Empirical Risk Minimization for Stochastic Convex Optimization: O(1/n)- and $O(1/n^2)$ -type of Risk Bounds

Lijun Zhang ZHANGLJ@,LAMDA NJ ED CN

National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

IANBAO YANG IO A ED Department of Computer Science, the University of Iowa, Iowa City, IA 52242, USA

JIN ONG J ALIBABA INC COM Rong Jin

Alibaba Group, Seattle, USA

Tianbao Yang

Abstract

n zat on E M for superv sed ear A though there ex st p ent fu theor es of e pr ca r s n ng current theoret ca understand ngs of E M for a re ated prob e stochast c convex opt ted In th s wor we strengthen the rea of E M for CO by exp o t ng s oothness and strong convex ty cond t ons to prove the r s bounds F rst we estab sh an (+ $\sqrt{}_*$)

where $=:\mathcal{X}$, \mathbb{R} s a hypothes s c ass (\mathbf{x}) \mathcal{X} \mathbb{R} s an instance abe par sa p ed fro a d str but on \mathbb{D} and $(_):\mathbb{R}$ \mathbb{R} , \mathbb{R} s certain oss. In this paper we any focus on the convex version of an e y stochast convex opt zation. CO where both the do a n / and the expected function $(_)$ are convex

wo c ass ca approaches for so v ng stochast c opt zat on are stochast c approx at on A and the sa p e average approx at on AA the atter of which s a so re ferred to as e prcars n zat on E M n the ach ne earn ng co un ty apn h e both A and E M have been extens ve y stud ed n recent years Bart ett and Mende son , Bart ett et a 9, Mou nes and Bach , Ne rovs et a , Hazan and Ka e , the net a , Agarwa et a , Bach and Mou nes , Zhang et a ost theoret ca guarantees of E M are restricted to supervised earning in Mahdav et a As po nted out n a se na wor of ha ev hwartz et a 9 the success of E M for su perv sed earn ng cannot be d rect y extended to stochast c opt zat on Actua y ha ev hwartz 9 have constructed an instance of CO that is earnable by A but cannot be so ved by E M L teratures about E M for stochast c opt zat on nc ud ng CO are qu te st ac a fu understand ng of the theory

In E M we are g ven funct ons 1 n sa p ed ndependent y fro \mathbb{P} and a to n ze an e p r ca object ve funct on.

$$\min_{\mathbf{w} \in \mathcal{W}} \widehat{}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} i(\mathbf{w})$$

Let $\widehat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w} \in \mathcal{W}} \widehat{}(\mathbf{w})$ be an e prca n zer he perfor ance of E $\widehat{\mathbf{M}}$ s easured n ter s of the excess r s de ned as

$$(\widehat{\mathbf{w}}) \quad \min_{\mathbf{w} \in \mathcal{W}} \quad (\mathbf{w})$$

tate of the art r s bounds of E M nc ude, an $(\sqrt{})$ bound when the rando funct on () s L psch tz cont nuous where s the d ens ona ty of M, an (1) bound when () s strong y convex ha ev hwartz et a 9, and an () bound when () s exponent a y concave exp concave Mehta e M JEFroG sex st ng stud es of E M for superv sed earn ng rebro et a

ab e , u ary of Excess s Bounds of E M for CO A bounds ho d w th h gh probab ty except the one ar ed by * wh ch ho ds n expectat on Abbrev at ons, bounded b convex c genera zed near g L psch tz cont nuous L p nonnegat ve nn strong y convex sc s ooth s exponent a y concave exp

		(z.)	^(_) (_)	s Bounds
ha ev hwartz et a		9 L p		$\sim (\sqrt{\frac{d}{n}})$
		L p 🖍 sc		$(\frac{1}{\lambda n})^*$
Mehta •		exp 🕵 L p 🕵	b	$\sim \left(\frac{d}{\eta n}\right)$
h s wor	heore	nn 🚺 c 📆 s	L p	$\sim (\frac{d}{n} + \sqrt{\frac{F_*}{n}})$
	heore	nn 📆 c 📆 s	L p ∰ sc	$(\frac{d}{n} + \frac{\kappa F_*}{n})$
				$\left(\frac{1}{\lambda n^2} + \frac{\kappa F_*}{n}\right)$ when $= \widetilde{\Omega}()$
	heore	nn 🕰 s	c sc	${}^{\sim}(\frac{\kappa d}{n} + \frac{\kappa F_*}{n}) = {}^{\sim}(\frac{\kappa d}{n})$
		,		$\left(\frac{1}{\lambda n^2} + \frac{\kappa F_*}{n}\right)$ when $= \widetilde{\Omega}(2)$
	heore	nn a s a g	c sc	$\left(\frac{\kappa}{n} + \frac{\kappa F_*}{n}\right) = \left(\frac{\kappa}{n}\right)$
				$\left(\frac{1}{\lambda n^2} + \frac{\kappa F_*}{n}\right)$ when $= \Omega(^2)$

hen () s both convex and s ooth and () s L psch tz cont nuous we estab sh an $(+\sqrt{*})$ rs bound cf heore In the opt stc case that * ss a e *= $\binom{2}{}$, we obta n an $\binom{2}{}$ r s bound which s analogous to the $\binom{2}{}$ opt st c rate of E M for superv sed earn ng rebro et a If (.) s a so strong y convex we prove an (+ *) r s bound and prove t to $(1 \ [\ ^2] + \ _* \)$ when $= \widetilde{\Omega}(\)$ c f heore hus f s arge and $_*$ s s a e $_* = (1)$ we get an (2) r s bound which to the best of our now edge s the rst $(1 ^2)$ type of r s bound of E Mhen convex ty s not present n () as ong as () s s ooth $\widehat{}$ () s convex and () s strong y convex we st obta n an proved r s bound of $(1 [^2] + *)$ when = $\widetilde{\Omega}(^2)$ which w further p y an $(^2)$ r s bound f $_* = (1)$ c f heore F na y we extend the $(1 [^2] + _*)$ r s bound to superv sed earn ng w th a genera zed near for Our ana ys s shows that n th s case the ower bound of can be rep aced w th $\Omega(^2)$ which s diens on a tyindependent c fine heore hus th s resu t can be app ed to n n te d ens ona cases e g earn ng w th erne s

2. Related Work

In this section we give a brief introduction to previous work on E

2.1. ERM for Stochastic Optimization

As we ent oned ear er there are few wor's devoted to E. M for stochast c opt zat on hen \mathbb{R}^d is bounded and \mathbb{R}^d is bound of E. M has been bounded that ho distributed as \mathbb{R}^d is bound of E. M has bounded that ho distributed as \mathbb{R}^d is bound of E. M has been bounded to be an expectation of E. M has been bounded to be an expectation of E. M that ho distributed as \mathbb{R}^d is a concave and L psch tz continuous and bounded to be a concave bound of \mathbb{R}^d is a period of the expectation of the expectation

2.2. ERM for Supervised Learning

e note that there are extens ve stud es on E M for superv sed earn ng and hence the rev ew here s non exhaust ve In the context of superv sed earn ng the perfor ance of E M s c ose y re ated to the un for convergence of () to () over the hypothes s c ass Ko tch ns In fact un for convergence s a suf c ent cond t on for earnab ty ha ev hwartz and Ben Dav d 4 and n so e spec a cases such as b nary c ass cat on t s a so a necessary cond t on apn 99 he accuracy of un for convergence as we as the quatty of the eprca n zer can be upper bounded n ter s of the copexty of the hypothes s c ass nc ud ng data ndependent easures such as the C d ens on and data dependent easures such as the ade acher copexty

Genera y spea ng when has n te C d ens on the excess r s can be upper bounded by $(\sqrt{VC()})$ where VC() s the C d enson of If the oss $(_)$ s L psch tz con t nuous with respect to its rist argument we have a rist bound of (1 - n) where $n(\cdot)$ s the ade acher co p ex ty of he ade acher co p ex ty typ ca y sca es as n() = (1 -) e gconta ns near funct ons w th ow nor p y ng an (1 -)r s bound Bart ett and Mende son here have been ntens ve efforts to der ve rates faster than (1) under var ous cond t ons Lee et a 99, Panchen o , Bart ett et a Gonen and ha ev hwartz such as ow no se syba ov 4 s oothness rebro et a strong convex ty r dharan et a 9 to na e a few a ongst any pec ca y when the rando funct on () s nonnegat ve and s ooth rebro et a have estab shed a r s bound of $(2 \choose n) + n \pmod{n}$ reducing to an (1) bound find (1) and $_* = (1)$ A genera zed near for of s stud ed by r dharan et a 9 and a r s bound of (1) s proved f the expected funct on (1) s strong y convex

3. Faster Rates of ERM

e rst ntroduce a the assu pt ons used n our ana ys s then present theoret ca resu ts under d fferent co b nat ons of the and na y d scuss a spec a case of superv sed earn ng

3.1. Assumptions

In the fo ow ng we use $\sqrt{}$ to denote the _2 nor of vectors

Assumption 1 The domain \land is a convex subset of \mathbb{R}^d , and is bounded by \land , that is,

Assumption 2 The random function () is nonnegative, and -smooth over / , that is,

$$\| \nabla (\mathbf{w}) \cdot \nabla (\mathbf{w}') \| \mathbf{w} \cdot \mathbf{w}' \wedge \mathbf{w} \cdot \mathbf{w}' \wedge \mathbf{w}$$

Assumption 3 The expected function (_) is -Lipschitz continuous over / , that is,

$$\mathbf{w} = \mathbf{w} \cdot \mathbf{w} \cdot$$

Assumption 4 We use different combinations of the following assumptions on convexity.

- (a) The expected function () is convex over / .
- **(b)** The expected function () is -strongly convex over / , that is,

$$(\mathbf{w}) + \mathbf{W} (\mathbf{w}) \mathbf{w}' \mathbf{w} + \frac{1}{2!} \mathbf{w}' \mathbf{w}'^2 (\mathbf{w}') \mathbf{w} \mathbf{w}'$$

- **(c)** The empirical function () is convex.
- **(d)** *The random function* () *is convex.*

Assumption 5 Let \mathbf{w}_* argmin $_{\mathbf{w} \in \mathcal{W}}$ (\mathbf{w}) be an optimal solution to (1). We assume the gradient of the random function at \mathbf{w}_* is upper bounded by , that is,

$$lacksquare$$
 $lacksquare$

Remark 1 F rst note that **Assumption 4(a)** s p ed by e ther **Assumption 4(b)** or **Assumption 4(d)** and **Assumption 4(c)** s p ed by **Assumption 4(d)** econd the s oothness assu p t on of $(\)$ p es the expected funct on $(\)$ s s ooth By Jensen s nequality we have

$$\| \mathbf{\nabla} (\mathbf{w}) \cdot \mathbf{\nabla} (\mathbf{w}') \| \quad \mathbf{E}_{f \sim \mathbb{P}} \| \mathbf{\nabla} (\mathbf{w}) \cdot \mathbf{\nabla} (\mathbf{w}') \| \quad \mathbf{w} \quad \mathbf{w}' \cdot \mathbf{w} \quad \mathbf{w}'$$

ary the e pr ca funct on () s a so s ooth he *condition number* of () s de ned as the rat o between and e = -1

3.2. Risk Bounds for SCO

e rst present an excess r s bound under the s oothness cond t on

Theorem 1 For any 0 1 2, 0, define

$$() = 2 \left(\log \frac{2}{-} + \log \frac{6}{-} \right)$$
 9

Under Assumptions 1, 2, 3, 4(d), and 5, with probability at least 1 2, we have

633 0f -299.=)-0.575952266499]TJ /R40 10.9014d [56874328 1.63781 Td [(96872.885(8)0.0510254]TJ6.02Tf 21

_ A

Remark 3 he rst part of Coro ary 4 shows that E $\stackrel{\frown}{M}$ en oys an $\stackrel{\frown}{}$ (+ *) rs bound for stochast c opt zat on of strong y convex and s ooth funct ons. In the terature the ost coparable result sithe (1) rs bound proved by halev hwartz et a 9 but with string differences high ghted n able ince the rs bound of halev hwartz et a 9 s ndependent of the differences high graph and the result is strongly and the result is shown that E $\stackrel{\frown}{M}$ en oys an $\stackrel{\frown}{}$ (+ *) rs bound for stochastic options of the strongly and the result is shown that E $\stackrel{\frown}{M}$ en oys an $\stackrel{\frown}{}$ (+ *) rs bound for stochastic options of the strongly and the result is shown that E $\stackrel{\frown}{M}$ en oys an $\stackrel{\frown}{}$ (+ *) rs bound for stochastic options of the strongly and the result is shown that E $\stackrel{\frown}{M}$ en oys an $\stackrel{\frown}{}$ (+ *) rs bound for stochastic options of the strongly and the result is shown that E $\stackrel{\frown}{M}$ en oys an $\stackrel{\frown}{}$ (+ *) rs bound for stochastic options of the strongly and the result is shown that E $\stackrel{\frown}{M}$ en oys an $\stackrel{\frown}{}$ (+ *) rs bound for stochastic options of the strongly and the result is shown that E $\stackrel{\frown}{M}$ en oys an $\stackrel{\frown}{}$ (+ *) rs bound for stochastic options of the strongly and the result is shown that E $\stackrel{\frown}{M}$ end of the strongly and the result is shown that E $\stackrel{\frown}{M}$ end of the strongly and the result is shown that E $\stackrel{\frown}{M}$ end of the strongly and the result is shown that E $\stackrel{\frown}{M}$ end of the strongly and the result is shown that E $\stackrel{\frown}{M}$ end of the strongly and the result is shown that E $\stackrel{\frown}{M}$ end of the strongly and the result is shown that E $\stackrel{\frown}{M}$ end of the strongly and the result is shown that E $\stackrel{\frown}{M}$ end of the strongly and the result is shown that E $\stackrel{\frown}{M}$ end of the strongly and the result is shown that E $\stackrel{\frown}{M}$ end of the strongly and the str

Remark 6 Co par ng the second part of Coro ar es and 4 we can see that the rs bound s on the sa e order but the ower bound of s ncreased by a factor of the same ar pheno enon a so happens n stochast c approx at on eccent y a var ance reduct on techn que na ed to Johnson and Zhang or EMGD Zhang et a a was proposed for stochast c opt to zat on when both fungradients and stochast c gradients are available. In the analysis to assu the stochast c function is convex which empty and the results we observe that the nd v dual convex ty eads to a difference of factor in the same perconduction.

3.3. Risk Bounds for Supervised Learning

If the cond t ons of heore or heore are sat s ed we can d rect y use the to estab sh an $(1\ [^2]+_*)$ r s bound for superv sed earn ng. However a a or tat on of these theore s s that the ower bound of depends on the dens onaty and thus cannot be apped to note dens onate cases e.g. erne ethods chò opf and o a. In this section we expot the structure of supervised earning to a either theory dens onaty independent

e focus on the genera zed near for of superv sed earn ng.

$$\min_{\mathbf{w} \in \mathcal{W}} \quad (\mathbf{w}) = \mathrm{E}_{(\mathbf{x}, y) \sim \mathbb{D}} \left[(\mathbf{w} \ \mathbf{x}) \right] + (\mathbf{w})$$

where $(\mathbf{w} \ \mathbf{x})$ s the oss of pred ct $\mathbf{ng}_{+} \mathbf{w} \ \mathbf{x}$ when the true target s and (\cdot) s a regular zer G ven training exalpha per (\mathbf{x}_{n-1}) (\mathbf{x}_{n-n}) ndependently salpha ped fro \mathbb{D} the expression objective s

$$\min_{\mathbf{w} \in \mathcal{W}} \widehat{}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{w} \ \mathbf{x}_{i} \ i) + (\mathbf{w})$$

e de ne

$$(\mathbf{w}) = \mathrm{E}_{(\mathbf{x},y) \sim \mathbb{D}} \left[(\mathbf{w} \ \mathbf{x}) \right] \text{ and } (\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{w} \ \mathbf{x}_{i})$$

to capture the stochast c co ponent

Bes des 4(b) and 4(c) we introduce the following add tona assumptions of a Bussethe same abuse the same entitled abuse the normal product of a H bert space.

Assumption 6 The domain / is a convex subset of a Hilbert space , and is bounded by

ROSSER) & 3048 68 2 Flor Work 504 504 9 9 8 9 4 dn c 49 8 4 9 9 p z 4 \$ 8 5 4 8 4 4 e 4 2

(1) AND (1
2
) YPE OF $\stackrel{\bullet}{\bullet}$ K BO ND OF E $\stackrel{\bullet}{\mathsf{M}}$

Assumption 10 Let \mathbf{w}_* argmin $_{\mathbf{w} \in \mathcal{W}}$ (w) be an optimal solution to (17). We assume the gradient of the random function at \mathbf{w}_* is upper bounded by , that is,

Remark 7 he above assu pt ons a ow us to ode any popu ar osses n ach ne earn ng such as regular zed square oss and regular zed og st closs **Assumptions 7** and **8** ply the rando function (-x) s of x of x

$$\| \mathbf{\nabla} (\mathbf{w} \mathbf{x}) \cdot \mathbf{\nabla} (\mathbf{w}' \mathbf{x}) \| = \| '(\mathbf{w} \mathbf{x}) \mathbf{x} '(\mathbf{w}' \mathbf{x}) \mathbf{x} \|$$

$$\cdot '(\mathbf{w} \mathbf{x}) \cdot '(\mathbf{w}' \mathbf{x}) \cdot \cdot \mathbf{w} \mathbf{x} \cdot \mathbf{w}' \mathbf{x} \cdot \frac{9}{1} \mathbf{w} \cdot \mathbf{w}' \mathbf{x}$$

By Jensen's nequality () salso 2 so ooth Notice that 2 sthe odulus of solutions of () and so the odulus of strong convexity of () that so ght abuse of notation we define = 2 and the condition number as the ratio between and e = Finally we note that the regular zer () could be *non-smooth* ,

e have the fo ow ng excess r s bound of E M for superv sed earn ng

Theorem 7 For any 0 1 2, define

$$= 4\left(8 + \sqrt{2\log\frac{2\log_2() + \log_2(2)}{+}}\right)$$

$$* = (\mathbf{w}_*) = (\mathbf{w}_*) \quad (\mathbf{w}_*)$$

Under **Assumptions 4(b)**, **4(c)**, **6**, **7**, **8**, **9**, and **10** with probability at least 1 2, we have

$$(\widehat{\mathbf{w}})$$
 (\mathbf{w}_*) $\max\left(\frac{}{} + \frac{}{} + \frac{$

Furthermore, if

$$> \frac{16^{-2} - 2}{2} = 16^{-2} - 2$$

with probability at least 1 - 2, we have

$$(\widehat{\mathbf{w}})$$
 (\mathbf{w}_*) $\max\left(\frac{}{} + \frac{}{2} + \frac{}{2} + \frac{}{2} + \frac{}{2} \log^2(2) + \frac{16}{} * \log(2)\right)$

Remark 8 he rst part of heore presents an () rs bound s ar to the (1) rs bound of r dharan et a 9 he second part s an $(1 [^2] + _*)$ rs bound and n th s case the ower bound of $s \Omega(^2)$ which s d ensonal ty independent hus heore can be applied even when the d ensonal ty s n n te Generally spealing the regular zer () s nonnegative and thus $_*$ of the second bound size even better than those in heore s and $_*$ Finally we note that heore earning because both of the do not rely on the individual convexity e $_*$ **Assumption 4(d)** One allowed whether this possible to ut ze the individual convexity to reduce the ower bound of $_*$ by a factor of $_*$ e with no results $_*$ in the convexity $_*$ represents an (1 [2] + $_*$) rs bound and $_*$ the second part s an (1 [2] + $_*$) rs bound and $_*$

For brev ty we treat C as a constant because t on y has a *double* ogar the comparison of C dependence on C

ZHANG YANG JIN

4. Analysis

e here present the ey dea of our ana ys s and the proof of heore he o tted ones can be found n append ces

4.1. The Key Idea

By the convex ty of $\widehat{\ }$ (a) and the opt a ty cond t on of $\widehat{\mathbf{w}}$ Boyd and and and enberghe have

 $(1\)$ and $(1\ ^2)$ ype of $\stackrel{\bullet}{\ }$ k Bo nd of E $\stackrel{\bullet}{\ }$ M

Lemma 1 *Under* **Assumptions 2** *and* **4(d)**, *with probability at least* 1

where the ast step s due to

Fro 4 we get

$$\frac{1}{2} (\widehat{\mathbf{w}}) (\mathbf{w}_{*})) \\
\frac{2}{2} (\widehat{\mathbf{w}}) (\mathbf{w}_{*})^{2} + \frac{2}{2} \log(2) \widehat{\mathbf{w}} (\mathbf{w}_{*}) + \widehat{\mathbf{w}} (\mathbf{w}_{*}) + \widehat{\mathbf{w}} (\mathbf{w}_{*}) \sqrt{\frac{8 + \log(2)}{2}} \\
+ 2 \widehat{\mathbf{w}} (\mathbf{w}_{*}) + \frac{2}{2} + \frac{(\widehat{\mathbf{w}}) \widehat{\mathbf{w}} (\mathbf{w}_{*})}{2} + \frac{4 + \log(2)}{2} + 4 \sqrt{\frac{2 + \log(2)}{2}} + \left(4 + \frac{2}{2} + \frac{2 + 2}{2} + \frac{(\widehat{\mathbf{w}})}{2}\right)$$

wh ch p es

5. Conclusions and Future Work

In this paper we study the excess rising of E M for CO Our theoretical results show that it is possible to achieve (1) type of rising bounds under the shoothness and show a number of the shoothness and strong convexity conditions, either rist part of heore is and A or exciting result is that when is arge enough E M has $(1)^2$ type of rish bounds under the shoothness strong convexity and shoot and rish conditions is either second part of heore is and $(1)^2$.

In the context of $\ \ CO$ there re $\ \ a$ $\ \ n$ any open prob e $\ \ s$ about $\ \ E$ $\ \ M$

Our current resu ts are restr cted to the H bert or Euc dean space because the s oothness and strong convex ty are de ned n ter s of the $_2$ nor e w extend our ana ys s to other geo etr es n the future

As ent oned n **Remark 3** under the strong convex ty cond t on a d ens ona ty ndependent r s bound e g () or (1) that ho ds w th h gh probab ty s st ss ng As d scussed n **Remark 8** t s unc ear whether the convex ty of the oss can be exp o ted to prove the ower bound of n the second part of heore Idea y we expect that $= \Omega($) s suf c ent to de ver an (1 [2] +4)1 r s bound

4 he (1 2) type of r s bounds require both the s oothness and strong convex ty cond t ons. One ay invest gate whether strong convex ty can be relaxed to other wealer conditions such as exponent a concavity. Hazan et a

F na y as far as we now there are no $(1 ^2)$ type of r s bounds for stochast c approx at on A e w try to estab sh such bounds for A

Acknowledgments

h s wor was part a y supported by the N FC J J angsu F BK N F II

4, 9 8 II 4 99 and the Co aborat ve Innovat on Center of Nove oftware echnology and Industr a zat on of Nan ng n vers ty

(1) and (1)

ZHANG YANG JIN

- Mehrdad Mahdav Le un Zhang and long J n Lower and upper bounds on the genera zat on of stochast c exponent a y concave opt zat on In Proceedings of the 28th Conference on Learning Theory
- Co n McD ar of On the ethod of bounded d fferences In Surveys in Combinatorics pages
- N shant A Mehta Fast rates with high probability in expiconcave statistical earning ArXiv e-prints arX v.
- on Me r and ong Zhang Genera zat on error bounds for bayes an xture a gor the s Journal of Machine Learning Research 4. 9
- Er c Mou nes and Franc s → Bach Non asy ptot c ana ys s of stochast c approx at on a go r th s for ach ne earn ng In Advances in Neural Information Processing Systems 24 pages 4 4 9
- A Ne rovs A Jud ts y G Lan and A hap ro obust stochast c approx at on approach to stochast c progra ng SIAM Journal on Optimization 94.4999
- Yur Nesterov Introductory lectures on convex optimization: a basic course vo u e optimization K uwer Acade c Pub shers
- D try Panchen o o e extens ons of an nequa ty of vapn and chervonen s *Electronic Communications in Probability*
- G es Ps er *The volume of convex bodies and Banach space geometry* Ca br dge racts n Mathe at cs No 94 Ca br dge n vers ty Press 9 9
- Yan v P an and an ershyn n One b t co pressed sens ng by near progra ng Communications on Pure and Applied Mathematics 9
- A exander a h n Ohad ha r and Karth r dharan Ma ng grad ent descent opt a for strong y convex stochast c opt zat on In *Proceedings of the 29th International Conference on Machine Learning* pages 449 4
- Bernhard chò opf and A exander J o a Learning with kernels: support vector machines, regularization, optimization, and beyond MI Press
- ha ha ev hwartz and ha Ben Dav d *Understanding Machine Learning: From Theory to Algorithms* Ca br dge n vers ty Press **4**
- ha ha ev hwartz Ohad ha r Nathan rebro and Karth r dharan tochast c convex opt zat on In *Proceedings of the 22nd Annual Conference on Learning Theory* 9
- A exander hap ro Dar n a Dentcheva and Andrze diszczyns Lectures on Stochastic Programming: Modeling and Theory IAM second ed t on 4
- teve a e and D ng Xuan Zhou Learn ng theory est ates v a ntegra operators and the r ap prox at ons *Constructive Approximation*

$(1\)$ and $(1\ ^2)$ ype of $\stackrel{\bullet}{\ }$ k Bo nd of E $\stackrel{\bullet}{\ }$ M

Nathan rebro Karth r dharan and A but ewar Opt st c rates for earn ng w th a s ooth oss $ArXiv\ e$ -prints arX v. 9 9.

Karth r dharan ha ha ev shwartz and Nathan rebro Fast rates for regu ar zed object ves In Advances in Neural Information Processing Systems 21 pages 4 9

ad r apn The Nature of Statistical Learning Theory pr nger second ed t on

ad r N apn Statistical Learning Theory ey Intersc ence 99

Le un Zhang Mehrdad Mahdav and long J n L near convergence with condition number in dependent access of full gradients. In Advance in Neural Information Processing Systems 26 pages 9 9 9 a

Le un Zhang anbao Yang long J n and X aofe He (log) project ons for stochast c op t zat on of s ooth and strong y convex funct ons In *Proceedings of the 30th International Conference on Machine Learning* b

Appendix A. Proof of Lemma 1

e ntroduce Le a of a e and Zhou

Lemma 3 Let be a Hilbert space and let be a random variable with values in . Assume almost surely. Denote $\binom{2}{2} = \mathbb{E}\left[\frac{2}{1} \right]$. Let $\binom{m}{i=1}$ be $\binom{m}{i}$ independent drawers of . For any 0 1, with confidence $\binom{n}{2}$,

$$\left\| \frac{1}{m} \sum_{i=1}^{m} [i \quad \text{E}[i]] \right\| = \frac{2 - \log(2)}{m} + \sqrt{\frac{2^{-2}(i) \log(2)}{m}}$$

e rst cons der a xed \mathbf{w} (/) nce $i(\mathbf{x})$ s s ooth we have

$$\mathbf{W}_{i}(\mathbf{w}) \quad \mathbf{W}_{i}(\mathbf{w}_{*}) \quad \mathbf{W}_{i}(\mathbf{w}_{*})$$

Because $i(\cdot)$ s both convex and s ooth by of Nesterov 4 we have

$$\sqrt{\mathbf{W}}_{i}(\mathbf{w}) \quad \mathbf{\nabla}_{i}(\mathbf{w}_{*}) \sqrt{2} \qquad (i(\mathbf{w}) \quad i(\mathbf{w}_{*}) \quad \sqrt{2} \quad i(\mathbf{w}_{*}) \quad \mathbf{w} \quad \mathbf{w}_{*})$$

a ng expectat on over both s des we have

$$\mathrm{E}\left[\mathbf{W}_{i}(\mathbf{w}) \quad \mathbf{W}_{i}(\mathbf{w}_{*})\right]^{2} \qquad (\quad (\mathbf{w}) \qquad (\mathbf{w}_{*}) \quad \mathbf{W}_{*} \quad (\mathbf{w}_{*}) \quad \mathbf{w} \quad \mathbf{w}_{*} \quad) \qquad (\quad (\mathbf{w}) \qquad (\mathbf{w}_{*}))$$

where the ast nequalty follows from the opt of a ty condition of \mathbf{w}_* e

$$\mathbf{W}$$
 (\mathbf{w}_*) \mathbf{w} \mathbf{w}_* $\rightarrow 0$, \mathbf{w}

Fo ow ng Le a w th probab ty at east 1 we have

$$\begin{aligned} & \left\| \mathbf{V} \quad (\mathbf{w}) \quad \mathbf{V} \quad (\mathbf{w}_*) \quad \left[\mathbf{V} \cap (\mathbf{w}) \quad \mathbf{V} \cap (\mathbf{w}_*) \right] \right\| \\ &= \left\| \mathbf{V} \quad (\mathbf{w}) \quad \mathbf{V} \quad (\mathbf{w}_*) \quad \frac{1}{2} \sum_{i=1}^{n} \left[\mathbf{V} \quad _i(\mathbf{w}) \quad \mathbf{V} \quad _i(\mathbf{w}_*) \right] \right\| \\ &= \frac{2 \quad \mathbf{w} \quad \mathbf{w}_* \cdot \log(2)}{1 \quad \mathbf{v}_* \cdot \log(2)} + \sqrt{\frac{2 \quad (\mathbf{w}) \quad (\mathbf{w}_*) \log(2)}{1 \quad \mathbf{v}_* \cdot \log(2)}} \end{aligned}$$

a by ta ng the un on bound over a \mathbf{w} (/) o th s end we need an e obta n Le upper bound of the cover ng nu ber (/

Let $\mathcal B$ be an un t ba of d ens on and $(\mathcal B)$ be ts, net w th n a card na ty According to a standard vou e co par son arguent P s er 9 we have

$$\log (\mathcal{B}) \log \frac{3}{2}$$

Let $\mathcal{B}(\)$ be a bas centered at or gin with radius in the new assume $e \in \mathcal{B}(\)$ it follows that

$$\log \cdot () \quad \log \left| \left(\mathcal{B}() \frac{1}{2} \right) \right| \quad \log \frac{6}{2}$$

where the rst nequality is because the covering numbers are a lost increasing by inclusion P an and ershyn n

Appendix B. Proof of Lemma 2

o app y Le a we need an upper bound of $\mathrm{E}\left[\sqrt{\mathbf{w}}_{i}(\mathbf{w}_{*})\right]^{2}$ nce $_{i}(\underline{)}$ s s ooth and nonnegat ve fro Le a 4 of rebro et a we have

$$\mathbf{V}_{i}(\mathbf{w}_{*})$$
 $= 4 \quad i(\mathbf{w}_{*})$

and thus

$$\mathrm{E}\left[\mathbf{W}_{i}(\mathbf{w}_{*})\right]^{2} \quad 4 \ \mathrm{E}\left[i(\mathbf{w}_{*})\right] = 4$$

 $\mathrm{E}\left[\sqrt{\mathbf{W}}_{i}(\mathbf{w}_{*})\right]^{2}\right] \quad 4 \ \mathrm{E}\left[i(\mathbf{w}_{*})\right] = 4 \quad *$ Fro **Assumption 5** we have $\sqrt{\mathbf{W}}_{i}(\mathbf{w}_{*})$ hen according to Le a with probability at east 1

$$\left\| \mathbf{\nabla} (\mathbf{w}_*) \cdot \mathbf{\nabla} (\mathbf{w}_*) \right\| = \left\| \mathbf{\nabla} (\mathbf{w}_*) \cdot \frac{1}{n} \sum_{i=1}^n \mathbf{\nabla} (\mathbf{w}_*) \right\| \cdot \frac{2 \cdot \log(2)}{n} + \sqrt{\frac{8 \cdot \log(2)}{n}} + \sqrt{\frac{8 \cdot \log(2)}$$

Appendix C. Proof of Theorem 3

he proof fo ows the sa e og c as that of heore nder **Assumption 4(b)** beco es

$$(\widehat{\mathbf{w}}) \qquad (\mathbf{w}_*) + \frac{1}{2\sqrt{\widehat{\mathbf{w}}}} \qquad \mathbf{w}_*\sqrt{2}$$

$$\left(\underbrace{\| \mathbf{\nabla} \quad (\widehat{\mathbf{w}}) \quad \mathbf{\nabla} \quad (\mathbf{w}_*) \quad [\mathbf{\nabla} \quad (\widehat{\mathbf{w}}) \quad \mathbf{\nabla} \quad (\mathbf{w}_*)] \|}_{:=A_1} + \underbrace{\| \mathbf{\nabla} \quad (\mathbf{w}_*) \quad \mathbf{\nabla} \quad (\mathbf{w}_*) \|}_{:=A_2} \right) \sqrt{\widehat{\mathbf{w}}} \qquad \mathbf{w}_*\sqrt{2}$$

(1) AND (1 2) YPE OF $\stackrel{\bullet}{\bullet}$ K BO ND OF E $\stackrel{\bullet}{\mathsf{M}}$

ubst tut ng and nto 8 w th probab ty at east 1 2 we have

9

o prove we subst tute and

$$\mathbf{\hat{w}} \quad \mathbf{w}_{*} \sqrt{\frac{8 + \log(2)}{2}} \quad \frac{4 + \log(2)}{2 \cdot \mathbf{\hat{w}}} + \frac{1}{2} \cdot \mathbf{\hat{w}} \quad \mathbf{w}_{*}$$

nto 9 and then obta n

$$\frac{1}{2}(\widehat{\mathbf{w}}) \quad (\mathbf{w}_{*})) \\
\frac{2}{2} \quad (\underline{}) \cdot \widehat{\mathbf{w}} \quad \mathbf{w}_{*} \cdot \underline{}^{2} + \frac{2 - \log(2) \cdot \widehat{\mathbf{w}} \cdot \mathbf{w}_{*}}{\widehat{\mathbf{w}}} + \frac{4 - * \log(2)}{2} \\
+ 2 \cdot \underline{} \cdot \widehat{\mathbf{w}} \cdot \mathbf{w}_{*} \cdot \underline{}^{2} + \frac{2}{2} + \frac{(\underline{}) \cdot \widehat{\mathbf{w}} \cdot \mathbf{w}_{*}}{2} \\
+ \frac{8}{2} \cdot \underline{} \cdot \underline{}^{2} + \frac{4 - \log(2)}{2} + \frac{4 - * \log(2)}{2} + \underline{}^{2} + \underline{}^{2$$

wh ch p es o prove we subst tute

nto 9 and then obta n

$$(\widehat{\mathbf{w}}) \qquad (\mathbf{w}_{*}) + \frac{1}{4} \sqrt{\widehat{\mathbf{w}}} \qquad \mathbf{w}_{*} \sqrt{\frac{2}{2}}$$

$$= \frac{(-) \sqrt{\widehat{\mathbf{w}}} \qquad \mathbf{w}_{*} \sqrt{\frac{2}{2}} + \frac{2 - (-)(-(\widehat{\mathbf{w}})} \qquad (\mathbf{w}_{*}))}{2} + \frac{16 - 2 \log^{2}(2 -)}{2} + \frac{64 - * \log(2 -)}{2}$$

$$+ \frac{64 - 2 - 2}{4} \sqrt{\widehat{\mathbf{w}}} \qquad \mathbf{w}_{*} \sqrt{\frac{2}{2}} + \frac{1}{2} (-(\widehat{\mathbf{w}}) \qquad (\mathbf{w}_{*})) + \frac{16 - 2 \log^{2}(2 -)}{2} + \frac{64 - * \log(2 -)}{2}$$

$$+ \frac{64 - 2 - 2}{2} + 8 - 4 - 2 - 2$$

wh ch p es

Appendix D. Proof of Theorem 5

thout **Assumption 4(d)** Le a which sused in the proofs of heore s and does not hold any ore Instead we will use the following version that only relies on the silventh on the suse of the silventh of the sil

Lemma 4 Under **Assumption 2**, with probability at least 1 , for any \mathbf{w} (ℓ), we have

$$\left\| \mathbf{\nabla} (\mathbf{w}) \cdot \mathbf{\nabla} (\mathbf{w}_*) \cdot \left[\mathbf{\nabla} (\mathbf{w}) \cdot \mathbf{\nabla} (\mathbf{w}_*) \right] \right\| = \frac{()_{\mathbf{w}} \cdot \mathbf{w}_{*_{\mathbf{v}}}}{()_{\mathbf{v}} \cdot \mathbf{v}_{*_{\mathbf{v}}}} + \sqrt{\mathbf{w}} \cdot \mathbf{w}_{*_{\mathbf{v}}} \sqrt{\frac{()_{\mathbf{v}} \cdot \mathbf{v}_{*_{\mathbf{v}}}}{()_{\mathbf{v}} \cdot \mathbf{v}_{*_{\mathbf{v}}}}} \right\|$$

where () is define in (9).

he above e a s a d rect consequence of Le a and the un on bound he rest of the proof s s ar to those of heore s and e rst der ve a counterpart of under Le a 4 Co b n ng w th Le a 4 w th probab ty at east 1 we have

$$\frac{()_{1}\widetilde{\mathbf{w}} \quad \mathbf{w}_{*}}{()_{1}\widetilde{\mathbf{w}} \quad \mathbf{w}_{*}} + \sqrt{\widetilde{\mathbf{w}}} \quad \mathbf{w}_{*} \sqrt{\frac{()_{1}}{()_{1}}} + 2$$

$$\frac{()_{1}\widetilde{\mathbf{w}} \quad \mathbf{w}_{*}}{()_{1}\widetilde{\mathbf{w}} \quad \mathbf{w}_{*}} + \sqrt{\widetilde{\mathbf{w}}} \quad \mathbf{w}_{*} \sqrt{\frac{()_{1}}{()_{1}}} + 2$$

$$\frac{()_{1}\widetilde{\mathbf{w}} \quad \mathbf{w}_{*}}{()_{1}\widetilde{\mathbf{w}} \quad \mathbf{w}_{*}} + \sqrt{\widetilde{\mathbf{w}}} \quad \mathbf{w}_{*} \sqrt{\frac{()_{1}}{()_{1}}} + \frac{()_{1}}{()_{1}} + \sqrt{\frac{()_{1}}{()_{1}}} + 2$$

ubst tut ng 4 and nto w th probab ty at east 1 2 we have

$$(\widehat{\mathbf{w}}) \qquad (\mathbf{w}_{*}) + \frac{1}{2!} \widehat{\mathbf{w}} \qquad \mathbf{w}_{*}$$

$$\frac{()_{!} \widehat{\mathbf{w}} \qquad \mathbf{w}_{*} }{| \mathbf{w}_{*} |^{2}} + |_{!} \widehat{\mathbf{w}} \qquad \mathbf{w}_{*} |^{2} \sqrt{\frac{()_{!}}{| \mathbf{w}_{*} |^{2}}}$$

$$+ \frac{2 \log(2)_{!} \widehat{\mathbf{w}} \qquad \mathbf{w}_{*} }{| \mathbf{w}_{*} |^{2}} + |_{!} \widehat{\mathbf{w}} \qquad \mathbf{w}_{*} |_{!} \sqrt{\frac{8 + \log(2)_{!}}{| \mathbf{w}_{*} |^{2}}}$$

$$+ 2 |_{!} \widehat{\mathbf{w}} \qquad \mathbf{w}_{*} |_{!} + |_{!} \widehat{\mathbf{w}} \qquad \mathbf{w}_{*} |_{!} \sqrt{\frac{()_{!} |_{!}}{| \mathbf{w}_{*} |^{2}}} + |_{!} \widehat{\mathbf{w}} \qquad \mathbf{w}_{*} |_{!} \sqrt{\frac{()_{!} |_{!}}{| \mathbf{w}_{*} |^{2}}}$$

$$(1)$$
 and (1) ype of \mathbf{k} k bo nd of \mathbf{E} \mathbf{M}

o get 4 we subst tute

$$\sqrt{\widehat{\mathbf{w}}} \quad \mathbf{w}_{*,1}^{2} \sqrt{\frac{()}{2}} \quad \frac{2 \quad () \sqrt{\widehat{\mathbf{w}}} \quad \mathbf{w}_{*,1}^{2}}{2} + \frac{1}{4} \sqrt{\widehat{\mathbf{w}}} \quad \mathbf{w}_{*,1}^{2} \\
\sqrt{\widehat{\mathbf{w}}} \quad \mathbf{w}_{*,1} \sqrt{\frac{8 + \log(2)}{2}} \quad \frac{8 + \log(2)}{2} + \frac{1}{4} \sqrt{\widehat{\mathbf{w}}} \quad \mathbf{w}_{*,1}^{2}$$

nto 4 and then obta n

$$\frac{(\widehat{\mathbf{w}}) \quad (\mathbf{w}_{*})}{(\underbrace{)^{*}} \widehat{\mathbf{w}} \quad \mathbf{w}_{*}^{2} + \underbrace{^{2} \quad ()^{*}} \widehat{\mathbf{w}} \quad \mathbf{w}_{*}^{2} + \underbrace{^{2} \quad \log(2)^{*}} \widehat{\mathbf{w}} \quad \mathbf{w}_{*}^{2} + \underbrace{^{2} \quad ()^{*}} \widehat{\mathbf{w}} \quad \mathbf{w}_{*}^{2} + \underbrace{^{2} \quad ()^$$

wh ch proves 4

o get , we subst tute

$$\frac{2 - \log(2) \cdot \widehat{\mathbf{w}} \cdot \mathbf{w}_{*}}{\widehat{\mathbf{w}}} = \frac{8 - 2 \log^{2}(2)}{2} + \frac{1}{8} \cdot \widehat{\mathbf{w}} \cdot \mathbf{w}_{*} \cdot \frac{2}{2}$$

$$\widehat{\mathbf{w}} \cdot \mathbf{w}_{*} \cdot \sqrt{\frac{8 - s \log(2)}{2}} = \frac{32 - s \log(2)}{2} + \frac{1}{16} \cdot \widehat{\mathbf{w}} \cdot \mathbf{w}_{*} \cdot \frac{2}{2}$$

$$\frac{2 \cdot \widehat{\mathbf{w}} \cdot \mathbf{w}_{*}}{\widehat{\mathbf{w}} \cdot \mathbf{w}_{*}} \cdot \frac{32 - 2 - 2}{2} + \frac{1}{32} \cdot \widehat{\mathbf{w}} \cdot \mathbf{w}_{*} \cdot \frac{2}{2}$$

$$\frac{\widehat{\mathbf{w}} \cdot \mathbf{w}_{*}}{\widehat{\mathbf{w}} \cdot \mathbf{w}_{*}} \cdot \sqrt{\frac{(-)}{2}} = \frac{16 - 2 - 2(-) - 2}{2} + \frac{1}{64} \cdot \widehat{\mathbf{w}} \cdot \mathbf{w}_{*} \cdot \frac{2}{2}$$

nto 4 and then obta n

$$\begin{split} &(\widehat{\mathbf{w}}) \quad (\mathbf{w}_*) + \frac{1}{4!} \, \widehat{\mathbf{w}} \quad \mathbf{w}_{*,!}^2 \\ &- \frac{()_! \, \widehat{\mathbf{w}} \quad \mathbf{w}_{*,!}^2 + _! \, \widehat{\mathbf{w}} \quad \mathbf{w}_{*,!}^2 \sqrt{()} + \frac{8 \quad ^2 \log^2(2)}{2} + \frac{32 \quad * \log(2)}{2} \\ &+ \left(\frac{32 \quad ^2}{2} + \frac{16 \quad ^2 \quad ()}{2} + \frac{16 \quad ^2 \quad ^2()}{2}\right) \quad ^2 \\ &- \frac{^2 \cdot \widehat{\mathbf{w}} \quad \mathbf{w}_{*,!}^2 + \frac{16 \quad ^2 \quad ()}{5!} \, \widehat{\mathbf{w}} \quad \mathbf{w}_{*,!}^2 + \frac{8 \quad ^2 \log^2(2)}{2} + \frac{32 \quad * \log(2)}{2} \\ &+ \left(\frac{32 \quad ^2}{2} + \frac{16}{25} + \frac{16 \quad ^3}{625 \quad ^2}\right) \quad ^2 \\ &^{\lambda/L \le 1} \frac{6}{25!} \, \widehat{\mathbf{w}} \quad \mathbf{w}_{*,!}^2 + \frac{8 \quad ^2 \log^2(2)}{2} + \frac{32 \quad * \log(2)}{2} + \left(\frac{32 \quad ^2}{625} + \frac{416}{625}\right) \quad ^2 \end{split}$$

By subtract ng $\mathbf{\hat{w}} = \mathbf{w_*} \cdot \mathbf{\hat{w}} + \mathbf{\hat{w}} + \mathbf{\hat{w}} \cdot \mathbf{\hat{w}} + \mathbf{\hat{w}} + \mathbf{\hat{w}} \cdot \mathbf{\hat{w}} + \mathbf{\hat{w}} \cdot \mathbf{\hat{w}} + \mathbf{\hat{w}} +$

Appendix E. Proof of Theorem 7

e cons der two cases In the rst case we assu e that

$$\mathbf{\hat{w}} \quad \mathbf{w}_*$$

nce $(\)$ s s ooth and $(\)$ s L psch tz cont nuous we have

where the ast step ut zes Jensen's nequalty

$$| \mathbf{V} (\mathbf{w}_*)_{\mathbf{V}} = \| \mathbf{E}_{(\mathbf{x},y) \sim \mathbb{D}} [\mathbf{V} (\mathbf{w}_* \mathbf{x})] \| \mathbf{E}_{(\mathbf{x},y) \sim \mathbb{D}} [\mathbf{V} (\mathbf{w}_* \mathbf{x})_{\mathbf{V}}]$$

Next we study the case

$$\frac{1}{2}$$
 $\hat{\mathbf{w}}$ \mathbf{w}_* 2

Fro 9 we have

$$(\widehat{\mathbf{w}}) \qquad (\mathbf{w}_{*}) + \frac{1}{2} \mathbf{\hat{w}} \qquad \mathbf{w}_{*} \mathbf{\hat{v}}^{2}$$

$$| \mathbf{\nabla} \qquad (\widehat{\mathbf{w}}) \qquad \mathbf{\nabla} \qquad (\mathbf{w}_{*}) \qquad | \mathbf{\nabla} \qquad (\widehat{\mathbf{w}}) \qquad \mathbf{\nabla} \qquad (\mathbf{w}_{*}) | \widehat{\mathbf{w}} \qquad \mathbf{w}_{*} + \mathbf{\nabla} \qquad (\mathbf{w}_{*}) \qquad \widehat{\mathbf{w}} \qquad \mathbf{w}_{*}$$

$$= | \mathbf{\nabla} \qquad (\widehat{\mathbf{w}}) \qquad \mathbf{\nabla} \qquad (\mathbf{w}_{*}) \qquad | \mathbf{\nabla} \qquad (\mathbf{w}_{*}) | \widehat{\mathbf{w}} \qquad \mathbf{w}_{*} + \mathbf{\nabla} \qquad (\mathbf{w}_{*}) \qquad \mathbf{\nabla} \qquad (\mathbf{w}_{*}) \qquad \widehat{\mathbf{w}} \qquad \mathbf{w}_{*}$$

$$= | \mathbf{\nabla} \qquad (\widehat{\mathbf{w}}) \qquad \mathbf{\nabla} \qquad (\mathbf{w}_{*}) \qquad | \mathbf{\nabla} \qquad (\mathbf{w}_{*}) | \qquad \mathbf{\nabla} \qquad (\mathbf{w}_{*}) | \qquad \mathbf{w} \qquad \mathbf{w}_{*} \rangle$$

$$= | \mathbf{\nabla} \qquad (\mathbf{w}_{*}) \qquad | \mathbf{w}_{*} \qquad | \mathbf{\nabla} \qquad (\mathbf{w}_{*}) \qquad | \mathbf{w}_{*} \qquad | \mathbf{\nabla} \qquad (\mathbf{w}_{*}) \qquad | \mathbf{w}_{*}$$

e rst bound $_1$ out ze the fact the rando var ab e $\sqrt{\hat{\mathbf{w}}}$ \mathbf{w}_* es n the range $(1 \ ^2 \ 2 \]$ we deve op the fo ow ng e a

Lemma 5 Under **Assumptions 7** and **8**, with probability at least 1 , for all

$$\frac{1}{2}$$

the following bound holds:

$$\sup_{\mathbf{w}:\|\mathbf{w}-\mathbf{w}_*\| \leq \gamma} \left\langle \mathbf{W} \quad (\mathbf{w}) \quad \mathbf{W} \quad (\mathbf{w}_*) \quad [\mathbf{V} \cap (\mathbf{w}) \quad \mathbf{W} \cap (\mathbf{w}_*)] \quad \mathbf{w} \quad \mathbf{w}_* \right\rangle \quad \frac{4^{-2}}{=} \left(8 + \sqrt{2 \log - 1} \right)$$

$$where \quad = \mathbf{V} 2 \log_2(\mathbf{w}) + \log_2(2^{-1})$$

Based on the above e a we have with probability at least 1

$$\frac{4 \widehat{\mathbf{w}} \widehat{\mathbf{w}}_{*}}{2} \left(8 + \sqrt{2 \log -} \right) = \frac{\widehat{\mathbf{w}} \widehat{\mathbf{w}}_{*}}{2}$$

where s de ned n

e then proceed to hand e $\,_2$ wh ch can be upper bounded in the sa $\,$ e way as A_2 In part cu ar we have the following e $\,$ a

Lemma 6 Under **Assumptions 7, 8**, and **10**, with probability at least 1 , we have

$$\| \nabla (\mathbf{w}_*) \nabla (\mathbf{w}_*) \| 2 \log(2) + \sqrt{8 \log(2)}$$
 4

ubst tut ng 44 and 4 nto 4 w th probab ty at east 1 2 we have

$$(\widehat{\mathbf{w}}) \qquad (\mathbf{w}_*) + \frac{1}{2!} \widehat{\mathbf{w}} \qquad \mathbf{w}_{*}$$

$$(\mathbf{w}_*) + \frac{1}{2!} \widehat{\mathbf{w}} \qquad \mathbf{w}_{*}$$

e subst tute

$$\frac{1}{\sqrt{\widehat{\mathbf{w}}} - \mathbf{w}_{*}}^{2} - \frac{2 - 2}{\sqrt{\widehat{\mathbf{w}}} - \mathbf{w}_{*}}^{2} + \frac{1}{4\sqrt{\widehat{\mathbf{w}}}} - \mathbf{w}_{*}^{2}} + \frac{1}{4\sqrt{\widehat{\mathbf{w}}}} - \mathbf{w}_{*}^{2}$$

$$\sqrt{8 - 8 \log(2)} - \frac{8 - 8 \log(2)}{4\sqrt{\widehat{\mathbf{w}}} - \mathbf{w}_{*}} + \frac{1}{4\sqrt{\widehat{\mathbf{w}}}} - \mathbf{w}_{*}^{2}$$

nto 4, and then have

$$(\widehat{\mathbf{w}}) \qquad (\mathbf{w}_*) \quad \frac{{2 \quad 2 \quad \widehat{\mathbf{w}} \quad \mathbf{w}_*} {\frac{2}{1} \quad 2 \quad \log(2 \quad)} {\frac{\widehat{\mathbf{w}} \quad \mathbf{w}_*}{1} + \frac{8 \quad * \log(2 \quad)}{1 \quad 2 \quad 2 \quad 2} + \frac{4 \quad \log(2 \quad)}{1 \quad 2 \quad 2 \quad 2} + \frac{8 \quad * \log(2 \quad)}{1 \quad 2 \quad 2 \quad 2}$$

Co b n ng the above nequality with 4 we obtain o prove we substitute

$$\frac{2 - \log(2) \sqrt{\widehat{\mathbf{w}} - \mathbf{w}_{*}}}{\sqrt{2}} = \frac{8 - 2 \log^{2}(2)}{2} + \frac{1}{8} \sqrt{\widehat{\mathbf{w}}} - \mathbf{w}_{*} \sqrt{2}$$

$$\sqrt{8 - \frac{1}{8} \log(2)}} = \frac{16 - \frac{1}{8} \log(2)}{2} + \frac{1}{8} \sqrt{\widehat{\mathbf{w}}} - \mathbf{w}_{*} \sqrt{2}$$

nto 4, and then have

$$(\widehat{\mathbf{w}}) \qquad (\mathbf{w}_{*}) + \frac{1}{4!} \widehat{\mathbf{w}} \qquad \mathbf{w}_{*}$$

$$\frac{|\widehat{\mathbf{w}} - \mathbf{w}_{*}|^{2}}{|\widehat{\mathbf{w}} - \mathbf{w}_{*}|^{2}} + \frac{8^{-2} \log^{2}(2)}{2} + \frac{16^{-1} \log(2)}{2} + \frac{16^{-1} \log(2)}{2}$$

$$\frac{1}{4!} \widehat{\mathbf{w}} \qquad \mathbf{w}_{*}$$

$$\frac{2}{4!} \widehat{\mathbf{w}} - \mathbf{w}_{*}$$

Co b n ng the above nequa ty w th 4 we obta n

Appendix F. Proof of Lemma 5

F rst we part t on the range $(1 \quad ^2 \quad 2 \quad]$ nto $= \blacktriangledown 2 \log_2(\) + \log_2(2\)$ consecut ve seg ents $\Delta_1 \quad \Delta_2 \qquad \Delta_s$ such that

$$\Delta_k = \left(\underbrace{\frac{2^{k-1}}{2}}_{:=\gamma_k^-} \underbrace{\frac{2^k}{2}}_{=\gamma_k^+}\right] = 1$$

hen we consider the case Δ_k for a xed value of e have

Based on the McD ar ds nequal ty McD ar ds 9 and the ade acher complex ty Bart ett and Mende son we have the following e a to upper bound the ast ter

Lemma 7 *Under Assumptions 7 and 8, with probability at least 1* , we have

$$\sup_{\mathbf{w}:\|\mathbf{w}-\mathbf{w}_*\| \le \gamma_k^+} \left\langle \mathbf{W} \quad (\mathbf{w}) \quad \mathbf{W} \quad (\mathbf{w}_*) \quad [\mathbf{V} \cap (\mathbf{w}) \quad \mathbf{W} \cap (\mathbf{w}_*)] \quad \mathbf{w} \quad \mathbf{w}_* \right\rangle$$

$$\frac{\binom{+}{k}^2}{-} \left(8 + \sqrt{2\log \frac{1}{-}} \right)$$

nce Δ_k we have

$$\frac{1}{k} = 2 \frac{1}{k} = 2$$

hus w th probab ty at east 1 we have

$$\sup_{\mathbf{w}:\|\mathbf{w}-\mathbf{w}_*\| \leq \gamma} \left\langle \mathbf{W} \quad (\mathbf{w}) \quad \mathbf{W} \quad (\mathbf{w}_*) \quad [\mathbf{V} \cap (\mathbf{w}) \quad \mathbf{W} \cap (\mathbf{w}_*)] \quad \mathbf{w} \quad \mathbf{w}_* \right\rangle$$

$$\mathbf{4_{V}} \quad \mathbf{4^{8}} \quad \mathbf{49} \quad \frac{4}{3} \quad \frac{2}{3} \left(8 + \sqrt{2\log \frac{1}{3}} \right)$$

e co p ete the proof by ta ng the un on bound over seg ents

Appendix G. Proof of Lemma 7

os p fy the notat on we de ne

$$i(\mathbf{w}) = (\mathbf{w} \ \mathbf{x}_i \quad i) = 1$$

$$(\mathbf{w}) = \sup_{\mathbf{w}: \|\mathbf{w} - \mathbf{w}_*\| \le \gamma_k^+} \left\langle \mathbf{W} \quad (\mathbf{w}) \quad \mathbf{W} \quad (\mathbf{w}_*) \quad \frac{1}{-} \sum_{i=1}^n [\mathbf{W} \quad i(\mathbf{w}) \quad \mathbf{W} \quad i(\mathbf{w}_*)] \quad \mathbf{w} \quad \mathbf{w}_* \right\rangle$$

o upper bound $\begin{pmatrix} 1 \end{pmatrix}$ we ut ze the McD ar d s nequalty McD ar d 9 9

$$(1)$$
 and $(1)^2$ ype of \mathbf{k} k bo nd of \mathbf{E} \mathbf{M}

Theorem 8 Let $_1$ $_n$ be independent random variables taking values in a set A, and assume that $:A^n$, \mathbb{R} satisfies

for every 1 . Then, for every 0,

$$\begin{pmatrix} 1 & n \end{pmatrix} \quad \text{E} \begin{bmatrix} \begin{pmatrix} 1 & n \end{pmatrix} \end{bmatrix} \stackrel{>}{=} \quad \exp \begin{pmatrix} \frac{2^2}{\sum_{i=1}^n \frac{2}{i}} \end{pmatrix}$$

As pointed out in **Remark 7 Assumptions 7** and **8** py the rando function i(x) is sooth and thus

$$\mathbf{v}_{i} \mathbf{\nabla}_{i}(\mathbf{w}) \quad \mathbf{\nabla}_{i}(\mathbf{w}_{*}) \quad \mathbf{w} \quad \mathbf{w}_{*}, \qquad \mathbf{w} \quad \mathbf{w}_{*} \mathbf{v}_{1}^{2} \qquad \left(\begin{array}{c} + \\ k \end{array}\right)^{2}$$

As a result when a rando function i changes the rando variable $\binom{1}{n}$ can change by no ore than $2\binom{+}{k}^2$ of see this we have

$$\frac{1}{-1} \sup_{\mathbf{w}: \|\mathbf{w} - \mathbf{w}_*\| \le \gamma_k^+} \langle \mathbf{\nabla}'_i(\mathbf{w}) \quad \mathbf{\nabla}'_i(\mathbf{w}_*) \quad [\mathbf{\nabla}_i(\mathbf{w}) \quad \mathbf{\nabla}_i(\mathbf{w}_*)] \quad \mathbf{w} \quad \mathbf{w}_* \rangle \quad \frac{2}{-1} \quad (\frac{1}{k})^2$$

McD ar ds nequa ty p es that w th probab ty at east 1

$$\begin{pmatrix} 1 & n \end{pmatrix} \quad \mathbf{E} \begin{bmatrix} \begin{pmatrix} 1 & n \end{pmatrix} \end{bmatrix} + \begin{pmatrix} \frac{1}{k} \end{pmatrix}^2 \sqrt{\frac{2}{-\log \frac{1}{k}}}$$

Let $\binom{\prime}{1}$ $\binom{\prime}{n}$ be an independent copy of $\binom{1}{1}$ $\binom{n}{n}$ and $\binom{1}{n}$ $\binom{n}{n}$ be d ade a cher var ab es with equal probability of being $\binom{1}{n}$ is ng techniques of ade acher color piex ties. Bart ett and Mende son we bound $E\left[\binom{n}{1}\right]$ as follows.

$$\begin{split} & \operatorname{E}_{h_{1},\dots,h_{n}}\left[\sup_{\mathbf{w}:\|\mathbf{w}-\mathbf{w}_{*}\|\leq\gamma_{k}^{+}}\left\langle \mathbf{\boldsymbol{\vee}}\left(\mathbf{w}\right) \quad \mathbf{\boldsymbol{\vee}} \quad (\mathbf{w}_{*}) \quad \frac{1}{2}\sum_{i=1}^{n}\left[\mathbf{\boldsymbol{\vee}}_{i}(\mathbf{w}) \quad \mathbf{\boldsymbol{\vee}}_{i}(\mathbf{w}_{*})\right] \mathbf{w} \quad \mathbf{w}_{*}\right\rangle \right] \\ & = \frac{1}{2}\operatorname{E}_{h_{1},\dots,h_{n}}\left[\sup_{\mathbf{w}:\|\mathbf{w}-\mathbf{w}_{*}\|\leq\gamma_{k}^{+}}\right. \\ & \left. \operatorname{E}_{h'_{1},\dots,h'_{n}}\left[\sum_{i=1}^{n}\left\langle \mathbf{\boldsymbol{\vee}}_{i}'(\mathbf{w}) \quad \mathbf{\boldsymbol{\vee}}_{i}'(\mathbf{w}_{*}) \quad \mathbf{w} \quad \mathbf{w}_{*}\right\rangle \right] \quad \sum_{i=1}^{n}\left[\mathbf{\boldsymbol{\vee}}_{i}(\mathbf{w}) \quad \mathbf{\boldsymbol{\vee}}_{i}(\mathbf{w}_{*}) \quad \mathbf{w} \quad \mathbf{\boldsymbol{w}}_{*}\right] \\ & \frac{1}{2}\operatorname{E}_{h_{1},\dots,h_{n},h'_{1},\dots,h'_{n}}\left[\sup_{\mathbf{w}:\|\mathbf{w}-\mathbf{w}_{*}\|\leq\gamma_{k}^{+}}\right. \\ & \left. \sum_{i=1}^{n}\left\langle \mathbf{\boldsymbol{\vee}}_{i}'(\mathbf{w}) \quad \mathbf{\boldsymbol{\vee}}_{i}'(\mathbf{w}_{*}) \quad \mathbf{\boldsymbol{w}} \quad \mathbf{\boldsymbol{w}}_{*}\right\rangle \quad \sum_{i=1}^{n}\left[\mathbf{\boldsymbol{\vee}}_{i}(\mathbf{w}) \quad \mathbf{\boldsymbol{\vee}}_{i}(\mathbf{w}_{*}) \quad \mathbf{\boldsymbol{w}} \quad \mathbf{\boldsymbol{w}}_{*}\right] \end{split}$$

$$= \frac{1}{n} \mathbf{E}_{h_1,\dots,h_n,h'_1,\dots,h'_n,\epsilon_1,\dots,\epsilon_n} \begin{bmatrix} \sup_{\mathbf{w}:\|\mathbf{w}-\mathbf{w}_*\| \le \gamma_k^+} \\ \sum_{i}^{n} \end{bmatrix}$$

$$E\left[\sup_{\mathbf{w}:\|\mathbf{w}-\mathbf{w}_{*}\|\leq\gamma_{k}^{+}}\sum_{i=1}^{n}i\left(i(\mathbf{w})+i(\mathbf{w})\right)^{2}\right]$$

$$4 \underset{k}{+} \sqrt{E}\left[\sup_{\mathbf{w}:\|\mathbf{w}-\mathbf{w}_{*}\|\leq\gamma_{k}^{+}}\sum_{i=1}^{n}i\left(i(\mathbf{w})+i(\mathbf{w})\right)\right]$$

$$4 \underset{k}{+} \sqrt{E}\left[\sup_{\mathbf{w}:\|\mathbf{w}-\mathbf{w}_{*}\|\leq\gamma_{k}^{+}}\sum_{i=1}^{n}i\left(i(\mathbf{w})+i(\mathbf{w})\right)\right]$$

$$4 \underset{k}{+} \sqrt{E}\left[\sup_{\mathbf{w}:\|\mathbf{w}-\mathbf{w}_{*}\|\leq\gamma_{k}^{+}}\sum_{i=1}^{n}i\left(i(\mathbf{w})+i(\mathbf{w})\right)\right]$$

ar y we have

$$\mathbb{E}\left[\sup_{\mathbf{w}:\|\mathbf{w}-\mathbf{w}_{*}\|\leq\gamma_{k}^{+}}\sum_{i=1}^{n}i\left(i(\mathbf{w})-i(\mathbf{w})\right)^{2}\right]$$

$$4 + \sqrt{\left(\mathbb{E}\left[\sup_{\mathbf{w}:\|\mathbf{w}-\mathbf{w}_{*}\|\leq\gamma_{k}^{+}}\sum_{i=1}^{n}i\left(i(\mathbf{w})\right)\right]} + \mathbb{E}\left[\sup_{\mathbf{w}:\|\mathbf{w}-\mathbf{w}_{*}\|\leq\gamma_{k}^{+}}\sum_{i=1}^{n}i\left(i(\mathbf{w})\right)\right]\right)$$

Co b n ng and 4 we arr ve at

$$\mathbf{E} \begin{bmatrix} \sup_{\mathbf{w}:\|\mathbf{w}-\mathbf{w}_{*}\| \leq \gamma_{k}^{+}} \sum_{i=1}^{n} i_{i} \mathbf{W} & i(\mathbf{w}) & \mathbf{W} & i(\mathbf{w}_{*}) & \mathbf{w} & \mathbf{w}_{*} \end{bmatrix} \\
2 \sum_{k}^{+} \sqrt{-} \left(\mathbf{E} \begin{bmatrix} \sup_{\mathbf{w}:\|\mathbf{w}-\mathbf{w}_{*}\| \leq \gamma_{k}^{+}} \sum_{i=1}^{n} i_{i} i(\mathbf{w}) \end{bmatrix} + \mathbf{E} \begin{bmatrix} \sup_{\mathbf{w}:\|\mathbf{w}-\mathbf{w}_{*}\| \leq \gamma_{k}^{+}} \sum_{i=1}^{n} i_{i} i(\mathbf{x}) \end{bmatrix} \right) \\
:= C_{1} := C_{2}$$

e proceed to upper bound 1 n Fro our de n t on of $i(\mathbf{w})$ we have

$$\begin{vmatrix} i(\mathbf{w}) & i(\mathbf{w}') \end{vmatrix} = \frac{1}{----} \begin{vmatrix} i(\mathbf{w} \ \mathbf{x}_i \) & i(\mathbf{w}' \ \mathbf{x}_i \) \end{vmatrix}$$

$$\sqrt{} \begin{vmatrix} \mathbf{w} \ \mathbf{x}_i \ | \mathbf{w}' \ \mathbf{x}_i \end{vmatrix} = \sqrt{} \begin{vmatrix} \mathbf{x}_i \ \mathbf{w} \ \mathbf{w}_* \ | \mathbf{x}_i \ \mathbf{w}' \ \mathbf{w}_* \end{vmatrix}$$

App y ng the co par son theore of de acher co p ex t es aga n we have

$$\int_{1}^{\infty} \left[\sup_{\mathbf{w}:\|\mathbf{w}-\mathbf{w}_{*}\| \leq \gamma_{k}^{+}} \sum_{i=1}^{n} i_{i} \mathbf{x}_{i} \mathbf{w} \quad \mathbf{w}_{*} \right] = 2$$