptions 1 and 2 hold, and all loss functions f1(·); : : : ; fT (·) are �-
strongly convex. Let � > 0, �1t = �1�

t�1, where �1 ∈ [0; 1); � ∈ [0; 1), and {�2t}Tt=1 ∈ [0; 1]T be
a parameter sequence such that Conditions 3 and 4 are satisfied. Let � ≥ C

λ . The regret of SAdam
satisfies

R(T) ≤ dD2
1�

2�(1− �1)
+

d�1D
2
1(G2

1 + �)

2�(1− �1)(� − 1)2
+

��

(1− �1)3

d∑
i=1

log

 1

��

T∑
j=1

g2j,i + 1

 : (10)

Remark 1. The above theorem implies that our algorithm enjoys an O(
∑d
i=1 log(‖g1:T,i‖2)) regret

bound, which is O(d log T) in the worst case, and automatically becomes tighter whenever the
gradients are small or sparse such that ‖g1:T,i‖2 � G2

1T for some i ∈ [d]. The superiority of
data-dependent bounds have been witnessed by a long list of literature, such as Duchi et al. (2011);
Mukkamala & Hein (2017); Reddi et al. (2018). In the following, we give some concrete examples:

• Consider a one-dimensional sparse setting where non-zero gradient appears with probability
c=T and c > 1 is a constant. Then E

[
log
(∑T

t=1 g
2
t,1

)]
= O(log(c)), which is a constant

factor.

• Consider a high-dimensional sparse setting where in each dimension of gradient non-zero
element appears with probability p = T (m�d)/d with m ∈ [1; d) being a constant. Then,
E
[∑d

i=1 log
(∑T

j=1 g
2
j,i

)]
= O(m log T), which is much tighter than O(d log T).

Remark 2. In practice, first-order momentum is a powerful technique that can significantly boost
the performance (Reddi et al., 2018), and our paper is the first to show that algorithms equipped with
such technique can achieve logarithmic regret bound for strongly convex functions. However, since
the regret bound of SAdam is data-dependent, it is difficult to rigorously analyse the influence of the
first-order momentum parameter �1 as it affects all the gradients appearing in the last term of the
regret of Theorem 1. We will further investigate this in the feature work. We note that the regret
bounds of adaptive algorithms with first-order momentum (e.g., Reddi et al., 2018; Chen et al., 2019)
all share a similar structure as our regret bound with respect to �1.

5

Published as a conference paper at ICLR 2020

Next, we provide an instantiation of {�2t}Tt=1 such that Conditions 3 and 4 hold, and derive the
following Corollary.
Corollary 2. Suppose Assumptions 1 and 2 hold, and all loss functions f1(·); : : : ; fT (·) are �-
strongly convex. Let � > 0, �1t = �1�

t�1 where �; �1 ∈ [0; 1), and 1 − 1
t ≤ �2t ≤ 1 − γ

t , where
 ∈ (0; 1]. Then we have:
1. For any � ≥ (2�γ)G2

∞
λ(1�β1)

, ∀t ∈ [T] and i ∈ [d],

tvt,i
�
− (t− 1)vt�1,i

�
≤ �(1− �1):

2. For all t ∈ [T] and j ∈ [d],

t

t∑
j=1

t�j∏
k=1

�2(t�k+1)(1− �2j)g2j,i ≥
t∑

j=1

g2j,i:

Moreover, let � ≥ (2�γ)G2
∞

λ(1�β1)
, and the regret of SAdam satisfies:

R(T) ≤ dD2
1�

2�(1− �1)
+

d�1D
2
1(G2

1 + �)

2�(1− �1)(� − 1)2
+

�

(1− �1)3

d∑
i=1

log

�

T∑
j=1

g2j,i + 1

 :

Furthermore, as a special case, by setting �1t = 0 and 1 − 1
t ≤ �2t ≤ 1 − γ

t , our algorithm
reduces to SC-RMSprop (Mukkamala & Hein, 2017), which is a variant of RMSprop for strongly
convex functions. Although Mukkamala & Hein (2017) have provided theoretical guarantees for thisi

Published as a conference paper at ICLR 2020

0.2 0.4 0.6 0.8 1.0
Dataset proportion

102

Re
gr

et

(a) MNIST

0.2 0.4 0.6 0.8 1.0
Dataset proportion

102

103

Re
gr

et

SAdam
SC_Adagrad
SC_RMSprop
OGD
Adam
AdamNC
Amsgrad

(b) CIFAR10

0.2 0.4 0.6 0.8 1.0
Dataset proportion

102

Re
gr

et

SAdam
SC_Adagrad
SC_RMSprop
OGD
Adam
AdamNC
Amsgrad

(c) CIFAR100

Fig. 1: Regret v.s. data proportion for ‘2-regularized softmax regression

• SC-Adagrad (Mukkamala & Hein, 2017), with step size �t = �=t.
• SC-RMSprop (Mukkamala & Hein, 2017), with step size �t = �=t and �t = 1− 0.9

t .
• Adam (Kingma & Ba, 2015) and AMSgrad (Reddi et al., 2018), both with �1 = 0:9,
�2 = 0:999, �t = �=

√
t for convex problems and time-invariant �t = � for non-convex

problems.
• AdamNC (Reddi et al., 2018), with �1 = 0:9, �2t = 1− 1=t, and �t = �=

√
t for convex

problems and a time-invariant �t = � for non-convex problems.
• Online Gradient Descent (OGD), with step size �t = �=t for strongly convex problems and

a time-invariant �t = � for non-convex problems.
• Our proposed SAdam, with �1 = 0:9, �2t = 1− 0.9

t .

For Adam, AdamNC and AMSgrad, we choose � = 10�8 according to the recommendations in
their papers. For SC-Adagrad and SC-RMSprop, following Mukkamala & Hein (2017), we choose a
time-variant �t,i = �2e

�ξ1tvt,i for each dimension i, with �1 = 0:1, �2 = 1 for convex problems and
�1 = 0:1, �2 = 0:1 for non-convex problems. For our SAdam, since the removing of the square root
procedure and very small gradients may cause too large step sizes in the beginning iterations, we use
a rather large � = 10�2 to avoid this problem. To conduct a fair comparison, for each algorithm, we
choose � from the set {0:1; 0:01; 0:001; 0:0001} and report the best results.

Datasets. In both experiments, we examine the performances of the aforementioned algorithms on
three widely used datasets: MNIST (60000 training samples, 10000 test samples), CIFAR10 (50000
training samples, 10000 test samples), and CIFAR100 (50000 training samples, 10000 test samples).
We refer to LeCun (1998) and Krizhevsky (2009) for more details of the three datasets.

4.1 OPTIMIZING STRONGLY CONVEX FUNCTIONS

In the first experiment, we consider the problem of mini-batch ‘2-regularized softmax regression,
which belongs to the online strongly convex optimization framework. Let K be the number of classes
and m be the batch size. In each round t, firstly a mini-batch of training samples {(xm; ym)}mi=1

arrives, where yi ∈ [K];∀i ∈ [m]. Then, the algorithm predicts parameter vectors {wi; bi}Ki=1, and
suffers a loss which takes the following form:

J(w; b) =− 1

m

m∑
i=1

log

(
ew>yixi+byi∑K
j=1 e

w>j xi+bj

)
+ �1

K∑
k=1

‖wk‖2 + �2

K∑
k=1

b2k:

The value of �1 and �2 are set to be 10�2 for all experiments. The regret (in log scale) v.s. dataset
proportion is shown in Fig. 1. It can be seen that our SAdam outperforms other methods across all
the considered datasets. Besides, we observe that data-dependent strongly convex methods such as
SC-Adagrad, SC-RMSprop and SAdam preform better than algorithms for general convex functions
such as Adam, AMSgrad and AdamNC. Finally, OGD has the overall highest regret on all three
datasets.

7

Published as a conference paper at ICLR 2020

10 20 30 40 50
Epoch

0.00

0.05

0.10

0.15

0.20

Lo
ss

SAdam
SC_Adagrad
SC_RMSprop
OGD
Adam
AdamNC
Amsgrad

(a) MNIST

20 40 60 80 100
Epoch

0.5

1.0

1.5

2.0

Lo
ss

(b) CIFAR10

20 40 60 80 100
Epoch

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

SAdam
SC_Adagrad
SC_RMSprop
OGD
Adam
AdamNC
Amsgrad

(c) CIFAR100

Fig. 2: Training loss v.s. number of epochs for 4-layer CNN

10 20 30 40 50
Epoch

0.98

0.99

Te
st
 A
cc
ur

ac
y

(a) MNIST

20 40 60 80 100
Epoch

0.60

0.65

0.70
Te

st
 A
cc
ur

ac
y

SAdam
SC_Adagrad
SC_RMSprop
OGD
Adam
AdamNC
Amsgrad

(b) CIFAR10

20 40 60 80 100
Epoch

0.20

0.25

0.30

0.35

0.40

Te
st
 A
cc
ur

ac
y

SAdam
SC_Adagrad
SC_RMSprop
OGD
Adam
AdamNC
Amsgrad

(c) CIFAR100

Fig. 3: Testing accuracy v.s. number of epochs for 4-layer CNN

4.2 TRAINING DEEP NETWORKS

Following Mukkamala & Hein (2017), we also conduct experiments on a 4-layer CNN, which consists
of two convolutional layers (each with 32 filters of size 3 × 3), one max-pooling layer (with a 2 × 2
window and 0.25 dropout), and one fully connected layer (with 128 hidden units and 0.5 dropout).
We employ ReLU function as the activation function for convolutional layers and softmax function
as the activation function for the fully connected layer. The loss function is the cross-entropy. The
training loss v.s. epoch is shown in Fig. 2, and the testing accuracy v.s. epoch is presented in Fig. 4.
As can be seen, our SAdam achieves the lowest training loss on the three data sets. Moreover, this
performance gain also translates into good performance on testing accuracy. The experimental results
show that although our proposed SAdam is designed for strongly convex functions, it could lead to
superior practical performance even in some highly non-convex cases such as deep learning tasks.

5 CONCLUSION AND FUTURE WORK

In this paper, we provide a variant of Adam adapted to strongly convex functions. The proposed
algorithm, namely SAdam, follows the general framework of Adam, while keeping a step size
decaying in general on the order of O(1=t) and controlled by data-dependent heperparameters
to exploit strong convexity. Theoretical analysis shows that SAdam achieves a data-dependent
O(d log T) regret bound for strongly convex functions, which means that it converges much faster
than Adam, AdamNC, and AMSgrad in such cases, and can enjoy a huge gain in the face of sparse
gradients. In addition, we also provide the first data-dependent logarithmic regret bound for SC-
RMSprop. Finally, we test the proposed algorithm on optimizing strongly convex functions as well
as training deep networks, and the empirical results demonstrate the effectiveness of our method.

Since SAdam enjoys a data-dependent O(d log T) regret for online strongly convex optimization, it
can be easily translated into a data-dependent O(d log T=T) convergence rate for stochastic strongly
convex optimization (SSCO) by using the online-to-batch conversion (Kakade & Tewari, 2009).
However, this rate is not optimal for SSCO, and it is sill an open problem how to achieve a data-
dependent O(d=T) convergence rate for SSCO. Recent development on adaptive gradient method

Published as a conference paper at ICLR 2020

6 ACKNOWLEDGEMENT

This work was partially supported by NSFC (61976112), NSFC-NRF Joint Research Project
(61861146001), and the Collaborative Innovation Center of Novel Software Technology and In-
dustrialization.

REFERENCES

Parnia Bahar, Tamer Alkhouli, Jan-Thorsten Peter, Christopher Jan-Steffen Brix, and Hermann Ney.
Empirical investigation of optimization algorithms in neural machine translation. The Prague
Bulletin of Mathematical Linguistics, 108(1):13–25, 2017.

Amitabh Basu, Soham De, Anirbit Mukherjee, and Enayat Ullah. Convergence guarantees for
rmsprop and adam in non-convex optimization and their comparison to nesterov acceleration on
autoencoders. arXiv preprint arXiv:1807.06766, 2018.

Sebastian Bock, Josef Goppold, and Martin Wei. An improvement of the convergence proof of the
adam-optimizer. arXiv preprint arXiv:1804.10587, 2019.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of adam-type
algorithms for non-convex optimization. In Proceedings of the 7th International Conference on
Learning Representations, 2019.

Zaiyi Chen, Yi Xu, Enhong Chen, and Tianbao Yang. Sadagrad: Strongly adaptive stochastic gradient
methods. In Proceedings of 35th International Conference on Machine Learning, pp. 912–920,
2018.

Michael Denkowski and Graham Neubig. Stronger baselines for trustable results in neural machine
translation. In Proceedings of the 1st Workshop on Neural Machine Translation, pp. 18–27, 2017.

Timothy Dozat. Incorporating nesterov momentum into adam. In Proceedings of 4th International
Conference on Learning Representations, Workshop Track, 2016.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra. Draw: a
recurrent neural network for image generation. In Proceedings of the 32nd International Conference
on Machine Learning, pp. 1462–1471, 2015.

Elad Hazan and Satyen Kale. Beyond the regret minimization barrier: optimal algorithms for
stochastic strongly-convex optimization. Journal of Machine Learning Research, 15:2489–2512,
2014.

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex
optimization. Machine Learning, 69:169–192, 2007.

Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends R© in Opti-
mization, 2(3-4):157–325, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the 29th IEEE Conference on Computer Vision and Pattern
Recognition, pp. 770–778, 2016.

Sham M Kakade and Ambuj Tewari. On the generalization ability of online strongly convex
programming algorithms. In Advances in Neural Information Processing Systems 21, pp. 801–808,
2009.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of
3rd International Conference on Learning Representations, 2015.

9

Published as a conference paper at ICLR 2020

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. Skip-thought vectors. In Advances in Neural Information Processing Systems 27,
pp. 3294–3302, 2015.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, Citeseer,
2009.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

H Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex op-
timization. In Proceedings of the 23rd Annual Conference on Learning Theory, pp. 224–256,
2010.

Mahesh Chandra Mukkamala and Matthias Hein. Variants of rmsprop and adagrad with logarithmic
regret bounds. In Proceedings of the 33rd International Conference on Machine Learning, pp.
2545–2553, 2017.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
Proceedings of 6th International Conference on Learning Representations, 2018.

Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and
Trends R© in Machine Learning, 4(2):107–194, 2012.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In Proceedings of the 35th International Conference on Machine Learning, pp. 4596–4604, 2018.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, pp. 26–31,
2012.

Phuong Thi Tran et al. On the convergence proof of amsgrad and a new version. IEEE Access, 7:
61706–61716, 2019.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich
Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual
attention. In Proceedings of 32nd International Conference on Machine Learning, pp. 2048–2057,
2015.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

Jiawei Zhang, Limeng Cui, and Fisher B Gouza. Gadam: Genetic-evolutionary adam for deep neural
network optimization. arXiv preprint arXiv:1805.07500, 2018.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th International Conference on Machine Learning, pp. 928–936, 2003.

10

Published as a conference paper at ICLR 2020

A PROOF OF THEOREM 1

From Definition 1, we can upper bound regret as

R(T) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x�)
(5)
≤

T∑
t=1

g>t (xt − x�)−
�

2
‖xt − x�‖2 (13)

where x� := minx2D
∑T
t=1 ft(x) is the best decision in hindsight. On the other hand, by the update

rule of xt+1 in Algorithm 1, we have

‖xt+1 − x�‖2V̂t
=
∥∥∥�V̂t

D

(
xt − �tV̂ �1t ĝt

)
− x�

∥∥∥2
V̂t

≤‖xt − �tV̂ �1t ĝt − x�‖2V̂t

=− 2�tĝ>t (xt − x�) + ‖xt − x�‖2V̂t
+ �2

t ||ĝt||2V̂ −1
t

=− 2�t
(
�1tĝt�1 + (1− �1t)gt

)>
(xt − x�)

+ ‖xt − x�‖2V̂t
+ �2

t ||ĝt||2V̂ −1
t

(14)

where �t := �=t xt 3t 6050x5− x50035051

Published as a conference paper at ICLR 2020

To bound P1, we have

P1 =
‖x1 − x�‖2V̂1

2�1(1− �1)
−
‖xT+1 − x�‖2VT

2�T (1− �1T)︸ ︷︷ ︸
�0

−
T∑
t=1

(
�

2
‖xt − x�‖2

)

+

T∑
t=2

(
‖xt − x�‖2V̂t

2�t(1− �1t)
−

‖xt − x�‖2V̂t−1

2�t�1(1− �1(t�1))

)

≤
‖x1 − x�‖2V̂1

2�1(1− �1)
−

T∑
t=1

(
�

2
‖xt − x�‖2

)
+

T∑
t=2

1

1− �1t

(
‖xt − x�‖2V̂t

2�t
−
‖xt − x�‖2V̂t−1

2�t�1

)

=

T∑
t=2

1

2�(1− �1t)
(
t‖xt − x�‖2V̂t

− (t− 1)‖xt − x�‖2V̂t−1
− ��(1− �1t)‖xt − x�‖2

)
+

(
‖x1 − x�‖2V̂1

2�1(1− �1)
− �

2
‖x1 − x�‖2

)
(18)

where the inequality is derived from �1(t�1) ≥ �1t. For the first term in the last equality of (18), we
have

t‖xt − x�‖2V̂t
− (t− 1)‖xt − x�‖2V̂t−1

− ��(1− �1t)‖xt − x�‖2

=

d∑
i=1

(xt,i − x�,i)2(tv̂t,i − (t− 1)v̂t�1,i − ��(1− �1t))

=

d∑
i=1

(xt,i − x�,i)2(tvt,i − (t− 1)vt�1,i − ��(1− �1t))

(8)
≤

d∑
i=1

(xt,i − x�,i)2(��(1− �1)− ��(1− �1t)) ≤ 0

(19)

where the second equality is because v̂t,i = vt,i + δ
t , and the second inequality is due to 1− �1 ≤

1− �1t.
For the second term of (18), we have(

‖x1 − x�‖2V̂1

2�1(1− �1)
− �

2
‖x1 − x�‖2

)
=

d∑
i=1

(x1,i − x�,i)2
(
v̂1,i − ��(1− �1)

2�(1− �1)

)

=

d∑
i=1

(x1,i − x�,i)2
(
v1,i − ��(1− �1) + �

2�(1− �1)

)

≤
d∑
i=1

(x1,i − x�,i)2
(

�

2�(1− �1)

)
≤ dD2

1�

2�(1− �1)

(20)

where first inequality is due to Condition 3, and the second inequality follows from Assumption 2.
Combining (18), (19) and (20), we get

P1 ≤
dD2
1�

2�(1− �1)
: (21)

To bound P2, we introduce the following lemma.
Lemma 2. The following inequality holds

T∑
t=1

�t‖ĝt‖2V̂ −1
t
≤ ��

(1− �1)2

d∑
i=1

log

 1

��

T∑
j=1

g2j,i + 1

 : (22)

12

Published as a conference paper at ICLR 2020

By Lemma 2, we have

P2 =
1

2(1− �1)

T∑
t=2

�t�1‖ĝt�1‖2V̂ −1
t−1

+

∑T
t=1 �t‖ĝt‖2V̂ −1

t

2(1− �1)

≤ 1

(1− �1)

T∑
t=1

�t‖ĝt‖2V̂ −1
t

(22)
≤ ��

(1− �1)3

d∑
i=1

log

 1

��

T∑
j=1

g2j,i + 1

 :

(23)

Finally, we turn to upper bound P3:

P3 =

T∑
t=2

�1t
2�t�1(1− �1t)

‖xt − x�‖2V̂t−1

=

d∑
i=1

T∑
t=2

�1t
2�(1− �1t)

(xt,i − x�,i)2(t− 1)v̂t�1,i

≤D
2
1(G2

1 + �)

2�

d∑
i=1

T∑
t=1

�1t
1− �1t

t

≤�1D
2
1(G2

1 + �)

2�

d∑
i=1

T∑
t=1

�t�1

1− �1
t

=
�1D

2
1(G2

1 + �)

2�(1− �1)

d∑
i=1

T�1∑
t=0

�t(t+ 1)︸ ︷︷ ︸
P ′3

:

To further bound P 03, following Bock et al. (2019), we have

P 03 =

T�1∑
t=0

�tt+ �t

=

(
(T − 1)�T+1 − T�T + �

(� − 1)2
+

1− �T

1− �

)
=

1− T (�T − �T+1)− �T
(1− �)2

≤ 1

(1− �)2

(24)

where the inequality follows from �T ≥ �T+1. Thus,

P3 ≤
d�1D

2
1(G2

1 + �)

2�(1− �1)(� − 1)2
: (25)

We complete the proof by combining (21), (23) and (25).

B PROOF OF COROLLARY 2

For the first condition, we have

tvt,i − (t− 1)vt�1,i =t�2tvt�1,i + t(1− �2t)g2t,i − (t− 1)vt�1,i

≤t
(

1−

t

)
vt�1,i + t

1

t
g2t,i − (t− 1)vt�1,i

≤(t− − (t− 1))vt�1,i +G2
1

≤(2−)G2
1

(26)

13

Published as a conference paper at ICLR 2020

where the first inequality is derived from the definition of �2t, the second and the third inequalities are
due to Assumption 1. Based on (26), for any � ≥ (2�γ)G2

∞
λ(1�β1)

, we have tvt,i
α −

(t�1)vt−1,i

α ≤ �(1− �1)

holds for all t ∈ [T] and i ∈ [d].

For the second condition, we have

t

t∑
j=1

t�j∏
k=1

�2(t�k+1) (1− �2j) g2j,i ≥t
t∑

j=1

t�j∏
k=1

(
1− 1

t− k + 1

)

j
g2j,i

=t

t∑
j=1

t�j∏
k=1

t− k
t− k + 1

j
g2j,i

=t

t∑
j=1

j

t

j
g2j,i

=

t∑
j=1

g2j,i

(27)

where the inequality follows from �t ≥ 1− 1
t and 1− �t ≥ γ

t .

C PROOF OF LEMMA 2

We begin with the following lemma that is central to our analysis.

Lemma 3. For all i ∈ [d] and t ∈ [T], we have

T∑
j=1

g2j,i∑j
k=1 g

2
k,i + ��

≤ log

(∑T
j=1 g

2
j,i

Published as a conference paper at ICLR 2020

The above equality can be further bounded as

�T ‖ĝT ‖2V̂ −1
T

≤�
d∑
i=1

(∑T
j=1

∏T�j
k=1 �1(T�k+1)gj,i

)2
T
∑T
j=1(1− �2j)�T�j

k=1 �2(T�k+1)g
2
j,i + �

≤�
d∑
i=1

(∑T
j=1

∏T�j
k=1 �1(T�k+1)

)(∑T
j=1

∏T�j
k=1 �1(T�k+1)g

2
j,i

)
T
∑T
j=1(1− �2j)�T�j

k=1 �2(T�k+1)g
2
j,i + �

≤�
d∑
i=1

(∑T
j=1 �

T�j
1

)(∑T
j=1

∏T�j
k=1 �1(T�k+1)g

2
j,i

)
T
∑T
j=1(1− �2j)�T�j

k=1 �2(T�k+1)g
2
j,i + �

≤ �

(1− �1)

d∑
i=1

∑T
j=1 �

T�j
1 g2j,i

T
∑T
j=1(1− �2j)�T�j

k=1 �2(T�k+1)g
2
j,i + �

(9)
≤ ��

(1− �1)

d∑
i=1

∑T
j=1 �

T�j
1 g2j,i∑T

j=1 g
2
j,i + ��

≤ ��

(1− �1)

d∑
i=1

T∑
j=1

�T�j1

g2j,i∑j
k=1 g

2
k,i + ��

(31)

where the first inequality is due to 1− �1j ≤ 1, the second inequality follows from Cauchy-Schwarz
inequality, the third inequality is due to �1t ≤ �1. Let rj = g2j,i=(

∑j
k=1 g

2
k,i + ��). Using similar

arguments for all time steps and summing over 1 to T , we have
T∑
t=1

�t‖ĝt‖2V̂ −1
t
≤ ��

(1− �1)

d∑
i=1

T∑
t=1

t∑
j=1

�t�j1 rj

=
��

(1− �1)

d∑
i=1

T∑
j=1

T�j∑
l=0

�l1rj

=
��

(1− �1)

d∑
i=1

T∑
j=1

∑T�j
l=0 �l1g

2
j,i∑j

k=1 g
2
k,i + ��

≤ ��

(1− �1)2

d∑
i=1

T∑
j=1

g2j,i∑j
k=1 g

2
k,i + ��

(28)
≤ ��

(1− �1)2

d∑
i=1

log

(∑T
j=1 g

2
j,i

��
+ 1

)
:

(32)

D SADAM WITH A DECAYING REGULARIZATION FACTOR

Algorithm 2 SAdam with time-variant �t (SAdamD)

1: Input: {�1t}Tt=1; {�2t}Tt=1; {�t}Tt=1

2: Initialize: ĝ0 = 0, V̂0 = 0d�d; x1 = 0.
3: for t = 1; : : : ; T do
4: gt = ∇ft(xt)
5: ĝt = �1tĝt�1 + (1− �1t)gt
6: Vt = �2tVt�1 + (1− �2t)diag(gtg>t)

7: V̂t = Vt + diag
(
δt
t

)
8: xt+1 = �V̂t

D

(
xt − α

t V̂
�1
t ĝt

)
9: end for

In this section, we establish a generalized version of SAdam, which employs a time-variant regulariza-
tion factor �t,i for each dimension i, instead of a fixed one for all i ∈ [d] and t ∈ [T] as in the original
SAdam. The algorithm is referred to as SAdamD and summarized in Algorithm 2. It can be seen that

15

Published as a conference paper at ICLR 2020

our SAdamD reduces to SC-RMSprop with time-variant �t when �1t = 0 and 1− 1
t ≤ �2t ≤ 1− γ

t .
For SAdamD, we prove the following theoretical guarantee:

Theorem 4. Suppose Assumptions 1 and 2 hold, and all loss functions f1(·); : : : ; fT (·) are �-strongly
convex. Let {�t,i}Tt=1 ∈ (0; 1]T be a non-increasing sequence for all i ∈ [d], �1t = �1�

t�1 where
�1 ∈ [0; 1); � ∈ [0; 1), and {�2t}Tt=1 ∈ [0; 1]T be a parameter sequence such that Conditions 3 and
4 are satisfied. Let � ≥ C

λ . The regret of SAdamD satisfies

R(T) ≤
D2
1
∑d
i=1 �1,i

2�(1− �1)
+

��

(1− �1)3

d∑
i=1

log

 1

��T,i

T∑
j=1

g2j,i + 1

+
�1D

2
1

(
dG2
1 +

∑d
i=1 �1,i

)
2�(1− �1)(� − 1)2

:

(33)

By setting �1t = 0 and 1 − 1
t ≤ �2t ≤ 1 − γ

t , we can derive the following regret bound for
SC-RMSprop:

Corollary 5. Suppose Assumptions 1 and 2 hold, and all loss functions f1(·); : : : ; fT (·) are �-
strongly convex. Let {�t,i}Tt=1 ∈ (0; 1]T be a non-increasing sequence for all i ∈ [d], and 1− 1

t ≤
�2t ≤ 1− γ

t , where ∈ (0; 1]. Let � ≥ (2�γ)G2
∞

λ . Then SAdamD reduces to SC-RMSprop, and the
regret satisfies

R(T) ≤
D2
1
∑d
i=1 �1,i

2�
+
�

d∑
i=1

log

�T,i

T∑
j=1

g2j,i + 1

 : (34)

Finally, we provide an instantiation of �t and derive the following Corollary.

Corollary 6. Suppose Assumptions 1 and 2 hold, and all loss functions f1(·); : : : ; fT (·) are �-
strongly convex. Let �t,i = ξ2

1+ξ1
Pt

j=1 g
2
j,i

, where �2 ∈ (0; 1] and �1 ≥ 0 are hypeparameters. Then

we have �t,i ∈ (0; 1] and is non-increasing ∀i ∈ [d]; t ∈ [T]. Let 1 − 1
t ≤ �2t ≤ 1 − γ

t , where

 ∈ (0; 1], and � ≥ (2�γ)G2
∞

λ . Then SAdamD reduces to SC-RMSprop, and the regret satisfies

R(T) ≤dD
2
1�2

2�
+
�

d∑
i=1

log

 T∑
j=1

g2j,i + �2

+
�

d∑
i=1

log

�1
�2

T∑
j=1

g2j,i +
1

�2

 : (35)

E PROOF OF THEOREM 4

By similar arguments as in the proof of Theorem 1, we can upper bound regret as

R(T)≤
T∑
t=1

(
‖xt − x�‖2V̂t

− ‖xt+1 − x�‖2V̂t

2�t(1− �1t)
− �

2
‖xt − x�‖2

)
︸ ︷︷ ︸

P1

+
1

2(1− �1)

T∑
t=2

�t�1‖ĝt�1‖2V̂ −1
t−1

+

∑T
t=1 �t‖ĝt‖2V̂ −1

t

2(1− �1)︸ ︷︷ ︸
P2

+

T∑
t=2

�1t
2�t�1(1− �1t)

‖xt − x�‖2V̂t−1︸ ︷︷ ︸
P3

:

To bound P1, based on (18), we have

P1 ≤
T∑
t=2

1

2�(1− �1t)
(
t‖xt − x�‖2V̂t

− (t− 1)‖xt − x�‖2V̂t−1
− ��(1− �1t)‖xt − x�‖2

)
+

(
‖x1 − x�‖2V̂1

2�1(1− �1)
− �

2
‖x1 − x�‖2

)
:

(36)

16

Published as a conference paper at ICLR 2020

For the first term in (36), we have

t‖xt − x�‖2V̂t
− (t− 1)‖xt − x�‖2V̂t−1

− ��(1− �1t)‖xt − x�‖2

=

d∑
i=1

(xt,i − x�,i)2(tv̂t,i − (t− 1)v̂t�1,i − ��(1− �1t))

=

d∑
i=1

(xt,i − x�,i)2(tvt,i − (t− 1)vt�1,i − ��(1− �1t) + �t,i − �t�1,i)

≤
d∑
i=1

(xt,i − x�,i)2(��(1− �1)− ��(1− �1t)︸ ︷︷ ︸
�0

+ �t,i − �t�1,i︸ ︷︷ ︸
�0

)

≤0

(37)

For the second term of (36), we have

(
‖x1 − x�‖2V̂1

2�1(1− �1)
− �

2
‖x1 − x�‖2

)
=

d∑
i=1

(x1,i − x�,i)2
(
v̂1,i − ��(1− �1)

2�(1− �1)

)

=

d∑
i=1

(x1,i − x�,i)2
(
v1,i − ��(1− �1) + �1,i

2�(1− �1)

)

≤
D2
1
∑d
i=1 �1,i

2�(1− �1)

(38)

where the inequality follows from Condition 3. Combining (36), (37) and (38), we have

P1 ≤
D2
1
∑d
i=1 �1,i

2�(1− �1)
: (39)

To bound P2, we first introduce the following lemma.

Lemma 4. The following inequality holds

T∑
t=1

�t‖ĝt‖2V̂ −1
t
≤ ��

(1− �1)2

d∑
i=1

log

 1

��T,i

T∑
j=1

g2j,i + 1

 : (40)

The proof of Lemma 4 can be found in Appendix F. Based on Lemma 4, we have

P2 =
1

2(1− �1)

T∑
t=2

�t�1‖ĝt�1‖2V̂ −1
t−1

+

∑T
t=1 �t‖ĝt‖2V̂ −1

t

2(1− �1)

≤ 1

(1− �1)

T∑
t=1

�t‖ĝt‖2V̂ −1
t

(40)
≤ ��

(1− �1)3

d∑
i=1

log

 1

��T,i

T∑
j=1

g2j,i + 1

 :

(41)

17

Published as a conference paper at ICLR 2020

Finally, we turn to upper bound P3:

P3 ≤
d∑
i=1

T∑
t=1

�1t
2�(1− �1t)

(xt,i − x�,i)2tv̂t,i

≤ D2
1

2�

d∑
i=1

T∑
t=1

�1t
1− �1t

t(G2
1 + �1,i)

≤ �1D
2
1

2�

d∑
i=1

T∑
t=1

�t�1

1− �1
t(G2
1 + �1,i)

=
�1D

2
1

2�

d∑
i=1

(G2
1 + �1,i)

1− �1

T�1∑
t=0

�t(t+ 1)

(24)
≤ �1D

2
1

2�

d∑
i=1

(G2
1 + �1,i)

(1− �1)(� − 1)2

=
�1D

2
1(dG2

1 +
∑d
i=1 �1,i)

2�(1− �1)(� − 1)2
:

(42)

We finish the proof by combining (39), (41) and (42).

F PROOF OF LEMMA 4

Expending the last term in the summation by using the update rule of Algorithm 2, we have

�T ‖ĝT ‖2V̂ −1
T

=�T

d∑
i=1

ĝ2T,i

vT,i +
δT,i

T

= �

d∑
i=1

(∑T
j=1(1− �1j)

∏T�j
k=1 �1(T�k+1)gj,i

)2
T
∑T
j=1(1− �2j)�T�j

k=1 �2(T�k+1)g
2
j,i + �T,i

: (43)

The above equality can be further bounded as

�T ‖ĝT ‖2V̂ −1
T

≤�
d∑
i=1

(∑T
j=1

∏T�j
k=1 �1(T�k+1)

)(∑T
j=1

∏T�j
k=1 �1(T�k+1)g

2
j,i

)
T
∑T
j=1(1− �2j)�T�j

k=1 �2(T�k+1)g
2
j,i + �T,i

≤�
d∑
i=1

(∑T
j=1 �

T�j
1

)(∑T
j=1

∏T�j
k=1 �1(T�k+1)g

2
j,i

)
T
∑T
j=1(1− �2j)�T�j

k=1 �2(T�k+1)g
2
j,i + �T,i

≤ �

(1− �1)

d∑
i=1

∑T
j=1 �

T�j
1 g2j,i

T
∑T
j=1(1− �2j)�T�j

k=1 �2(T�k+1)g
2
j,i + �T,i

(9)
≤ ��

(1− �1)

d∑
i=1

∑T
j=1 �

T�j
1 g2j,i∑T

j=1 g
2
j,i + ��T,i

≤ ��

(1− �1)

d∑
i=1

T∑
j=1

�T�j1

g2j,i∑j
k=1 g

2
k,i + ��T,i

:

(44)

The first inequality follows from Cauchy-Schwarz inequality and 1 − �1t ≤ 1, and the second

inequality is due to �1t ≤ �1. Let rj =
g2j,iPj

k=1 g
2
k,i+ζδT,i

. By using similar arguments as in (32), we

18

Published as a conference paper at ICLR 2020

have

T∑
t=1

�t‖ĝt‖2V̂ −1
t
≤ ��

(1− �1)

d∑
i=1

T∑
t=1

t∑
j=1

�T�j1

g2j,i∑j
k=1 g

2
k,i + ��t,i

≤ ��

(1− �1)

d∑
i=1

T∑
t=1

t∑
j=1

�T�j1

g2j,i∑j
k=1 g

2
k,i + ��T,i

=
��

(1− �1)

d∑
i=1

T∑
t=1

t∑
j=1

rj

≤ ��

(1− �1)

d∑
i=1

T∑
j=1

∑T�j
l=0 �l1g

2
j,i∑j

k=1 g
2
k,i + ��T,i

≤ ��

(1− �1)2

d∑
i=1

T∑
j=1

g2j,i∑j
k=1 g

2
k,i + ��T,i

(28)
≤ ��

(1− �1)2

d∑
i=1

log

 1

��T,i

T∑
j=1

g2j,i + 1

 :

(45)

G ON THE CONVERGENCE OF AMSGRAD

In this section, we firstly provide the AMSgrad algorithm and its theoretical guarantees (Reddi et al.,
2018), then state a theoretical flaw in their analysis revealed by Tran et al. (2019), and finally propose
a simple solution to fix this problem.

The AMSgrad algorithm developed in Reddi et al. (2018) is summarized in Algorithm 3.

Algorithm 3 AMSgrad

1: Input: {�1t}Tt=1; �2
2: Initialize: ĝ0 = 0, V̂0 = 0d�d; x1 = 0.
3: for t = 1; : : : ; T do
4: gt = ∇ft(xt)
5: ĝt = �1tĝt�1 + (1− �1t)gt
6: Vt = �2Vt�1 + (1− �2)diag(gtg>t)

7: V̂t = max{Vt; V̂t�1}

8: xt+1 = �

√
V̂t

D

(
xt − �tV̂ �1/2t ĝt

)
, where �t = αp

t

9: end for

For AMSgrad, Reddi et al. (2018) provide the following regret bound.

Theorem 7 (Theorem 4 in Reddi et al. (2018), problematic). Suppose Assumptions 1 and 2 hold, and
all loss functions f1(·); : : : ; fT (·) are convex. Let � > 0, �1 > 0, �1t ≤ �1, and = β1p

β2
≤ 1. The

regret of AMSgrad satisfies

R(T) ≤ D2
1
√
T

�(1− �1)

d∑
i=1

v̂
1/2
T,i +

D2
1

2(1− �1)

T∑
t=1

d∑
i=1

�1tv̂
1/2
t,i

�t

+
�
√

1 + log T

(1− �1)2(1−)
√

(1− �2)

d∑
i=1

‖g1:T,i‖:

(46)

19

Published as a conference paper at ICLR 2020

Recently, Tran et al. (2019) point out a mistake in the proof of Theorem 7. Specifically, in Reddi et al.
(2018), the following inequality is utilized (Proof of Lemma 2, Page 18):

T∑
t=1

[
1

2�t(1− �1t)

[
‖V̂ 1/4

t (xt − x�)‖2 − ‖V̂ 1/4
t (xt+1 − x�)‖2

]
+

�1t
2�t(1− �1t)

‖V̂ 1/4
t (xt − x�)‖2

]
+

�
√

1 + log T

(1− �1)2(1−)
√

(1− �2)

d∑
i=1

‖g1:T,i‖

≤ 1

2�1(1− �1)
‖V̂ 1/4

t (x1 − x�)‖2 +
1

2(1− �1)

T∑
t=2

[
‖V̂ 1/4

t (xt − x�)‖2

�t
−
‖V̂ 1/4

t�1 (xt − x�)‖2

�t�1

]

+

T∑
t=1

[
�1t

2�t(1− �1)
‖V̂ 1/4

t (xt − x�)‖2
]

+
�
√

1 + log T

(1− �1)2(1−)(
√

1− �2)

d∑
i=1

‖g1:T,i‖

(47)

which, however, may not hold. To see this, we note that essentially (47) uses

T∑
t=1

1

2�t(1− �1t)

[
‖V̂ 1/4

t (xt − x�)‖2 − ‖V̂ 1/4
t (xt+1 − x�)‖2

]
≤ 1

(1− �1)

T∑
t=1

1

2�t

[
‖V̂ 1/4

t (xt − x�)‖2 − ‖V̂ 1/4
t (xt+1 − x�)‖2

] (48)

which holds only if �1t ≤ �1 and ‖V̂ 1/4
t (xt − x�)‖2 − ‖V̂ 1/4

t (xt+1 − x�)‖2 is non-negative.
However, as empirically shown by Tran et al. (2019), the letter requirement can be violated in some
counterexamples. Note that similar problems exist in many recent proposed Adam variants. To
address this issue, Tran et al. (2019) establish a new convergence proof of AMSGrad, which indicates
an O(d

√
T) data-independent regret bound. Moreover, as an alternative, they also propose a variant

of AMSgrad, called AdamX, which alters the stricture of AMSgrad to force the inequality been
satisfied. For AdamX, they also give a new theoretical analysis and an O(d

√
T) data-independent

regret bound.

In this paper, we find out that the above problem can be solved by simply configuring �1t of AMSgrad
in a non-increasing manner, i.e., ∀t ≥ 2, �1t ≤ �1(t�1). Specifically, when �1t is non-increasing, we
can rewrite (47) as

T∑
t=1

[
1

2�t(1− �1t)

[
‖V̂ 1/4

t (xt − x�)‖2 − ‖V̂ 1/4
t (xt+1 − x�)‖2

]
+

�1t
2�t(1− �1t)

‖V̂ 1/4
t (xt − x�)‖2

]
+

�
√

1 + log T

(1− �1)2(1−)
√

(1− �2)

T∑
i=1

‖g1:T,i‖

≤ 1

2�1(1− �1)
‖V̂ 1/4

1 (x1 − x�)‖2 +
1

2

T∑
t=2

[
‖V̂ 1/4

t (xt − x�)‖2

�t(1− �1t)
−
‖V̂ 1/4

t�1 (xt − x�)‖2

�t�1(1− �1(t�1))

]

+

T∑
t=1

[
�1t

2�t(1− �1)
‖V̂ 1/4

t (xt − x�)‖2
]

+
�
√

1 + log T

(1− �1)2(1−)(
√

1− �2)

d∑
i=1

‖g1:T,i‖

≤ 1

2�1(1− �1)
‖V̂ 1/4

1 (x1 − x�)‖2 +
1

2

T∑
t=2

[
‖V̂ 1/4

t (xt − x�)‖2

�t(1− �1t)
−
‖V̂ 1/4

t�1 (xt − x�)‖2

�t�1(1− �1t)

]

+

T∑
t=1

[
�1t

2�t(1− �1)
‖V̂ 1/4

t (xt − x�)‖2
]

+
�
√

1 + log T

(1− �1)2(1−)(
√

1− �2)

d∑
i=1

‖g1:T,i‖

20

Published as a conference paper at ICLR 2020

≤ 1

2�1(1− �1)
‖V̂ 1/4

1 (x1 − x�)‖2 +
1

2(1− �1)

T∑
t=2

[
‖V̂ 1/4

t (xt − x�)‖2

�t
−
‖V̂ 1/4

t�1 (xt − x�)‖2

�t�1

]

+

T∑
t=1

[
�1t

2�t(1− �1)
‖V̂ 1/4

t (xt − x�)‖2
]

+
�
√

1 + log T

(1− �1)2(1−)(
√

1− �2)

d∑
i=1

‖g1:T,i‖

where the second inequality is derived from �1t ≤ �1(t�1), and the last inequality is due to the fact

that �1t ≤ �1 and
[
kV̂ 1/4

t (xt�x∗)k2
αt

− kV̂
1/4
t−1 (xt�x∗)k

	Introduction
	Related Work
	SAdam
	The Algorithm
	Theoretical Guarantees

	Experiments
	Optimizing Strongly Convex Functions
	Training Deep Networks

	Conclusion and Future Work
	Acknowledgement
	Proof of Theorem 1
	Proof of Corollary 2
	Proof of Lemma 2
	SAdam with a decaying regularization factor
	Proof of Theorem 4
	Proof of Lemma 4
	On the convergence of Amsgrad
	Experiments on ResNet18

