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Abstract

We fix two typos in the statement of Theorem 4, and an error in Theorem 8. To be more
clear, we rewrite the proof of the lower bound.

1 Statement of Theorem 4
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2 Proof of the Lower Bound

We now show that for square loss, which is a special case of exponentially concave functions,
the minimax risk is O(d/T ). As a result, the online Newton step algorithm achieves the almost
optimal excess risk bound. The proof of the lower bound is built upon the distance-based Fano
inequality (Duchi and Wainwright, 2013).

Let P be a family of distributions on a sample space X , and let θ : P 7→ Θ be a function
mapping P to some parameter space Θ. Given a set of n samples Xn = {X1, . . . , Xn} drawn
i.i.d. from a distribution P ∈ P, let θ̂(Xn) be a measurable function of Xn, which is an estimate
of the unknown quantity θ(P ). Then, the minimax risk for the family P is given by

Mn (θ(P),Φ ◦ ρ) = inf
θ̂

sup
P∈P
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[
Φ
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ρ
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where ρ : Θ×Θ 7→ R is a (semi)-metric on the parameter space, and Φ : R+ 7→ R+ is a nondecreasing
loss function. Our analysis is based on the following result from Duchi and Wainwright (2013).

Lemma 1 (Corollary 2 of Duchi and Wainwright (2013)). Let’s consider a discrete set V and each

element v ∈ V leads to a vector θv ∈ Θ that results in a distribution P ∈ P. Given a function

ρV : V × V 7→ R and a scalar t, we define the separation function

δ(t) := sup {δ|ρ(θv, θw) ≥ δ for all v,w ∈ V such that ρV(v,w) > t} .
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We assume the canonical estimation setting: nature chooses a vector V ∈ V uniformly at random,

and conditioned on this choice V = v, a sample Xn of size n is drawn i.i.d. from the distribution

P ∈ P with parameter θv. Then, we have

Mn(θ(P),Φ ◦ ρ) ≥ Φ

(
δ(t)

2

)(
1− I(Xn;V ) + log 2

log |V| − logNmax
t

)
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where Nmax
t = maxv∈V{card{v′ ∈ V|ρV(v,v

′) ≤ t}}.

In our case, we are interested the generalization error bound L(ŵ) − L(w∗). For square loss,
the stochastic optimization problem is given by

min
w∈W

L(w) = E
[
(Y −X⊤

w)2
]

where X is sampled from some underlying distribution PX , and given X = x the response Y
is sampled from an Gaussian distribution N (x⊤

w∗, 1), where w∗ ∈ R
d is the parameter vector.

Furthermore, we assume w∗



In addition, we have
I(V ; (X,Y )T ) = TI(V ; (X,Y ))

and

I(V ; (X,Y )) = H(X,Y )−H(X,Y |V )

=H(X) +H(Y |X)−H(X|V )−H(Y |X,V ) = H(Y |X)−H(Y |X,V )

≤E
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