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the ranking model is fixed after being deployed, it cannot track the evolution of
user needs [6].

To address these issues, recent advances in information retrieval have intro-
duced online learning to rank (OL2R), where the ranking model is optimized
based on its interactions with users on the fly [3]. Compared to its offline counter-
part, OL2R has lighter computational overhead and higher updating frequency.
At the heart of OL2R lies the trade-off between exploring new rankers and
exploiting the seemingly optimal ranker. Thus, a natural and popular approach

www.lamda.nju.edu.cn/lusy/ns-ol2r.pdf
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2 Problem Setup

We study non-stationary dueling bandits for online learning to rank, which pro-
ceeds in a sequence of rounds. Let W ⊆ R

d be the parameter space of a ranking
model and T be the number of rounds. Following previous work [8,11,12], we
refer to the ranking model with a specific parameter configuration as a ranker.
In each round t ∈ [T ] = {1, . . . , T}, firstly a learner chooses two rankers with
parameters wt ∈ W and w′

t ∈ W, respectively. Then, the ranking lists produced
by the rankers are merged by an interleaving method [5,9]. The merged list
is displayed to a user and a noisy preference order over the rankers is inferred
from the user’s click feedback. Specifically, the ranker whose ranking list receives
more clicks is preferred. Finally, the learner updates the parameter of the ranking
model based on the inferred preference order.

We denote by w � w′ the event that users prefer the ranking list produced by
the ranker w than that of the ranker w′. While the existing works only consider
the setting where the probability of this event is fixed, we allow the probability to
change with time so as to capture the non-stationary nature of user preference.
Specifically, in round t, the probability of the event w � w′ is defined as

Pr(w � w′|t) = ft(w,w′) = σ(vt(w) − vt(w′)) (1)

where σ is a static link function, and vt denotes the utility function in round t.
Following previous work [11,14], we make some standard assumptions as follows:

– The parameter space of the ranking model W is bounded

max
w∈W

‖w‖2 ≤ R. (2)

– The link function σ is rotation-symmetric

σ(x) = 1 − σ(−x). (3)

– The link function σ is monotonically increasing and satisfies

σ(−∞) = 0, σ(0) = 1/2, σ(∞) = 1.

– The link function σ is Lσ-Lipschitz, and all utility functions vt, t ∈ [T ] are Lv-
Lipschitz. Furthermore, the link function σ is also second order L2-Lipschitz.2

Denoting L = LσLv, the above assumptions directly imply the functions ft, t ∈
[T ] are L-Lipschitz in both arguments.

Let w∗
t = argmaxw∈W vt(w) denote the optimal ranker achieving the maxi-

mum utility in round t. We adopt dynamic regret as performance metric, defined
as

DR(T ) =
T∑

t=1

(
ft(w∗

t ,wt) + ft(w∗
t ,w′

t) − 2ft(w∗
t ,w∗

t )
)
.

Our goal is to design an online learning method for minimizing the above
dynamic regret.
2 In OL2R, a widely used link function is the sigmoid function σ(x) = 1/

(
1+exp(−x)

)
,

which satisfies all of our assumptions.
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3 Method

In this section, we first review the dueling bandits gradient descent (DBGD)
algorithm and derive its dynamic regret bound, then present our method as well
as its theoretical guarantee, and finally discuss the extensions of our method to
existing DBGD-type algorithms.

3.1 Dueling Bandits Gradient Descent

As outlined in Algorithm 1, DBGD has two hyperparameters δ and γ, corre-
sponding to the step sizes of exploration and exploitation, respectively. In each
round t, DBGD first draws a vector ut uniformly at random from the unit sphere
S � {x ∈ R

d : ‖x‖2 = 1} as an exploratory direction. Then, a candidate ranker
is created with parameter

w′
t = ΠW [wt + δut] (4)

where wt is the current parameter of the ranking model and ΠW [·] denotes the
operation of projecting a point to the parameter space W. Next, the two rankers
wt and w′

t are compared by the probabilistic interleaving method [5], which can
merge the ranking lists produced by the two rankers and infer a preference order
over the two rankers from user clicks on the merged ranking list. Finally, based on
the preference order, DBGD updates the parameter of the ranking model for the
next round. Specifically, if w′

t wins, which reveals that the exploratory direction
leads to better ranking performance, then the parameter of the ranking model
moves along the exploratory direction with step size γ: wt+1 = ΠW [wt + γut].
Otherwise, the ranking model remains unchanged.

We rigorously analyze the learning properties of DBGD and derive a sub-
linear dynamic regret bound as follows.

Theorem 1. Let CT be the path length of the optimal rankers over T rounds,
defined as

CT =
T∑

t=2

‖w∗
t − w∗

t−1‖2. (5)

By setting δ =
√

2λd
(11+2λ)L

√
T
and γ =

√
5R2+2RCT

T , the dynamic regret of DBGD
satisfies

E[DR(T )] ≤
√

2(11 + 2λ)λdL
(
1 +

√
5R2 + 2RCT

)
T

3
4 .

3.2 DBGD Meets Meta Learning

While DBGD can achieve a sub-linear dynamic regret bound for CT = o(
√

T ),
it requires the value of the path-length CT for tuning the step size γ, which is
clearly impossible in practice since CT depends on the unknown optimal rankers
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Algorithm 1. DBGD
Require: step sizes of exploration δ and exploitation γ
1: Initialize a ranker w1 ∈ W arbitrarily
2: for t = 1, 2, . . . , T do
3: Draw a vector ut uniformly at random from S

4: Create an exploratory ranker w′
t = ΠW [wt + δut]

5: Compare wt and w′
t by probabilistic interleaving

6: if w′
t � wt then

7: Set wt+1 = ΠW [wt + γut]
8: else
9: Set wt+1 = wt

10: end if
11: end for

w∗
1, . . . ,w

∗
T . To address this issue, we employ the meta learning technique to

automatically tune the step size γ, which has exhibited successes in online convex
optimization [2,16,17]. The basic idea is to run multiple DBGDs in parallel,
each of which is configured with a different step size γ and admits the sub-
linear dynamic regret bound for a class of path length. We develop our method
in the prediction with expert advice framework, where each DBGD is viewed
as an expert and the outputs of DBGDs are combined by an expert-tracking
algorithm.

We now describe our method in detail, which is termed as DBGD Meets Meta
Learning (DM2L) and consists of a meta algorithm and an expert algorithm.

Meta Algorithm As outlined in Algorithm 2, at the beginning of the meta algo-
rithm, we invoke the expert algorithm with different step size γ. According to
our theoretical analysis, we maintain

N =
⌈
log2

√
1 + 4T/5

⌉
+ 1 (6)

experts and the step size γ of the i-th expert is configured as

γi = 2i−1R
√
5/T , i = 1, . . . , N. (7)

Each expert i ∈ [N ] is associated with a time-variant weight πi
t, which is dynam-

ically adjusted according to the real time performance of expert i. For deriving
a tighter dynamic regret bound, we take a nonuniform initialization of weights:

πi
1 =

N + 1
i(i + 1)N

, i = 1, . . . , N. (8)

In each round t, we first receive a ranker wi
t from each expert i ∈ [N ] and

aggregate these rankers according to the weights of experts πi
t, i ∈ [N ] as wt =
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Algorithm 2. DM2L: Meta Algorithm
Require: number of experts N , step sizes δ, γ1, . . . , γN , learning rate α
1: Invoke Algorithm 3 with γi for each expert i ∈ [N ]
2: Initialize the weights of experts πi

1, i ∈ [N ] by (8)
3: for t = 1, 2, . . . , T do
4: Receive ranker wi

t from each expert i ∈ [N ]
5: Aggregate the rankers as wt =

∑N
i=1 πi

tw
i
t

6: Draw a vector ut uniformly at random from S

7: Create an exploratory ranker w′
t = ΠW [wt + δut]

8: Compare wt and w′
t by probabilistic interleaving

9: Update the weight of each expert πi
t, i ∈ [N ] by (9)

10: Send I{w′
t�wt} and ut to each expert i ∈ [N ]

11: end for

Algorithm 3. DM2L: Expert Algorithm
Require: step size of exploitation γi

1: Initialize a ranker wi
1 ∈ W arbitrarily

2: for t = 1, 2, . . . , T do
3: Send ranker wi

t to Algorithm 2
4: Receive I{w′

t�wt} and ut from Algorithm 2
5: Update ranker w+11
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