Empirical Risk Minimization for Stochastic Convex Optimization: $O(1/n)$ - and $O(1/n^2)$ -type of Risk Bounds

Lijun Zhang XHANGLJ**Q**, LAMDA NJ ED CN

National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

Tianbao Yang Tianbao yang menggunakan kerajaan terbesar di terbesar di terbesar di terbesar di terbesar di ter *Department of Computer Science, the University of Iowa, Iowa City, IA 52242, USA*

Alibaba Group, Seattle, USA

Rong Jin JIN DNG J **Q**ALIBABA INC COM

Abstract

A though there ex st p ent ful theories of eight call risk minimization $E \cdot M$ for supervised learn ng current theoret ca understandings of E^+ M for a related problement stochastic convex optimization \overline{CO} are limited. In this work, we strengthen the real of EM for \overline{CO} by exploiting s oothness and strong convex ty cond t ons to improve the r s bounds. First, we establish an $\widetilde{}(x + \sqrt{x^2 + 1})$

where = : $\mathcal{X} \subseteq \mathbb{R}$ is a hypothesis class, $(x, y) = \mathcal{X} \subseteq \mathbb{R}$ is an instance abel pair sampled from a distribution $\mathbb D$ and $(_ \) : \mathbb R \mathbb R$ R is certain loss. In this paper, we can be focus on the convex version of a namely stochastic convex optimization CO, where both the domain V and the expected funct on (\square) are convex.

We cass call approaches for solving stochastic optimization are stochastic approximation (SA) Kushner and Y n and the sample average approximation AA , the latter of which is also referred to as e p r ca r s n zation $E \cdot M$ in the achine earning community (vapning 99). h e both A and E $\mathbf{\mathbf{\mathbf{\mathbf{M}}} }$ have been extens ve y studied in recent years Bartlett and Mendelson [2002;](#page-12-1) Bart ett et a
New rows et a [2009](#page-13-0); [Moulines and Bach](#page-13-1) 2012; [Hazan and Kale](#page-12-3) **20 1 2011 [2012](#page-12-4) [2013](#page-12-5) 2013 2014 20** [Mahdavi et al.](#page-13-3) [2015](#page-13-3)), most theoretical guarantees of E \bf{M} are restricted to supervised learning in As pointed out in a seminal work of θ halevel-Newartz et al. 2009[\)](#page-0-2), the success of E $\mathbf{\mathbf{M}}$ for supervised earning cannot be directly extended to stochastic optimization. Actually, Shalev-Shwartz et a [2009](#page-13-4) have constructed an instance of CO that is earnable by A but cannot be solved by EM. Literatures about EM for stochastic optimization including CO are quite limited, and we st ac a full understanding of the theory.

In EM, we are given functions $\frac{1}{1}$ in sampled independently from P, and a importantly from P, and aim to m ze an e pr ca object ve funct on.

$$
\min_{\mathbf{w}\in\mathcal{W}}\widehat{\phantom{\mathbf{w}}\n}\mathbf{w}=\frac{1}{N}\sum_{i=1}^ni(\mathbf{w})
$$

Let $\hat{\mathbf{w}}$ argmin_{w∈W} $\hat{(\mathbf{w})}$ be an empirical minimizer. The performance of E $\dot{\mathbf{M}}$ is easured in ter s of the excess $r s$ defined as

$$
\begin{array}{cc}(\widehat{\mathbf{w}}) & \min_{\mathbf{w}\in\mathcal{W}} & (\mathbf{w})\end{array}
$$

tate of the art r s bounds of E **M** nc ude, an $\tilde{O}(\sqrt{n})$ bound when the random function (.) is Lipschitz continuous[,](#page-1-0) where is the dimensionality of w; and (1) bound when (1) is strong y convex halev hwartz et a **9**, and an $($) bound when $($) is exponent a y concave exp concave Mehta e $\oint_{\mathbf{z}} J \mathbf{F}$ roG sex st ng studies of E \mathbf{M} for supervised learning rebro et a sex st ng stud es of $E \cdot M$ for superv sed earn ng

 F) s

able 1: \mathbf{u} ary of Excess $\mathbf{\bullet}$ Bounds of E M for CO. All bounds hold with high probability except the one are d by $*$ which holds in expectation. Abbreviations, bounded ϕ , b, convex $\begin{pmatrix} c & c & c \end{pmatrix}$ generalized linear $\begin{pmatrix} c & d \end{pmatrix}$ Lipschitz continuous $\begin{pmatrix} c & d \end{pmatrix}$ Lip, nonnegative $\begin{pmatrix} c & d \end{pmatrix}$ in strong y convex sc s ooth s exponent a y concave exp strong y convex \sim sc, se, sooth \sim sexponent a y concave

				\blacktriangleright Bounds
hwartz et a ha ev		L p 9		$\tilde{(\sqrt{\frac{d}{n}})}$
		$L p \bigotimes$ sc		$(\frac{1}{\lambda n})^*$
Mehta		$exp(1-p)$		$\sim \left(\frac{d}{nn}\right)$
h s wor	heore	$nn \bigotimes_{s} c \bigotimes_{s} s$	L p	$\sim \left(\frac{d}{n} + \sqrt{\frac{F_*}{n}}\right)$
	heore	$nn \bigotimes_{s} c \bigotimes_{s} s$	$L p \bigotimes$ sc	$\sim \left(\frac{d}{n} + \frac{\kappa F_*}{n}\right)$
				$\left(\frac{1}{\lambda n^2} + \frac{\kappa F_*}{n}\right)$ when $= \widetilde{\Omega}$ ()
	heore	$nn \bigcirc s$	\mathbf{c} sc	$\widetilde{\sigma}\left(\frac{\kappa d}{n} + \frac{\kappa F_*}{n}\right) = \widetilde{\sigma}\left(\frac{\kappa d}{n}\right)$
				$\left(\frac{1}{\lambda n^2} + \frac{\kappa F_*}{n}\right)$ when $= \widetilde{\Omega}(\begin{array}{cc} 2 \end{array})$
	heore	$nn \bigotimes_{\mathbf{S}} s \bigotimes_{\mathbf{S}} g$ $\overline{\mathbf{r}}$	\mathbf{C} sc	$\left(\frac{\kappa}{n}+\frac{\kappa F_*}{n}\right)=-\left(\frac{\kappa}{n}\right)$
				$\left(\frac{1}{\lambda n^2} + \frac{\kappa F_*}{n}\right)$ when $= \Omega(\alpha^2)$

 \sim hen (\rightarrow s both convex and s ooth and (\rightarrow s L psch tz continuous, we establish and \tilde{e} + $\sqrt{*}$ $\sqrt{*}$ r s bound c f heore in the optimistic case that $*$ s s a i.e., ∗ = $(2 \cdot)$, we obtain an \tilde{e} and is bound, which is analogous to the $\tilde{e}(1)$ opt st c rate of E $\mathbf{\cdot}$ M for supervised earning rebro et al.

- If (\downarrow s a so strongly convex, we prove an $(t + \ast)$ r s bound, and improve t to $(1 \begin{bmatrix} 2 \end{bmatrix} + \begin{bmatrix} * \end{bmatrix})$ $(1 \begin{bmatrix} 2 \end{bmatrix} + \begin{bmatrix} * \end{bmatrix})$ when $= \widetilde{\Omega}(\begin{bmatrix} 0 \end{bmatrix})$ c f heore hus f s arge and $*$ is s a e $* = (1)$ we get an (2) _r s bound wh ch to the best of our now edge s the rst (1^2) type of r s bound of E M.
- hen convex ty s not present n (\perp) as ong as (\perp) is sooth $\hat{ }$ (\perp) is convex and (\perp) is strong y convex we st obtain an improved r s bound of $(1 \begin{bmatrix} 2 \end{bmatrix} + \cdots)$ when = $\tilde{\Omega}(\lambda^2)$ $\tilde{\Omega}(\lambda^2)$ which will further in plyind if λ^2 risk bound f $\lambda^2 = (1)$ c.f. heorem F na y we extend the $(1 \begin{bmatrix} 2 \end{bmatrix} + \cdots)$ r s bound to supervised earning with a generazed near for Our analysis shows that in this case, the lower bound of can be replaced w th Ω (2) which is dimensionally independent cfheorem 1, hus, this result can be app ed to n n te d ens ona cases e g earning with erne s

2. Related Work

In this section, we give a brief introduction to previous work on E $\mathbf{\mathbf{\cdotM}}$

2.1. ERM for Stochastic Optimization

As we ent oned ear er there are few wor s devoted to E $\mathbf{\mathbf{\&}}$ for stochastic optimization. Near $\ell \in \mathbb{R}^d$ s bounded and $\left(\frac{1}{2}\right)$ s L psch tz continuous, $\frac{1}{2}$ haleve have the set al. [2009](#page-13-4)) demonstrate that $\hat{d}(\mathbf{w})$ converges to (\mathbf{w}) uniformly over \wedge with an $\sum_{k=1}^{\infty}(\sqrt{\mathbf{w}})$ error bound that holds with high probability, p y ng an $\tilde{a}(\sqrt{n})$ r s bound of E.M. They further establish and (1) r s bound of E M that holds in expectation when $($) is strongly convex and L pschitz con-t nuous to chast c optimization with exp-concave functions is studied recently [Koren and Levy](#page-12-6) and [Mehta](#page-13-5) \bullet proves an \tilde{e} \bullet bound of E \bullet M that holds with high probability when (\perp s exp concave, L pschitz continuous, and bounded. Lower bounds of EM for stochastic opt zation is not invest gated by Fe d an \bullet who exhibits a ower bound of $\Omega(-2)$ sample complexity for uniform convergence that nearly atches the upper bound of Δ halev-Shal 9, and (a) ower bound of Ω (b) sample complex ty of E $\mathbf{\mathcal{M}}$, which is atched by our \sim $($ + $\sqrt{*}$) bound when $*$ s s a

2.2. ERM for Supervised Learning

e note that there are extens ve studies on E $\mathbf{\hat{M}}$ for supervised learning, and hence the review here s non-exhaust ve In the context of supervised earning, the performance of E \mathbf{M} is closely re ated to the uniform convergence of $\hat{ }$ $()$ to $()$ over the hypothesis class Koltchins In fact, uniform convergence is a sufficient condition for earnability (Shalev-Shwartz and Ben-David 4, and n so e special cases such as binary classification t s also a necessary condition apn 99° he accuracy of uniform convergence, as we as the quality of the empirical empirical set of the empirical n zer can be upper bounded in terms of the complexity of the hypothesis class including data ndependent easures such as the C_d ens on and data dependent easures such as the λ dde acher copex ty

Generally speaking, when has $n \times C d$ ension the excess risk can be upper bounded by $(\sqrt{VC(-)})$ where $VC(-)$ is the C d ens on of If the oss $(-)$ is L pschitz cont nuous with respect to its rst arguent, we have a risk bound of $(1 - + n)$ where $n(n+1)$ is the Rademacher complexity of . The Rademacher complexity typically scales as $n(n) = (1)$ e.g., contains near functions with ownorm, implying an (1) r s bound Bart ett and Mende son 2002 here have been intensive efforts to derive rates faster than (1∇) under various conditions Lee et al. 99° , Pancheno, [Bartlett et al.](#page-12-2) Gonen and halev-hwartz \cdot such as ownoise (Srebro [2016](#page-12-10)), such as over \cdot 2016), such as \cdot smoothness [\(Srebro et al.](#page-14-2) strong convex ty Γ dharan et al. [2009\)](#page-14-4), to name a few a mongst many pecifically expected view and Γ the random function $($ \rightarrow smonnegative and smooth in rebro et al. [2010](#page-14-2)) have established a r s bound of $\begin{pmatrix} 2 \\ n \end{pmatrix}$ + $n(\)$ $\overline{}$ reducing to an (1) bound f $n(\) = (1)$ and $* = (1)$ $* = (1)$ A generalized linear form of consistudied by \mathbf{r} dharan et al. [2009\)](#page-14-4), and a risk bound of (1) is proved f the expected function (1) is strongly convex.

3. Faster Rates of ERM

e rst ntroduce a the assumptions used in our analysis, then present theoretical results under different combinations of them, and inally discuss a special case of supervised learning.

her excess r s bound s for a regular zed enpirical risk minimizer.

3.1. Assumptions

In the following, we use $k \rightarrow \infty$ to denote the 2-norm of vectors.

Assumption 1 *The domain* ℓ *is a convex subset of* \mathbb{R}^d *, and is bounded by , that is,*

$$
\begin{array}{ccc}\n\begin{array}{ccc}\n & & \mathbf{w} & \\
 & \mathbf{
$$

Assumption 2 The random function $\left(\frac{1}{2}\right)$ is nonnegative, and $\left(\frac{1}{2}\right)$ *-smooth over* $\left(\frac{1}{2}\right)$ that is,

$$
\left\| \boldsymbol{\nabla} \left(\mathbf{w} \right) - \boldsymbol{\nabla} \left(\mathbf{w}' \right) \right\| \qquad \left\| \mathbf{w} - \mathbf{w}' \right\| \nearrow \mathbf{w} \ \mathbf{w}' \qquad \text{if} \quad \mathbb{P}
$$

Assumption 3 The expected function $(\)$ is $\)$ -Lipschitz continuous over \prime , that is,

$$
(\mathbf{w}) \qquad (\mathbf{w}') \qquad \qquad \mathbf{w}' \qquad \mathbf{w}' \qquad \qquad \mathbf{w}' \qquad \qquad \bullet
$$

Assumption 4 *We use different combinations of the following assumptions on convexity.*

- **(a)** *The expected function* $(\)$ *is convex over* \prime *.*
- **(b)** *The expected function* $(\frac{1}{r})$ *is -strongly convex over* $\frac{1}{r}$, *that is,*

$$
(\mathbf{w}) + \mathbf{w} \quad (\mathbf{w}) \quad \mathbf{w}' \quad \mathbf{w} + \frac{1}{2!} \mathbf{w}' \quad \mathbf{w}^2 \qquad (\mathbf{w}') \quad \mathbf{w} \quad \mathbf{w}' \qquad (w)
$$

- **(c)** *The empirical function* $\hat{ }$ $(\frac{1}{2})$ *is convex.*
- **(d)** *The random function* (\square) *is convex.*

Assumption 5 *Let* w_* argmin $w \in W$ (w) *be an optimal solution to [\(1\)](#page-0-1). We assume the gradient of the random function at* w[∗] *is upper bounded by , that is,*

$$
\mathbf{v}^{\blacktriangledown}(\mathbf{w}_{*})\mathbf{v} \qquad \mathbf{v} \qquad \mathbf{v}
$$

Remark 1 F rst note that **Assumption** $4(a)$ $4(a)$ s p ed by either **Assumption** $4(b)$ or **Assumption [4\(](#page-4-1)d)** and **Assumption 4(c)** s in p ed by **Assumption 4(d)** econd, the s oothness assumption t on of $($) in plies the expected function $($) is sooth. By Jensen's inequality, we have

$$
\left\| \boldsymbol{\nabla} \left(\mathbf{w} \right) - \boldsymbol{\nabla} \left(\mathbf{w}' \right) \right\| = \mathbf{E}_{f \sim \mathbb{P}} \left\| \boldsymbol{\nabla} \left(\mathbf{w} \right) - \boldsymbol{\nabla} \left(\mathbf{w}' \right) \right\| = \left\| \mathbf{w} - \mathbf{w}' \right\| \cdot \mathbf{w} \mathbf{w}' \quad \text{(1)}
$$

ar y the e p r ca funct on $\hat{ }(\cdot)$ s a so s ooth. The *condition number* of (\cdot) s de ned e rat o between and e = ≥ 1 as the rat o between and

3.2. Risk Bounds for SCO

e rst present an excess r s bound under the s oothness cond t on

Theorem 1 *For any* 0 **1** 2, 0*, define*

$$
(\qquad) = 2\left(\log^{\frac{2}{n}} + \log^{\frac{6}{n}}\right) \tag{9}
$$

 \bullet

Under **Assumptions [1](#page-4-2)***,* **[2](#page-4-3)***,* **[3](#page-4-4)***,* **[4\(](#page-4-1)d)***, and* **[5](#page-4-5)***, with probability at least* 1 − 2 *, we have* $(\widehat{\mathbf{w}})$ (\mathbf{w}_*) $\frac{16^{-2}}{16^{-2}}$ () $_{+}$ 8 $\frac{\log(2)}{2}$ + 8 $\left(\frac{\pi}{2}\right)^{2}$ () $\left(\frac{\pi}{2}\right)^{2}$ $\mathcal{A}(\mathcal{A})\mathcal{A}(\mathcal{A})\mathcal{A}(\mathcal{A})\mathcal{A}(\mathcal{A})$ XYAYIZAYZKEZINDIYEKXXX LEKZIZYYA ZEVKHAY $\rm{V}^{\rm{I}}$ $\frac{1}{2}$. $\frac{1$ $({\bf w})$ $({\bf w}_*)$ so the set of ${\bf w}$ 30.6⌈0.5∞0∈5∀∀∞ 0.∞4976](b)0.5∞(05]TJ /RT{ 30.6i})0.496∀∈7(h0.5∞0∈43(√09∞ T{ 30.6b)5∞74∞oJ /R0 ∞96(l4∀∈7(aJ /R0 ∞96(l4{ 30.6i05(a)∞ ∞509∞ ()-0.6759]TJ nT⌈ [()730∈ 435[(0∈∀4q 65 3[(9∞ T{ ∞ 0∞ ∈∞7.9∀ 635.7Tm [(n)-0.6∈∈]TJ /R40 ∞0.9∞57∀.∀96 5{ 5.94∀7∀∞)-0.579∈∈649]TJ /R40 ∞0.97 ∞ 9743∈∀ ∞.637∀∞ T⌈ 7.) (w∗) /R40793 ∈∀∞0∈ \bullet $\mathcal{L}(\mathcal{D})$ $\mathbf{u}(\mathbf{w}) = \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_2 & \mathbf{w}_3 & \mathbf{w}_4 & \mathbf{w}_5 & \mathbf{w}_6 & \mathbf{w}_7 & \mathbf{w}_8 & \mathbf{w}_7 & \mathbf{w}_8 & \mathbf{w}_9 & \$ \mathcal{S} \mathcal{S} [()74-∀ 4∈∀∞059 ∈∀∀ T⌈5 4∈∀∞059 ∞ T{

 833 0f -299. $=$ -299.=)-0.575952266499]TJ /R40 10.9014d [56874328 1.63781 Td [(96872.885(8)0.0510254]TJ6.02Tf 21

q∀.3∈3∞∈ ∀5 ∞∞47.∈9 0∈56∈4.∈ ∞∞47.∈9 ∞ T{

/R40 ∞0.9∞3.∈90.43∈∀∀∈∀637∀∞ T⌈ [(96∀7∈.∀∀.3∈693T4∀ ∞∞47.∈9 0∈743 /R40 ∞0.9∞ .∞90.6∀3T⌈6∞ 0T⌈

 $...$

 \cdot \cdot $^{\circ}$ /R40 ∞0.9∞3.∈90.43∈∀∀∈∀637∀∞ T⌈

 \sim

 V^* + $\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet$ /∀3 T∈7.05∞4∞ mB)-0.9756∈3ma)0∞ mT{093s)04∀7∀(∀∞∀(0T⌈ \ldots

 $= A$ Rno α

 5.0008 3.696 /R40∀∈0∈35/∀39∞7∈06T⌈ $\overline{}$ [(w)-0.76∞∈4]TJ -∞.5∀∈∈∀3-0.∞53∈∀∞ T⌈ [(w)-0.76∞∈4]TJ \ddotsc 9.∈4∈∈∈∀3-0.∞53)-0.74∀]TJ ∀.5∈∈∀∞ 0T⌈ $\overline{}$ [(w)-0.76∞∈4]TJ \cdot \sim 4.73∈∀∀∈∀637∀∞ T⌈ /R54 ∞0.9∞ 3∀9∞74.6∀∈∀637∀∞ 4T⌈∈7∀J **Remark 3** he rst part of Coro ary [4](#page-5-1) shows that E M en oys an \tilde{e} (\tilde{e} + \tilde{e}) r s bound for stochast c optimization of strongly convex and so other functions. In the literature, the most comparable result is the (1) r s bound proved by halev-hwartz et a $\overline{9}$ but with string d fferences highlighted in ab e ac the r s bound of ba ev hwartz et a \overline{a} s independent of the d ens ona ty

Remark [6](#page-6-1) Co paring the second part of Coro arises \cdot and [4,](#page-5-1) we can see that the r s bound is on the same order but the lower bound of is increased by a factor of It is interesting to ent on that a similar phenomenon also happens in stochastic approximation. Recently, a variance reduct on technique named \overline{S} Johnson and Zhang \overline{S} or EMGD \overline{Z} hang et al. [2013](#page-12-11)a proposed for stochastic optimization when both full gradients and stochastic gradients are available. In the analysis $\overline{\mathbf{S}}$ assumes the stochastic function is convex, while EMGD does not. From the r theoret ca results, we observe that the individual convex ty eads to a difference of factor in the sa pe copex ty of stochastic gradients.

3.3. Risk Bounds for Supervised Learning

If the cond t ons of heorem or heorem are satisfied, we can directly use them to establish an $(1 \begin{bmatrix} 2 \end{bmatrix} + \ast)$ r s bound for supervised earning. However, a major limit at on of these theore s s that the ower bound of depends on the depends on ty and thus cannot be apped to n n te d ens ona cases e g erne ethods cho opf and o a In this section we exp o t the structure of supervised earning to a e the theory decay on a ty independent.

e focus on the generalized near for of supervised earning.

$$
\min_{\mathbf{w}\in\mathcal{W}} \quad (\mathbf{w}) = \mathrm{E}_{(\mathbf{x},y)\sim\mathbb{D}}\left[\begin{array}{cc} (\mathbf{w}\ \mathbf{x} \end{array})\right] + (\mathbf{w})
$$

 $[8,94 \text{dn }c49]$ ⁸4₋₋ 99 p_z4 \bigstar ⁸_S, 4_S 4₅ 4₋e

\$£R)Qe&@{4@68277{@c)@bdtb@@@\$Yrubc+7-4 99 (94 dnc49_ 4__ 99 pz4+7²s.4s 4 4_e 4__

where $(\mathbf{w} \times \mathbf{x})$ is the loss of predicting $\mathbf{w} \times \mathbf{x}$ when the true target is and (\cdot) is a regular zer. Given training examples (x_1, y_1) , (x_n, y_n) independently sampled from D, the empirical object ve s

$$
\min_{\mathbf{w}\in\mathcal{W}}\widehat{}(\mathbf{w})=\frac{1}{N}\sum_{i=1}^n(\mathbf{w}\ \mathbf{x}_i\ \ i)+(\mathbf{w})
$$

e de ne

20521 RG6.1681 01 RG6.1698 PM And 10.0051 10.00011 10.00011 10.00011 10.00011 10.00011 10.00011 10.00011 10.00
Post and *The domains bt.mg and the domains bt.mg and the domains bt.mg and and and the domains bt.mg and and*

/R58(s)-eedcd Hoey

$$
(\mathbf{w}) = \mathbf{E}_{(\mathbf{x},y) \sim \mathbb{D}} [(\mathbf{w} \mathbf{x})]
$$
 and $\hat{(\mathbf{w})} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{w} \mathbf{x}_i)$

to capture the stochast c co ponent.

Bes des $4(b)$ $4(b)$ and $4(c)$ we ntroduce the following add to onal assumptions. We abuse the same notation $k \rightarrow$ to denote the norm duced by the inner product of a H lbert space.

Assumption 6 *The domain* ℓ *is a convex subset of a Hilbert space , and is bounded by* is bounded

Assumption 10 *Let* w_* argmin_{w∈W} (w) *be an optimal solution to* [\(17\)](#page-7-0)*. We assume the gradient of the random function at* w[∗] *is upper bounded by , that is,*

$$
\mathbf{y}^{\blacktriangledown} \ (\mathbf{w} \cdot \mathbf{x}) \qquad \qquad \mathbf{y} \
$$

Remark 7 he above assumptions a low us to lodel any popular losses in achine earning such as regularized square loss and regularized logistic loss. **Assumptions** [7](#page-7-1) and [8](#page-7-2) inply the rando funct on $(x - x)$ is 2 s ooth over θ over the state of any w w['] extending

$$
\begin{array}{c}\n\left\|\nabla \left(\mathbf{w} \times \mathbf{x}\right) \cdot \nabla \left(\mathbf{w}' \times \mathbf{x}\right)\right\| = \left\|\nabla \left(\mathbf{w} \times \mathbf{x}\right) \times \nabla \left(\mathbf{w}' \times \mathbf{x}\right)\right\| \\
\cdot \left\|\nabla \left(\mathbf{w} \times \mathbf{x}\right) \cdot \nabla \left(\mathbf{w}' \times \mathbf{x}\right)\right\| & \cdot \left\|\nabla \mathbf{w} \times \mathbf{w}' \times \mathbf{x}\right\| \\
\cdot \left\|\nabla \left(\mathbf{w} \times \mathbf{x}\right) \cdot \nabla \left(\mathbf{w}' \times \mathbf{x}\right)\right\| & \cdot \left\|\nabla \mathbf{w} \times \mathbf{w}'\right\| & \cdot \left\|\nabla \mathbf{w}' \times \mathbf{x}\right\| \\
\cdot \left\|\nabla \left(\mathbf{w} \times \mathbf{x}\right) \cdot \nabla \left(\mathbf{w}' \times \mathbf{x}\right)\right\| & \cdot \left\|\nabla \mathbf{w} \times \mathbf{x}\right\| & \cdot \left\|\nabla \mathbf{w}' \times \mathbf{x}\right\| & \cdot \left\|\nabla \mathbf{w}' \times \mathbf{x}\right\| \\
\cdot \left\|\nabla \left(\mathbf{w} \times \mathbf{x}\right) \cdot \nabla \left(\mathbf{w}' \times \mathbf{x}\right)\right\| & \cdot \left\|\nabla \mathbf{w}' \times \mathbf{x}\right\| & \cdot \left\|\nabla \mathbf
$$

By Jensen's nequality (\downarrow s also $\frac{2}{5}$ sooth. Notice that $\frac{2}{5}$ s the odulus of soothness of (\rightarrow and is the odulus of strong convex ty of (\rightarrow th a sight abuse of notation, we define $=$ $\frac{1}{2}$ and the cond t on nu ber as the ratio between and $\frac{1}{2}$ = $\frac{1}{2}$ Finally we $=$ $\frac{2}{2}$ and the cond t on number as the ratio between and $\frac{1}{2}$ e.f. Finally, we note that the regularizer (\downarrow could be *non-smooth*
e have the following excess r s bound of E**M** for supervised earning

Theorem 7 *For any* 0 **1** 2*, define*

$$
=4\left(8+\sqrt{2\log\frac{2\log_2(-)+\log_2(2)}{*}}\right)_{*} = (\mathbf{w}_{*}) = (\mathbf{w}_{*}) (\mathbf{w}_{*})
$$

Under **Assumptions [4\(](#page-4-1)b)***,* **[4\(](#page-4-1)c)***,* **[6](#page-7-5)***,* **[7](#page-7-1)***,* **[8](#page-7-2)***,* **[9](#page-7-6)***, and* **[10](#page-7-7)** *with probability at least* 1 − 2 *, we have*

$$
(\widehat{\mathbf{w}})
$$
 (\mathbf{w}_{*}) max $\left(\frac{+}{2} + \frac{4}{2} \frac{4}{4} \frac{2}{2} \frac{2}{4} \frac{2}{4} + \frac{4}{2} \frac{\log(2)}{4} \right)$

Furthermore, if

$$
\frac{16^{-2}}{2} = 16^{-2} \quad \text{°}
$$

with probability at least 1 − 2 *, we have*

$$
(\widehat{\mathbf{w}})
$$
 (\mathbf{w}_{*}) max $\left(\frac{+}{2} + \frac{8}{24} + \frac{8^{2} \log^{2}(2)}{2} + \frac{16 \times \log(2)}{2}\right)$

Remark 8 he rst part of heore **presents an** (b) r s bound s arto the (1) r s bound of r dharan et a. [2009\)](#page-14-4). The second part is an $(1 \tbinom{n}{k}$ $2] +$ *) r s bound and n this case, the lower bound of is Ω (2) which is dimensionally independent. Thus, Theorem can be applied even when the densionality is in the Generally speaking the regularizer $($ nonnegative and thus _∗ ∗ o, the second bound is even better than those in Theorems and Finally, we note that theorem _{[7](#page-8-0)} should be treated as a counterpart of theorem for supervised earning, because both of the do not rely on the individual convex ty e. Assumption [4\(](#page-4-1)**d**) One ay wonder whether $t \sinh y$ is possible to derive a counterpart of theore [,](#page-5-0) that is, whether $t \sinh y$ poss be to utilize the individual convex ty to reduce the lower bound of by a factor of ew nvest gate the s quest on as a future work.

For brev ty we treat C as a constant because t on y has a *double* ogar the c dependence on n

4. Analysis

e here present the ey dea of our analysis and the proof of heorem [.](#page-4-0) The omitted ones can be found n append ces

4.1. The Key Idea

By the convex ty of $\hat{ }$ $()$ and the optimality condition of \hat{w} . Boyd and vandenberghe [2004](#page-12-12), we have

Lemma 1 *Under* **Assumptions [2](#page-4-3)** *and* **[4\(](#page-4-1)d)***, with probability at least* 1 −

where the ast step s due to

$$
\begin{array}{ccccccccc}\n\hat{\mathbf{w}} & \mathbf{w}_{*1} & \sqrt{\dfrac{(\hat{\mathbf{w}})(\hat{\mathbf{w}})(\hat{\mathbf{w}})(\mathbf{w}_{*})}{2}} & \dfrac{(\hat{\mathbf{w}})_{*} \hat{\mathbf{w}} - \mathbf{w}_{*}}{2} + \dfrac{(\hat{\mathbf{w}})_{*}}{2} \\
\hline\n\hat{\mathbf{w}} & \mathbf{w}_{*1} & \sqrt{\dfrac{(\hat{\mathbf{w}})(\hat{\mathbf{w}})(\mathbf{w}_{*})}{2}} & \dfrac{(\hat{\mathbf{w}})_{*} \hat{\mathbf{w}}_{*}}{2} + \dfrac{(\hat{\mathbf{w}})_{*}}{2} & \mathbf{w}_{*1} & \mathbf{w}_{*2} \\
\hline\n\end{array}
$$

Fro $\overline{4}$ we get

$$
\frac{1}{2} ((\hat{\mathbf{w}}) (\mathbf{w}_{*}))
$$
\n
$$
\frac{2}{2} (\mathbf{w}_{*1} \hat{\mathbf{w}} \mathbf{w}_{*1}^{2} + \frac{2}{2} \log(2) \hat{\mathbf{w}} \mathbf{w}_{*1}^{2} + \hat{\mathbf{w}} \mathbf{w}_{*1} \sqrt{\frac{8 * \log(2)}{2}}
$$
\n
$$
+ 2 \hat{\mathbf{w}} \mathbf{w}_{*1}^{2} + \frac{1}{2} \frac{1}{2} \frac{(\hat{\mathbf{w}}) \mathbf{w}_{*1}^{2}}{(\hat{\mathbf{w}}) \log(2)} + 4 \sqrt{\frac{2 * \log(2)}{2}} + \left(4 + \frac{2}{2} + \frac{2}{2} \frac{1}{2} \right)
$$

wh ch p es

5. Conclusions and Future Work

In this paper, we study the excess risk of EM for CO. Our theoretical results show that it is poss be to achieve (1) type of risk bounds under the solution bothness and set in a risk cond t ons e heore or the soothness and strong convex ty cond t ons, e the rst part of heore s and A ore exc t ng result is that when is arge enough EM has $(1, 2)$ $(1, 2)$ $(1, 2)$ type of r s bounds under the s oothness strong convex ty and s a n a r s cond t ons e the second part of heorems and \blacksquare

In the context of CO, there remain any open problems about E $\mathbf{\mathcal{M}}$.

Our current results are restricted to the H bert or Euclidean space, because the superbaness and strong convex ty are deed nearly of the $_2$ normal extend our analysis to other geo etr es n the future.

As ent oned n **Remark 3** under the strong convex ty cond t on a dens onally-independent r s bound, e.g., As d scussed n **Remark 8** t s unclear whether the convex ty of the loss can be exploited to prove the ower bound of in the second part of heore \bullet Ideally, we expect that $= \Omega(\)$ s sufficient to deliver and $(1 \ [\ 2] + \ \ast)$ r s bound.

4 he $(1 - 2)$ type of r s bounds require both the s oothness and strong convex ty cond t ons. One may need gate whether strong convex ty can be relaxed to other weaker conditions such as exponent a concavity Hazan et a

Finally as far as we now there are no $(1²)$ type of r s bounds for stochastic approximation A e w try to estab sh such bounds for A.

Acknowledgments

h s work was part a y supported by the N FC (6160317), J angsu F BK (61608), N F II 4.9° B II 4.99 and the Co aborative Innovation Center of Novel of tware echnology and Industrialization of Nanjing niversity.

 (1) AND (1)

- Mehrdad Mahdavi, L_i un Zhang, and \bullet ng J_n. Lower and upper bounds on the generalization of stochastic exponent a y concave optimation. In *Proceedings of the 28th Conference on Learning Theory*
- Co n_aMcD_a are all On the ethod of bounded differences. In *Surveys in Combinatorics* pages 4° 9°
- N shant A. Mehta. Fast rates with high probability in exp concave statistical earning. *ArXiv eprints*, arX_v:
- **K**_n Me r and ong Zhang. Generalization error bounds for bayes an exture a gorithms. *Journal of Machine Learning Research* 4, ²9₀, 2003.
- Er c Mou nes and Francis \blacktriangleright Bach. Non-asymptotic analysis of stochastic approximation algor th s for ach ne earning. In *Advances in Neural Information Processing Systems 24* pages 451–459, 2011.
- A. Newirovs A. Juditsky, G. Lan, and A. Shapiro. **Robust stochastic approximation approach to** stochast c programming. *SIAM Journal on Optimization* 94, 19
- Yur Nesterov. *Introductory lectures on convex optimization: a basic course*, volume $\frac{8}{5}$ of *Applied optimization* K uwer Acade c Pub shers
- D try Panchen o o e extens ons of an nequality of vapnia and chervonen s *Electronic Communications in Probability*
- G es P s er The volume of convex bodies and Banach space geometry Ca br dge racts n Mathe at cs No. 94. Ca. br dge n vers ty Press, 9^9
- Yan v P an and \bullet an ershyn n One b t co pressed sensing by near progra ing *Communications on Pure and Applied Mathematics*
- A exander \overline{A} h n Ohad ha r and Karthir dharan. Mang gradient descent optimal for strong y convex stochast c optimization. In *Proceedings of the 29th International Conference on Machine Learning* pages 449 4
- Bernhard cho opf and A exander J. o a *Learning with kernels: support vector machines, regularization, optimization, and beyond* MI Press
- ha ha ev hwartz and ha Ben David Understanding Machine Learning: From Theory to *Algorithms* Ca br dge n vers ty Press 4
- ha ha ev hwartz Ohad ha r Nathan rebro and Karthic r dharan to chastic convex option zat on In Proceedings of the 22nd Annual Conference on Learning Theory
- A exander hap ro Dar n a Dentcheva and Andrze *diszczyns Lectures on Stochastic Programming: Modeling and Theory* IAM second ed t on
- teve a e and D ng-Xuan Zhou. Learning theory est ates v a integral operators and their approx at ons *Constructive Approximation*
- Nathan rebro Karth r dharan and A bu ewar Opt st c rates for earning with a sooth oss. *ArXiv e-prints*, arX_y. 9⁹.
- Karth r dharan ha ha ev shwartz and Nathan rebro. Fast rates for regular zed objectives. In *Advances in Neural Information Processing Systems 21* pages 4⁹
- A exandre B syba ov Opt a aggregation of classifiers in statistical earning. The Annals of *Statistics*, 32:135–166, 32:135–166, 2005.
	- ad r apn *The Nature of Statistical Learning Theory* pringer second ed t on
	- ad r N apn Statistical Learning Theory ey Intersc ence 99⁸
- L in Zhang, Mehrdad Mahdavi, and \bullet ng Jin. Linear convergence with condition number independent access of fu grad ents In *Advance in Neural Information Processing Systems 26* pages $9^{8}9^{8}$ a
- Let un Zhang anbao Yang, \bullet ng J_n and X aofe He. (log.) projections for stochastic optimization of smooth and strongly convex functions. In *Proceedings of the 30th International Conference on Machine Learning* b.

Appendix A. Proof of Lemma [1](#page-9-0)

e ntroduce Lemma 3 of a e and Zhou

Lemma 3 *Let be a Hilbert space and let be a random variable with values in . Assume* **a** almost surely. Denote $e^{2}(\cdot) = E\begin{bmatrix} 1 & 1 \end{bmatrix}$. Let i $\frac{m}{i-1}$ be $(\bullet \bullet)$ independent *drawers of* $\overline{}$ *. For any* 0 $\overline{}$ 1, with confidence 1¹

$$
\left\| \frac{1}{N} \sum_{i=1}^{m} \begin{bmatrix} i & \mathbf{E}[i] \end{bmatrix} \right\| \quad \frac{2 - \log(2)}{2} + \sqrt{\frac{2^{-2} \cdot \log(2)}{2}}
$$

e rst consider a xed w $($ $)$ nce $_i($ s sooth we have

$$
\begin{bmatrix} \mathbf{v} & i(\mathbf{w}) & \mathbf{v} & i(\mathbf{w}_*) \end{bmatrix} \qquad \mathbf{v} \qquad \mathbf{w}_*
$$

Because $i(1)$ is both convex and $-$ s ooth by \bullet of [Nesterov](#page-13-10) 4 we have

$$
\begin{pmatrix} \mathbf{W} & i(\mathbf{w}) & \mathbf{W} & i(\mathbf{w}_*) \end{pmatrix}^2 \qquad (i(\mathbf{w}) \qquad i(\mathbf{w}_*) \quad \mathbf{W}_* \mathbf{W}_* \mathbf{w}_*)
$$

a ng expectation over both sides, we have

$$
\mathrm{E}\left[\left(\mathbf{W} \quad i(\mathbf{w}) \quad \mathbf{W} \quad i(\mathbf{w}_{*})\right)^{2}\right] \qquad (\text{ } (\mathbf{w}) \qquad (\mathbf{w}_{*}) \quad \mathbf{W} \quad (\mathbf{w}_{*}) \quad \mathbf{w} \quad \mathbf{w}_{*} \text{ }) \qquad (\text{ } (\mathbf{w}) \qquad (\mathbf{w}_{*}))
$$

where the ast nequal ty follows from the optimality condition of w_* e.

$$
\begin{array}{cc} \mathbf{W} & (\mathbf{w}_*) \mathbf{w} & \mathbf{w}_* & \mathbf{W} \end{array}
$$

Fo owing Lemma [,](#page-14-6) with probability at east 1 μ we have

$$
\begin{vmatrix}\n\blacktriangledown & (\mathbf{w}) & \blacktriangledown & (\mathbf{w}_{*}) & \blacktriangledown^{n}(\mathbf{w}) & \blacktriangledown^{n}(\mathbf{w}_{*}) \end{vmatrix}\n\begin{vmatrix}\n\blacktriangledown & (\mathbf{w}) & \blacktriangledown^{n}(\mathbf{w}_{*}) & \blacktriangledown^{n}(\mathbf{w}_{*}) \\
\blacktriangledown & (\mathbf{w}) & \blacktriangledown^{n}(\mathbf{w}_{*}) & \frac{1}{n} \sum_{i=1}^{n} [\blacktriangledown^{n}(\mathbf{w}) & \blacktriangledown^{n}(\mathbf{w}_{*})] \end{vmatrix}\n\begin{vmatrix}\n2 & (\mathbf{w}) & (\mathbf{w}_{*}) & \log(2) \\
\end{vmatrix}
$$

e obtain Lemma by taking the union bound over all w $($ $)$ o this end, we need an oper bound of the cover ng nu ber. $($ $)$ upper bound of the covering number. \sqrt{N}

Let B be an unit ball of dension and (B) be ts represent with minimal cardinality. According to a standard volume comparison argument \overline{P} signally left vectors by we have

$$
\log \quad (\mathcal{B} \quad) \qquad \log \frac{3}{4}
$$

Let $\mathcal{B}(\)$ be a ball centered at origin with radius . Since we assume $\int_{-\infty}^{\infty} \mathcal{B}(\)$ to low that

$$
\log \quad (\quad \) \quad \log \Big| \quad \Big({\cal B}(\quad)\,\, \frac{}{2} \Big) \Big| \quad \quad \log \frac{6}{1}
$$

where the rst nequality is because the covering numbers are almost increasing by inclusion P and and ershyn n

Appendix B. Proof of Lemma [2](#page-10-1)

o apply Lemma [,](#page-14-6) we need an upper bound of $E[\sqrt{\mathbf{v}}_i(\mathbf{w}_*)]$ are $i(A)$ is sooth and nonnegative from Lemma 4.1 of $rebro et a$ we have

$$
\left| \mathbf{W} \right| i(\mathbf{w}_*) \right|^{2} \quad 4 \quad i(\mathbf{w}_*)
$$

and thus

$$
E\left[\mathbf{w}_{i}(\mathbf{w}_{*})\right]^{2} = 4 E\left[i(\mathbf{w}_{*})\right] = 4 * \mathbf{E}[S_{i}(\mathbf{w}_{*})] = 4
$$

From **Assumption [5](#page-4-5)**[,](#page-14-6) we have $\overrightarrow{W}_i(\mathbf{w}_*)$ hen, according to Lemma , with probability at east 1 we have

$$
\left\|\boldsymbol{\nabla} \quad (\mathbf{w}_*) \quad \boldsymbol{\nabla} \widehat{\quad} (\mathbf{w}_*)\right\| = \left\|\boldsymbol{\nabla} \quad (\mathbf{w}_*) \quad \frac{1}{2} \sum_{i=1}^n \boldsymbol{\nabla} \quad i(\mathbf{w}_*)\right\| \quad \frac{2 \quad \log(2^-)}{2} + \sqrt{\frac{8 - \log(2^-)}{2}}
$$

Appendix C. Proof of Theorem [3](#page-5-0)

The proof follows the same logic as that of theorem **1** der **Assumption [4\(](#page-4-1)b)** becomes

$$
\begin{pmatrix}\n\widehat{\mathbf{w}} & (\mathbf{w}_*) + \frac{1}{2!} \widehat{\mathbf{w}} & \mathbf{w}_* \\
\frac{\left\|\mathbf{w} \cdot (\widehat{\mathbf{w}}) \cdot \mathbf{w} \cdot (\mathbf{w}_*) - \mathbf{w} \cdot (\widehat{\mathbf{w}}) \cdot \mathbf{w} \cdot (\mathbf{w}_*)\right\|}{\left\|\mathbf{w} \cdot (\widehat{\mathbf{w}}) \cdot \mathbf{w} \cdot (\mathbf{w}_*)\right\|} + \frac{\left\|\mathbf{w} \cdot (\mathbf{w}_*) - \mathbf{w} \cdot (\mathbf{w}_*)\right\|}{\left\|\mathbf{w} \cdot (\mathbf{w}_*)\right\|}\n\end{pmatrix} + \widehat{\mathbf{w}} \cdot \mathbf{w}_*
$$

ubst tuting and the $\frac{8}{3}$ with probability at east 1 − 2 , we have

$$
\begin{array}{ll}\n\text{(}\widehat{\mathbf{w}}) & (\mathbf{w}_*) + \frac{1}{2!} \widehat{\mathbf{w}} & \mathbf{w}_* \\ \n& \frac{()\mathbf{w}_*^2}{\sqrt{\mathbf{w}_*^2}} + \frac{2}{\sqrt{\mathbf{w}_*^2}} \mathbf{w}_*^2 + \frac{1}{\sqrt{\mathbf{w}_*^2}} \mathbf{w}_*^2 \sqrt{\frac{()\mathbf{w}_*^2}{\sqrt{()^2}} \mathbf{w}_*^2} \\ \n& \frac{2}{\sqrt{\mathbf{w}_*^2}} \frac{\log(2)\mathbf{w}_*^2}{\sqrt{\mathbf{w}_*^2}} + \frac{1}{\sqrt{\mathbf{w}_*^2}} \mathbf{w}_*^2 \sqrt{\frac{8}{\sqrt{\mathbf{w}_*^2}} \mathbf{w}_*^2} \\ \n& \frac{1}{\sqrt{\mathbf{w}_*^2}} \frac{\mathbf{w}_*^2}{\sqrt{\mathbf{w}_*^2}} + \frac{1}{\sqrt{\mathbf{w}_*^2}} \frac{\mathbf{w}_*^2}{\sqrt{\mathbf{w}_*^2}} + \frac{1}{\sqrt{\mathbf{w}_*^2}} \frac{\mathbf{w}_*^2}{\sqrt{\mathbf{w}_*^2}} \n\end{array}
$$

(39)

o prove [\(36\)](#page-11-0) we substitute \bullet and

$$
\hat{\mathbf{w}} = \mathbf{w}_{*} \sqrt{\frac{8 - \log(2)}{2}} = \frac{4 - \log(2)}{2} + \frac{1}{2} \sqrt{\hat{\mathbf{w}} - \mathbf{w}_{*}}^2
$$

nto 9 and then obta n

$$
\frac{1}{2} ((\hat{\mathbf{w}}) (\mathbf{w}_{*}))
$$
\n
$$
\frac{2}{2} (\hat{\mathbf{w}}) (\hat{\mathbf{w}} - \mathbf{w}_{*}) + \frac{2}{2} \log(2) (\hat{\mathbf{w}} - \mathbf{w}_{*}) + \frac{4}{2} \log(2) \left(\hat{\mathbf{w}} - \mathbf{w}_{*} \right)
$$
\n
$$
+ 2 \left[\hat{\mathbf{w}} (\mathbf{w}_{*}) + \frac{4}{2} + \frac{(\hat{\mathbf{w}}) (\hat{\mathbf{w}} - \mathbf{w}_{*})}{2} + \frac{4}{2} \log(2) + \frac{4}{2} \log(2) \right]
$$

which p es

o prove we subst tute

$$
\begin{array}{ccccccccc}\n\hat{\mathbf{w}} & \mathbf{w}_{*1} & \sqrt{\frac{(\hat{\mathbf{w}})(\hat{\mathbf{w}})(\hat{\mathbf{w}})(\hat{\mathbf{w}})}{2} & \frac{2(\hat{\mathbf{w}})(\hat{\mathbf{w}})(\hat{\mathbf{w}})}{2} + \frac{16}{8} & \hat{\mathbf{w}} & \mathbf{w}_{*1}^{2} \\
 & & & & & \\
\hline\n\hat{\mathbf{w}} & \mathbf{w}_{*1} & \sqrt{\frac{8 * \log(2)}{2}} & \frac{64 * \log(2)}{2} + \frac{16}{16} & \hat{\mathbf{w}} & \mathbf{w}_{*1}^{2} \\
 & & & & & \\
\hline\n\hat{\mathbf{w}} & \mathbf{w}_{*1} & \sqrt{\frac{8 * \log(2)}{2}} & \frac{64 * \log(2)}{2} + \frac{1}{32} & \hat{\mathbf{w}} & \mathbf{w}_{*1}^{2} \\
 & & & & & \\
\hline\n\hat{\mathbf{w}} & \mathbf{w}_{*1} & \sqrt{\frac{(\hat{\mathbf{w}})^{2}}{2}} & \frac{32(\hat{\mathbf{w}})^{2}}{2} + \frac{64}{128} & \hat{\mathbf{w}} & \mathbf{w}_{*1}^{2} \\
 & & & & & \\
\hline\n\hat{\mathbf{w}} & \mathbf{w}_{*1} & \sqrt{\frac{(\hat{\mathbf{w}})^{2}}{2}} & \frac{32}{2} & \frac{2}{2} & \frac{2}{2} \\
\hline\n\hat{\mathbf{w}} & \mathbf{w}_{*1} & \frac{32}{2} & \frac{2}{2} & \frac{2}{2} & \frac{2}{2} \\
\hline\n\end{array}
$$

nto 9 and then obtain

$$
\begin{array}{ll}\n\text{(}\widehat{\mathbf{w}}) & (\mathbf{w}_{*}) + \frac{1}{4} \left| \widehat{\mathbf{w}} - \mathbf{w}_{*} \right|^{2} \\
& (\text{ } \widehat{\mathbf{w}}) \mathbf{w}_{*} + \frac{2}{4} \left(\text{ } \widehat{\mathbf{w}} \right) \left(\text{ } (\widehat{\mathbf{w}}) - (\mathbf{w}_{*}) \right) + \frac{16 - 2 \log^{2}(2)}{2} + \frac{64 - \log(2)}{2} \\
& + \frac{64 - 2}{2} + \frac{32}{4} \left(\text{ } \widehat{\mathbf{w}}) - \frac{32 - 2}{2} \left(\text{ } \right)^{2} \\
& \frac{1}{4} \left| \widehat{\mathbf{w}} - \mathbf{w}_{*} \right|^{2} + \frac{1}{2} \left(\text{ } (\widehat{\mathbf{w}}) - (\mathbf{w}_{*}) \right) + \frac{16 - 2 \log^{2}(2)}{2} + \frac{64 - \log(2)}{2} \\
& + \frac{64 - 2}{2} + 8 + 2 - 2\n\end{array}
$$

wh ch p es

Appendix D. Proof of Theorem [5](#page-6-0)

thout **Assumption [4\(](#page-4-1)d)** Lemma which is used in the proofs of theorems and does not hold any ore Instead, we w use the following version that only relies on the subsolution to include the smoothness condition.

Lemma 4 *Under* **Assumption [2](#page-4-3)***, with probability at least* 1 *− , for any* **w** $\left(\frac{1}{2}\right)$ *, we have*

$$
\left\|\boldsymbol{\nabla} \left(\mathbf{w}\right) \boldsymbol{\cdot} \boldsymbol{\nabla} \left(\mathbf{w}_*\right) \boldsymbol{\cdot} \boldsymbol{\nabla} \left(\mathbf{w}\right) \boldsymbol{\cdot} \boldsymbol{\nabla} \left(\mathbf{w}_*\right) \right\|\right\| \quad \frac{(1+1)\mathbf{w}_*\mathbf{w}_*}{\mathbf{w}_*} + \mathbf{w}_*\mathbf{w}_*\sqrt{\frac{(1+1)\mathbf{w}_*\mathbf{w}_*}{\mathbf{w}_*} + \mathbf{w}_*\mathbf{w}_*}
$$

where $($ $)$ *is define in* [\(9\)](#page-4-7)*.*

The above e as a direct consequence of Γ . Lemma and the union bound.

The rest of the proof s s are to those of Theorems and [.](#page-5-0) We first derive a counterpart of under Lemma [4.](#page-17-0) Combining the vertice is 34 with probability at east 1 = , we have

$$
\left\| \mathbf{\nabla} (\widehat{\mathbf{w}}) \cdot \mathbf{\nabla} (\mathbf{w}_*) \left[\mathbf{\nabla} (\widehat{\mathbf{w}}) \cdot \mathbf{\nabla} (\mathbf{w}_*) \right] \right\|
$$
\n
$$
\frac{(\lambda_1 \widehat{\mathbf{w}} \mathbf{w}_*)}{\lambda_1 \widehat{\mathbf{w}} \mathbf{w}_* + \lambda_2} + \lambda_3 \widehat{\mathbf{w}} \mathbf{w}_* \sqrt{\lambda_4 \widehat{\mathbf{w}} \mathbf{w}_* + \lambda_5 \widehat{\mathbf{w}} \mathbf{w}_* \sqrt{\lambda_5 \widehat{\mathbf{w}} \mathbf{w}_* + \lambda_6 \widehat{\mathbf{w}} \mathbf{w}_* \sqrt{\lambda_6 \widehat{\mathbf{w}} \mathbf{w}_* + \lambda_7 \lambda_7 \widehat{\mathbf{w}} \mathbf{w}_* \sqrt{\lambda_7 \widehat{\mathbf{w}} \mathbf{w}_* + \lambda_7 \lambda_8 \widehat{\mathbf{w}} \mathbf{w}_* \sqrt{\lambda_7 \widehat{\mathbf{w}} \mathbf{w}_* + \lambda_7 \lambda_8 \widehat{\mathbf{w}} \mathbf{w}_* \sqrt{\lambda_7 \widehat{\mathbf{w}} \mathbf{w}_* + \lambda_7 \widehat{\mathbf{w}} \sqrt{\lambda_7 \widehat{\
$$

ubst tuting 4 and [\(33\)](#page-10-3) into $\frac{8}{3}$ with probability at east 1 = 2 , we have

$$
\begin{array}{ll}\n\text{(}\widehat{\mathbf{w}}) & (\mathbf{w}_*) + \frac{1}{2!} \widehat{\mathbf{w}} & \mathbf{w}_* \text{ }\mathbf{w}_* \\
 & \frac{()_1 \widehat{\mathbf{w}} & \mathbf{w}_* ^2}{\left(1 + \frac{1}{2!} \right)^2} + \frac{1}{2!} \widehat{\mathbf{w}} & \mathbf{w}_* \frac{1}{2} \sqrt{\frac{()_1}{()}} \\
 & + \frac{2 \log(2)_1 \widehat{\mathbf{w}} & \mathbf{w}_* \text{ }\mathbf{w}_* \text{ }\mathbf{w}_* \sqrt{8 * \log(2)}_1 \\
 & + 2 \sqrt{\widehat{\mathbf{w}}} & \mathbf{w}_* \text{ }\mathbf{w}_* \sqrt{\frac{()_1}{()_1} + \frac{()_1 \widehat{\mathbf{w}}}{()_1} + \frac{()_2 \widehat{\mathbf{w}}}{()_1} + \frac{()_3 \widehat{\mathbf{w}}}{()_2} + \frac{()_4 \widehat{\mathbf{w}}}{()_2} + \frac{()_5 \widehat{\mathbf{w}}}{()_3} + \frac{()_6 \widehat{\mathbf{w}}}{()_4} + \frac{()_7 \widehat{\mathbf{w}}}{()_5} + \frac{()_8 \widehat{\mathbf{w}}}{()_6} + \frac{()_8 \widehat{\mathbf{w}}}{()_7} + \frac{()_8 \widehat{\mathbf{w}}}{()_8} + \frac{()_9 \widehat{\mathbf{w}}}{()_8} + \frac{()_9 \widehat{\mathbf{w}}}{()_8} + \frac{()_9 \widehat{\mathbf{w}}}{()_9} + \frac{()_9 \widehat{\mathbf{w}}}{()_9} + \frac{()_9 \widehat{\mathbf{w}}}{(\
$$

 $\overline{4}$

 θ get θ we subst tute $\hat{\mathbf{w}} = \mathbf{w}_{*1}^{-2} \sqrt{\frac{(-)}{2} + \frac{2}{2} \left(-\right)} \frac{2}{\hat{\mathbf{w}} - \mathbf{w}_{*1}^{-2}}$

$$
\sqrt{\frac{\hat{\mathbf{w}}}{\mathbf{w}}\mathbf{w}_{*1}^2 \sqrt{\frac{(-)}{\mathbf{w}}\mathbf{w}_{*1}^2 + \frac{(-)}{4}} \frac{\mathbf{w}_{*1}^2}{\mathbf{w}_{*1}^2 + \frac{(-)}{4}}}
$$

nto $\overline{4}$ and then obtain

$$
\frac{(\hat{\mathbf{w}}) \qquad (\mathbf{w}_{*})}{\sqrt{\hat{\mathbf{w}} \qquad \mathbf{w}_{*}^{2}} + \frac{2}{\hat{\mathbf{w}} \qquad \mathbf{w}_{*}^{2}} + \frac{2}{\hat{\mathbf{w}} \qquad \mathbf{w}_{*}^{2}} + \frac{2}{\hat{\mathbf{w}} \qquad \mathbf{w}_{*}^{2}} + \frac{2 \log(2)}{\hat{\mathbf{w}} \qquad \mathbf{w}_{*}} + \frac{8}{\hat{\mathbf{w}} \qquad \log(2)} + \frac{4}{\hat{\mathbf{w}} \qquad \mathbf{w}_{*}^{2}} + \frac{1}{\hat{\mathbf{w}} \qquad \mathbf{w}_{*}^{2}} + \frac{1}{\hat{\mathbf{w}} \qquad \mathbf{w}_{*}^{2}} + \frac{1}{\hat{\mathbf{w}} \qquad \log(2)} + \frac{1}{\hat{\
$$

wh ch proves \triangleleft

 \int o get \int we subst tute

$$
\frac{2 \log(2) \cdot \hat{w} \cdot w_{*}}{\hat{w} \cdot w_{*1} \sqrt{\frac{8 * \log(2)}{2}}} = \frac{8^{-2} \log^{2}(2)}{2} + \frac{1}{8} \cdot \hat{w} \cdot w_{*1}^{2}
$$

$$
\frac{2 \cdot \hat{w}}{\hat{w} \cdot w_{*1} \sqrt{\frac{1}{\frac{16}{2}} \cdot \frac{32 - 2}{16}} + \frac{32 - 2}{32} \cdot \hat{w} \cdot w_{*1}^{2}}{\frac{16 - 2}{2} \cdot \frac{16 - 2}{2} \cdot \frac{16}{64} \cdot \hat{w} \cdot w_{*1}^{2}}
$$

nto $\overline{4}$ and then obtain

$$
\begin{array}{ll}\n\text{(}\hat{\mathbf{w}}) & (\mathbf{w}_{*}) + \frac{1}{4} \text{ }\hat{\mathbf{w}} \text{ } \mathbf{w}_{*} \\
 & \frac{1}{25} \text{ }\hat{\mathbf{w}} \text{ } \mathbf{w}_{*} \\
 &
$$

By subtracting $\hat{w} = w_{*k}^2 + 4$ from both sides we complete the proof of \hat{v} .

Appendix E. Proof of Theorem [7](#page-8-0)

e consider two cases. In the rst case, we assume that

$$
\begin{matrix} \widehat{\mathbf{w}} & \mathbf{w}_* & \frac{1}{2} \end{matrix}
$$

 \int is sooth and (\Rightarrow s L pschitz continuous, we have

$$
(\widehat{\mathbf{w}}) \qquad (\mathbf{w}_{*}) = (\widehat{\mathbf{w}}) + (\widehat{\mathbf{w}}) \qquad (\mathbf{w}_{*}) \qquad (\mathbf{w}_{*})
$$

$$
(\widehat{\mathbf{w}} \mathbf{w}_{*} \cdot \mathbf{w}_{*} (\mathbf{w}_{*}) + \frac{1}{2} (\widehat{\mathbf{w}} \mathbf{w}_{*})^{2} + (\widehat{\mathbf{w}} \mathbf{w}_{*})
$$

$$
(\widehat{\mathbf{w}} \mathbf{w}_{*}) \mathbf{w}_{*} (\mathbf{w}_{*}) + \frac{1}{2} (\widehat{\mathbf{w}} \mathbf{w}_{*})^{2} + (\widehat{\mathbf{w}} \mathbf{w}_{*})^{2} + (\widehat{\mathbf{w}} \mathbf{w}_{*})^{2} + \frac{1}{2} (\widehat{\mathbf{w}} \mathbf{w}_{*})^{2} + \frac{1}{2} (\widehat{\mathbf{w}} \mathbf{w}_{*})^{2} + (\widehat{\mathbf{w}} \mathbf{
$$

 $\overline{4}$

where the ast step ut zes Jensen's nequality

$$
\mathbf{v}^{\nabla}(\mathbf{w}_{*}) = \|\mathbf{E}_{(\mathbf{x}, y) \sim \mathbb{D}}[\nabla (\mathbf{w}_{*} \mathbf{x})\n] \| \mathbf{E}_{(\mathbf{x}, y) \sim \mathbb{D}}[\mathbf{v}(\mathbf{w}_{*} \mathbf{x})\n]
$$

Next, we study the case

$$
\frac{1}{2} \quad \sqrt{\hat{\mathbf{w}}} \quad \mathbf{w}_{*} \quad \frac{\mathbf{8}}{2}
$$

Fro $\frac{9}{2}$ we have

$$
\begin{array}{ll}\n\left(\widehat{\mathbf{w}}\right) & \left(\mathbf{w}_{*}\right) + \frac{1}{2} \left[\widehat{\mathbf{w}} \quad \mathbf{w}_{*}\right]^{2} \\
\left(\widehat{\mathbf{w}} \quad \widehat{\mathbf{w}} \quad \widehat{\mathbf{w}} \quad (\widehat{\mathbf{w}}) & \widehat{\mathbf{w}} \quad (\widehat{\mathbf{w}}) & \widehat{\mathbf{w}} \quad (\widehat{\mathbf{w}}) & \widehat{\mathbf{w}} \quad \mathbf{w}_{*} + \left[\widehat{\mathbf{w}} \quad (\mathbf{w}_{*}) \quad \widehat{\mathbf{w}} \quad (\mathbf{w}_{*}) \quad \widehat{\mathbf{w}} \quad (\mathbf{w}_{*})\right] \\
& = \left[\widehat{\mathbf{w}} \quad (\widehat{\mathbf{w}}) \quad \widehat{\mathbf{w}} \quad (\mathbf{w}_{*}) \quad \widehat{\mathbf{w}} \quad (\widehat{\mathbf{w}}) \quad \widehat{\mathbf{w}} \quad (\mathbf{w}_{*})\right] \widehat{\mathbf{w}} \quad \mathbf{w}_{*} + \left[\widehat{\mathbf{w}} \quad (\mathbf{w}_{*}) \quad \widehat{\mathbf{w}} \quad (\mathbf{w}_{*}) \quad \widehat{\mathbf{w}} \quad (\mathbf{w}_{*}) \quad \widehat{\mathbf{w}} \quad (\mathbf{w}_{*})\right] \\
& = \frac{\sum_{\substack{\text{with } \mathbf{w}_{*} \in \mathbb{N} \\ \text{with } \mathbf{w}_{*} \in \mathbb{N} \\ \text{with } \mathbf{w}_{*} \in \mathbb{N} \\ \text{with } \mathbf{w}_{*} \in \mathbb{N} \end{array}
$$

e rst bound 1. Out ze the fact the random variable \hat{w} w_{*} es in the range (1² 2] we deve op the following equipment

Lemma 5 *Under* **Assumptions [7](#page-7-1)** *and* **[8](#page-7-2)***, with probability at least* 1 − *, for all*

$$
\frac{1}{2} \qquad \quad 2
$$

the following bound holds:

$$
\sup_{\mathbf{w}:\|\mathbf{w}-\mathbf{w}_*\|\leq \gamma} \left\langle \mathbf{\nabla}(\mathbf{w}) \quad \mathbf{\nabla}(\mathbf{w}_*) \quad \mathbf{\rho}(\mathbf{\nabla}(\mathbf{w}) \quad \mathbf{\nabla}(\mathbf{w}_*) \|\mathbf{w} \quad \mathbf{w}_*\right\rangle \quad \stackrel{4}{\longrightarrow} \frac{2}{\longrightarrow} \left(8 + \sqrt{2\log n}\right)
$$
\nwhere

\n
$$
= \mathbf{v}_2 \log_2(1) + \log_2(2) \quad \text{or} \quad \mathbf{w}_2 \quad \text{for} \quad \mathbf{w}_2 \quad \text{
$$

Based on the above e a we have with probability at east 1

$$
1 \quad \frac{4 \quad \hat{\mathbf{w}} \quad \mathbf{w} \cdot \mathbf{w}^2}{\qquad \qquad 4 \quad \left(8 + \sqrt{2 \log 2}\right)} = \frac{\hat{\mathbf{w}} \quad \mathbf{w} \cdot \mathbf{w}^2}{\qquad \qquad 44}
$$

where θ is defined in

e then proceed to hand e $_2$ which can be upper bounded in the same way as A_2 . In particular, we have the following e a

Lemma 6 *Under* **Assumptions [7](#page-7-1)***,* **[8](#page-7-2)***, and* **[10](#page-7-7)***, with probability at least* 1 − *, we have*

$$
\left\| \blacktriangledown \quad (\mathbf{w}_*) \quad \blacktriangledown \, \widehat{\quad} \, (\mathbf{w}_*) \right\| \quad \frac{2 \quad \log(2\quad)}{} + \sqrt{\frac{8 \quad \ast \log(2 \quad)}{} } \qquad \qquad \blacktriangleleft
$$

ubst tuting $\frac{44}{4}$ and $\frac{4}{5}$ into $\frac{4}{5}$ with probability at east 1 -2 we have

$$
\frac{(\widehat{\mathbf{w}}) \qquad (\mathbf{w}_{*}) + \frac{1}{2!} \widehat{\mathbf{w}} \qquad \mathbf{w}_{*}}{\mathbf{w}_{*} \qquad \qquad + \frac{2}{2} \cdot \frac{\log(2)}{\log(2)} \cdot \widehat{\mathbf{w}} \qquad \mathbf{w}_{*}} + \frac{1}{2} \widehat{\mathbf{w}} \qquad \mathbf{w}_{*} \qquad \sqrt{\frac{8 \cdot \log(2)}{2}} \qquad \qquad \mathbf{A}_{\bullet}
$$

e subst tute

$$
\frac{\hat{\mathbf{w}} - \mathbf{w}^2}{\hat{\mathbf{w}} - \mathbf{w}^2} = \frac{2 \hat{\mathbf{w}} - \mathbf{w}^2}{\hat{\mathbf{w}} + 4 \hat{\mathbf{w}} - \mathbf{w}^2}
$$

$$
\hat{\mathbf{w}} - \mathbf{w}^2
$$

$$
\hat{\mathbf{w}} - \mathbf{w}^2
$$

nto \mathbf{A}_{\bullet} and then have

$$
\begin{array}{lll}\n\textbf{(}\widehat{\mathbf{w}}) & & (\mathbf{w}_*) & \frac{2-2}{3}\widehat{\mathbf{w}} & \mathbf{w}_{*1}^2 + \frac{2- \log(2-\varepsilon)}{3} \widehat{\mathbf{w}} & \mathbf{w}_{*1}^2 + \frac{8 - \varepsilon \log(2-\varepsilon)}{3} \\
& & \frac{4-2-2-2}{3} + \frac{4-\log(2-\varepsilon)}{3} + \frac{8-\varepsilon \log(2-\varepsilon)}{3}\n\end{array}
$$

Co b n ng the above nequal ty w th \sim we obtain o prove \overline{z} we substitute

$$
\frac{2 \log(2) \cdot \hat{\mathbf{w}} \cdot \mathbf{w}_{*}}{\hat{\mathbf{w}} \cdot \mathbf{w}_{*1} \sqrt{\frac{8 \cdot \log(2)}{2}} + \frac{8^{-2} \log^{2}(2)}{2} + \frac{8}{8} \cdot \hat{\mathbf{w}} \cdot \mathbf{w}_{*1}^{2}}
$$

nto \mathbf{A}_\bullet and then have

$$
\begin{array}{ll}\n\text{(}\widehat{\mathbf{w}}) & (\mathbf{w}_*) + \frac{1}{4!} \widehat{\mathbf{w}} & \mathbf{w}_* \\ \n& \frac{\widehat{\mathbf{w}} - \mathbf{w}_*}{2} + \frac{8^{-2} \log^2(2)}{2} + \frac{16 - \log(2)}{2} \\ \n& \frac{1}{4!} \widehat{\mathbf{w}} & \mathbf{w}_* \binom{2}{1} + \frac{8^{-2} \log^2(2)}{2} + \frac{16 - \log(2)}{2} \\
\end{array}
$$

Co b n ng the above nequality with 4 we obtain

Appendix F. Proof of Lemma [5](#page-19-2)

F rst we part t on the range $(1^2 \ 2 \ 1)$ nto $= \blacktriangledown 2 \log_2() + \log_2(2)$ consecutive segments Δ_1 Δ_2 Δ_s such that $\overline{ }$

$$
\Delta_k = \begin{pmatrix} 2^{k-1} & 2^k \\ \frac{2^k-1}{2} & \frac{2^k}{2} \\ \vdots & \vdots & \vdots \\ \frac{2^k-1}{2^k-1} & \cdots & \frac{2^k-1}{2^k-1} \end{pmatrix} = 1
$$

hen, we consider the case Δ_k for a fixed value of . We have

$$
\sup_{\mathbf{w}:\|\mathbf{w}-\mathbf{w}_*\|\leq \gamma}{\left\langle \mathbf{\nabla} \quad (\mathbf{w}) \quad \mathbf{\nabla} \quad (\mathbf{w}_*) \quad [\mathbf{\nabla} \quad (\mathbf{w}) \quad \mathbf{\nabla} \quad (\mathbf{w}_*) \right] \mathbf{w} \quad \mathbf{w}_* \right\rangle}
$$
\n
$$
\sup_{\mathbf{w}:\|\mathbf{w}-\mathbf{w}_*\|\leq \gamma_k^+} \left\langle \mathbf{\nabla} \quad (\mathbf{w}) \quad \mathbf{\nabla} \quad (\mathbf{w}_*) \quad [\mathbf{\nabla} \quad (\mathbf{w}) \quad \mathbf{\nabla} \quad (\mathbf{w}_*) \right] \mathbf{w} \quad \mathbf{w}_* \right\rangle
$$

Based on the McD armid [1989](#page-13-13) and the Rademacher complex ty Bartlett and Mende son \qquad we have the following equal to upper bound the last term.

Lemma 7 *Under* **Assumptions [7](#page-7-1)** *and* **[8](#page-7-2)***, with probability at least* 1 − *, we have*

$$
\sup_{\mathbf{w}:\|\mathbf{w}-\mathbf{w}_*\|\leq \gamma_k^+} \left\langle \mathbf{\nabla}(\mathbf{w}) \quad \mathbf{\nabla}(\mathbf{w}_*) \quad [\mathbf{\nabla}(\mathbf{w}) \quad \mathbf{\nabla}(\mathbf{w}_*)] \quad \mathbf{w} \quad \mathbf{w}_* \right\rangle
$$

nce Δ_k we have

$$
k_k^+ = 2 \begin{array}{cc} -2 & 2 \end{array} \tag{49}
$$

hus, with probability at east 1 \cdots we have

$$
\sup_{\mathbf{w}:\|\mathbf{w}-\mathbf{w}_*\|\leq \gamma} \left\langle \mathbf{\nabla}(\mathbf{w}) \quad \mathbf{\nabla}(\mathbf{w}_*) \quad [\mathbf{\nabla}(\mathbf{w}) \quad \mathbf{\nabla}(\mathbf{w}_*)] \mathbf{w} \mathbf{w}_* \right\rangle
$$

e co p ete the proof by ta ng the union bound over segents.

Appendix G. Proof of Lemma [7](#page-21-3)

 \cos p fy the notation, we define

$$
i(\mathbf{w}) = (\mathbf{w} \mathbf{x}_i \quad i) = 1
$$

\n
$$
(\begin{array}{ccc} 1 & n \end{array}) = \sup_{\mathbf{w}: \|\mathbf{w} - \mathbf{w}_*\| \le \gamma_k^+} \left\langle \mathbf{\nabla}(\mathbf{w}) \quad \mathbf{\nabla}(\mathbf{w}_*) \quad \mathbf{\nabla}(\mathbf{w}_*) \quad \frac{1}{i} \sum_{i=1}^n [\mathbf{\nabla}(\mathbf{w}_i) \quad \mathbf{\nabla}(\mathbf{w}_*)] \mathbf{w}_i \mathbf{w}_* \right\rangle
$$

o upper bound (\overline{h}), we utilize the McD arc d s nequality McD arc d $9\overline{9}$

Theorem 8 *Let* $\begin{bmatrix} 1 & 0 \end{bmatrix}$ *n be independent random variables taking values in a set* A, and assume $that$: A^n _{\uparrow} R satisfies

$$
\sup_{x_1,\ldots,x_n,x_i'\in A}\left|\left(\begin{array}{ccc}1 & & n\end{array}\right) \left(\begin{array}{ccc}1 & & i-1 & i & i+1 & n\end{array}\right)\right| i
$$

for every 1 *. Then, for every* 0*,*

$$
\begin{pmatrix} 1 & n \end{pmatrix} E[\begin{pmatrix} 1 & n \end{pmatrix}] \longrightarrow \exp\begin{pmatrix} \frac{2^2}{\sum_{i=1}^n \frac{2}{i}} \end{pmatrix}
$$

As pointed out in **Remark [7](#page-7-1)** Assumptions 7 and [8](#page-7-2) in p y the random function $i(1)$ is s ooth and thus

$$
\mathbf{w} \cdot \mathbf{w} \cdot
$$

As a result, when a random function high changes, the random variable $(n_1, ..., n)$ can change by no ore than 2 $\left(\begin{array}{c} + \\ k \end{array}\right)^2$ o see the s we have

(h1, . . . , hn) − (h1, . . . , hi−1, h ′ i , hi+1, . . . , hn) 1 sup w:kw−w∗k≤γ + k ∇h ′ i (w) − ∇^h ′ i (w∗) [−] [∇hi(w) − ∇hi(w∗)] ^w [−] ^w[∗] 2 ⁺ k 2

McD armid sinequality in plies that with probability at east 1

$$
\begin{pmatrix} 1 & n \end{pmatrix} \quad E\begin{pmatrix} 1 & n \end{pmatrix} + \begin{pmatrix} -1 \\ k \end{pmatrix}^2 \sqrt{\frac{2}{n}} \log \frac{1}{n}
$$

Let $\begin{pmatrix} 1 & 1 \ 1 & n \end{pmatrix}$ be an independent copy of $\begin{pmatrix} 1 & n \end{pmatrix}$ and $\begin{pmatrix} 1 & 1 \ 1 & n \end{pmatrix}$ and $\begin{pmatrix} 1 & 1 \ 1 & n \end{pmatrix}$ and $\begin{pmatrix} 1 & 1 \ 1 & n \end{pmatrix}$ and $\begin{pmatrix} 1 & 1 \ 1 & n \end{pmatrix}$ and $\begin{pmatrix} 1 & 1 \ 1 & n \end{pmatrix}$ an cher variables with equal probability of being 1 is ngitechniques of $\frac{1}{2}$ and $\frac{1}{2}$ Bart ett and Mende son [2002](#page-12-1)), we bound E $[$ $($ $]_1$ $)$ as follows.

$$
\begin{aligned}\n\mathbf{E}_{h_1,\dots,h_n} \left[\sup_{\mathbf{w}:\|\mathbf{w}-\mathbf{w}_*\| \leq \gamma_k^+} \left\langle \mathbf{\nabla} \quad (\mathbf{w}) \quad \mathbf{\nabla} \quad (\mathbf{w}_*) \quad \frac{1}{\gamma_k^+} \sum_{i=1}^n [\mathbf{\nabla}_i(\mathbf{w}) \quad \mathbf{\nabla}_i(\mathbf{w}_*)] \mathbf{w} \quad \mathbf{w}_* \right\rangle \right]\n\\
= \frac{1}{\gamma_k^+} \mathbf{E}_{h_1,\dots,h_n} \left[\sup_{\mathbf{w} \in \mathcal{W}_n} \mathbf{w}_1(\mathbf{w}_1) \mathbf{w} \mathbf{w}_2(\mathbf{w}_2) \mathbf{w} \mathbf{w}_3(\mathbf{w}_3) \mathbf{w} \mathbf{w}_4(\mathbf{w}_4) \right]\n\end{aligned}
$$

$$
\begin{aligned}\n\mathbb{E}_{h'_1,\ldots,h'_n} \left[\mathbf{w}_1 \|\mathbf{w}-\mathbf{w}_*\| \leq & \gamma_k^+ \\
\mathbb{E}_{h'_1,\ldots,h'_n} \left[\sum_{i=1}^n \left\langle \mathbf{\nabla}_{i} \left(\mathbf{w} \right) \ \mathbf{\nabla}_{i} \left(\mathbf{w}_* \right) \ \mathbf{w} \ \mathbf{w}_* \right\rangle \right] & \sum_{i=1}^n \mathbf{\nabla}_{i} \left(\mathbf{w} \right) \ \mathbf{\nabla}_{i} \left(\mathbf{w}_* \right) \ \mathbf{w} \ \mathbf{w}_* \right]\n\end{aligned}
$$
\n
$$
\frac{1}{n} \mathbb{E}_{h_1,\ldots,h_n,h'_1,\ldots,h'_n} \left[\text{sup}_{\mathbf{w}_1, \ldots, \mathbf{w}_n} \left[\mathbf{\nabla}_{h_1, \ldots, h_n} \left[\mathbf{\nabla}_{h_1
$$

$$
\sum_{i=1}^{n} \langle \mathbf{\nabla} \cdot \mathbf{y} \mathbf{w} \cdot \mathbf{y} \rangle \mathbf{w} \cdot \mathbf{w} \cdot \mathbf{w} \rangle = \sum_{i=1}^{n} \langle \mathbf{\nabla} \cdot \mathbf{y} \mathbf{w} \mathbf{w} \mathbf{w} \rangle \mathbf{w}
$$

Note that ² s 2 L psch tz over [\Box and $i(\mathbf{w}) + i(\mathbf{w})$ [2 $\frac{1}{k}$ $\frac{+}{k}$ $\frac{-}{2}$ $\frac{+}{k}$ $\frac{+}{k}$ hen from the comparison theorem of Rademacher complex the Ledoux and Talagrand [1991](#page-12-14), in particu ar Lemma σ of Mer and Zhang [2003](#page-13-14), we have

$$
\begin{aligned}\n& \mathbf{E} \left[\sup_{\mathbf{w} : \|\mathbf{w} - \mathbf{w}_*\| \leq \gamma_k^+} \sum_{i=1}^n i \left(i(\mathbf{w}) + i(\mathbf{w}) \right)^2 \right] \\
& 4 \underset{k}{+} \sqrt{\mathbf{E}} \left[\sup_{\mathbf{w} : \|\mathbf{w} - \mathbf{w}_*\| \leq \gamma_k^+} \sum_{i=1}^n i \left(i(\mathbf{w}) + i(\mathbf{w}) \right) \right] \\
& 4 \underset{k}{+} \sqrt{\mathbf{E}} \left[\sup_{\mathbf{w} : \|\mathbf{w} - \mathbf{w}_*\| \leq \gamma_k^+} \sum_{i=1}^n i i(\mathbf{w}) \right] + \mathbf{E} \left[\sup_{\mathbf{w} : \|\mathbf{w} - \mathbf{w}_*\| \leq \gamma_k^+} \sum_{i=1}^n i i(\mathbf{w}) \right] \n\end{aligned}
$$

ar y we have

$$
\begin{aligned}\n& \mathbf{E} \left[\sup_{\mathbf{w} : \|\mathbf{w} - \mathbf{w}_*\| \leq \gamma_k^+} \sum_{i=1}^n i \left(i(\mathbf{w}) - i(\mathbf{w}) \right)^2 \right] \\
& 4 + \sqrt{\kappa} \left(\mathbf{E} \left[\sup_{\mathbf{w} : \|\mathbf{w} - \mathbf{w}_*\| \leq \gamma_k^+} \sum_{i=1}^n i i(\mathbf{w}) \right] + \mathbf{E} \left[\sup_{\mathbf{w} : \|\mathbf{w} - \mathbf{w}_*\| \leq \gamma_k^+} \sum_{i=1}^n i i(\mathbf{w}) \right] \right)\n\end{aligned}
$$

Co $\mathfrak b$ n ng and $\mathfrak A$ we arrive at

$$
\mathrm{E}\left[\sup_{\mathbf{w}:\|\mathbf{w}-\mathbf{w}_{*}\|\leq\gamma_{k}^{+}}\sum_{i=1}^{n} i_{i} \cdot \mathbf{v} i(\mathbf{w}) \cdot \mathbf{v} i(\mathbf{w}_{*}) \mathbf{w} \cdot \mathbf{w}_{*}\right]
$$

$$
2 \frac{1}{k} \sqrt{\sum_{\mathbf{w}:\|\mathbf{w}-\mathbf{w}_{*}\|\leq\gamma_{k}^{+}} \sum_{i=1}^{n} i_{i}(\mathbf{w})} + \mathrm{E}\left[\sup_{\mathbf{w}:\|\mathbf{w}-\mathbf{w}_{*}\|\leq\gamma_{k}^{+}}\sum_{i=1}^{n} i_{i}(\mathbf{x})\right]}_{::=C_{1}}
$$

e proceed to upper bound $\begin{pmatrix} 1 & n \\ 1 & n \end{pmatrix}$. From our definition of $\begin{pmatrix} i(w) \\ i(w) \end{pmatrix}$ we have

$$
\begin{vmatrix} i(\mathbf{w}) & i(\mathbf{w}') \end{vmatrix} = \frac{1}{\kappa} \begin{vmatrix} i'(\mathbf{w} \mathbf{x}_i & i) & i'(\mathbf{w}' \mathbf{x}_i & i) \end{vmatrix}
$$
\n
$$
\sqrt{\left| \mathbf{w} \mathbf{x}_i - \mathbf{w}' \mathbf{x}_i \right|} = \sqrt{\left| \mathbf{x}_i \mathbf{w} \mathbf{w}_i - \mathbf{x}_i \mathbf{w}' \mathbf{w}_i \right|}
$$

Applying the comparison theorem of \bullet and \bullet acher complex the sagain, we have

$$
1 \quad \sqrt{}\,\mathbf{E}\left[\sup_{\mathbf{w}:\|\mathbf{w}-\mathbf{w}_*\|\leq \gamma_k^+} \sum_{i=1}^n i_i \mathbf{x}_i \mathbf{w} \mathbf{w}_*\right] = 2
$$

ZHANG YANG