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A  Proofs of Lemmas for Supporting Theorem 1
A.1 Proof of Lemma 4
Let £2,, include the subset of non-zeros entries in w, and §2,, = [d] \ £2,,. Define
T
- “h(A) —w'A
G(w) = g(w) + max —h(A) —w AX,
G(w) = g(w) + 7o llwll -+ max —h(X) —wT ARTA = 25|\
Let v € 9||w.||1 be any subgradient of || - ||; at w.. Then, we have

u=Vg(w,) — ARR' X +7,v € 9G(w,). *

Using the fact that W minimizes G () over the domain (2 and g¢(-) is a-strongly
convex, we have

~ o~ ~ a ~
02 G(W) = Glw.) 2 (= wa,w) + 5| — w3
_ (21)
- <w —w.,Vg(w.) — ARRTX + %,v> + %Hw ~ w2

By setting v; = sign(@;), Vi € (2, we have (W5 , v ) = [[Wg, [li. As a result,

(W—w,,v)=(Wg , Vo, )+ (Wa, W Vva,) > [Wg |1 —[[We, —w.1. (22)

Combining (21) with (22), we have

1 < Yol W, — W1
(23)

N g o ~
(% =W, Va(w.) ~ ARRTX) + G190 = w.} + 7ullWs

w

* In the case that g(-) is non-smooth, Vg(w.,) refers to a subgradient of g(-) at w,. In
particular, we choose the subgradient that satisfies (24).



From the fact that w, minimizes G(-) over the domain (2, we have
(VG(w.),w—w,) = (Vg(w,) — AN, w —w,) >0, Yw € 2. (24)
Then,
<v’s\/ —w,, Vg(w,) — ARRT;\>
= (W = ., Vg(w.) = AX) + (W — w., A(I = RRTA) + (¥ = w., ARRT (A = X))
Qe = walls (llacr = RRT)A|, + HARRT(A* - X)Hm)

(14) ~ ~ .
=" = pullW = w1 = —pu ([Wa, 1 + [Wa, — wall1) -

(25)
From (23) and (25), we have
o ~ ~
§HW - W*H% + ('Vw - Pw)HWflw ”1 < ('Vw + pw)”WQw - W*”l

Since v, > 2py, We have

a, ~ 3 ~
SI¥ = w3+ Lwa, b < W0, — W
And thus,
Q. 3 N 3Vwr/Sw 1 ~ =R 3YwA/S
S = w3 < T2 g, = wlly € T Wa, — w2 = ([ - walp < TV
2 2 2 «
a o 3 ~ ~ 3Yw$
5o IFou =~ wellf < SIW = wall3 < T [Wa, — wally = W, —weli < =2
Yew )~ 3w ) ~ ~ . . 1274 8w
W, < e, —wh = (W, < 31Wa, = walli = [% - w. ], < =22
[ = wolly _ [Wa, — ol + W, 1 490, =Wl AV5ul¥o, —walla
W= w2 W—wle W -wile o wewl Y

A.2 Proof of Lemma 6

First, we assume |ufl2 = ||



Thus, with a probability at least 1 — §, we have

/ 4
’uTRRTv — uTv’ < < log —
m §
provided (10) holds.

We complete the proof by noticing
T T
u v u'v
RRT
2

[[ull

[u'RRTv —u'v| = [u2|v]:

vl fhall2flv]l2

A.3 Proof of Lemma 7
First, we define
Sniesy = {x €R™: [|x[l2 <1, [[xlo < 1651} .
Using Lemma 3.1 from [25], we have ), 165, C 2conv(Sp 16s,) and therefore

Us <2 sup ||A(RRT - I)zHOo =2 sup ||A(RRT - I)zHOo (28)

z€conv(Sn, 165y ZESn, 165

=0

where the last equality follows from the fact that the maximum of a convex
function over a convex set generally occurs at some extreme point of the set [27].

Let S, s(€) be a proper enet for S, s with the smallest cardinality, and
|Sy.s(€)| be the covering number for S, ;. We have the following lemma for
bounding |S,, s(€)|.

Lemma 8 [25, Lemma 3.3] For € € (0,1) and s < n, we have

log |S,,.s(€)| < slog <2Z) .

Let Sy, 165, (€) be a e-net of S, 165, with smallest cardinality. With the help of
Sn.16s, (€), we define a discretized version of 6 in (28) as

0(e) = sup{HA(RR—r - I)z”oO 1z € Sn,lgm(e)} .
The following lemma relates 6 with 6(e).
Lemma 9 [17, Lemma 9.2] For ¢ € (0,1//2), we have
0(c)
< .
T 1-12¢

By choosing € = 1/2, we have § < (2 + v/2)0(1/2). Combining with (28), we
obtain

Us <22+ V2)sup {||A(RR" — I)z||_ : 2 € Sn,165,(1/2) }
6(1/2)




Furthermore, Lemma 8 implies

In
log |Sn,165>\(1/2)| < 168/\ log (83)\) .

We proceed by providing an upper bound for 6(1/2). Following the arguments
for bounding U; in the proof of Lemma 5, we have with a probability at least
1-9,

4d

A4 (RRT—1)a]],, </ S10g %

for each z € S, 165, (1/2). We complete the proof by taking the union bound
over all z € S, 165, (1/2).

B Proof of Theorem 2

The analysis here is similar to that for Lemma 1. Recall that in the proof of
Theorem 1, we have proved that

12 2 ATw oy S log T > 2|(RRT — 1)ATw. | (20)

holds with a probability at least 1 — 4.
Define

L) =—=h(A) =% AR X — [ A]l.

Using the fact that A maximizes Z() over the domain A and h(-) is B-strongly
convex, we have

(X=X, Vh\) + RRTATW ) + §||A* A+ mlAa I < A, = A
(30)
On the other hand, we have
<X AL VR + RRTATVAV>

=A==, Vh(A) + A



From (30) and (31), we have

Bix 5. D%
I = 1B+ 2R, s

3 ~ ~ ~
<M Ray = A+ I3 = A2 [RRTAT (% = wa),

S A .
<PV R < Al IR - Al [ RRTAT (8 - wa)

5 )

~ 3 S ~
<R Al (T2 4 RATAT - w.)

which implies

1A = All2

2 (37a/5x &

<2 (25 frrT T - w) )

2 /3 ~ W

<2 (P2 AT e+ (R - DA - o), )
2 /3

<2 (P25 4 (14 IR - 1) 14T - wa)ll).

C Proof of Theorem 4

The proof is almost identical to that of Theorem 1. We just need to replace
Lemmas 1 and 4 with the following ones.

Lemma 10 Denote
pr=|(RRT = DATw. || +s. (32)
By choosing v, > 2p, we have

~ 3 - 12 X— A\,
1A= Ao < VR X < 208 g 1A= A

< , - < 455,
B B [A = Asll2

Lemma 11 Denote
pu =41~ RRT) Al + [ARRT (A, = X)|| +<. (33)

By choosing v, > 2p,,, we have

3Vwr/S
«

= - walh < |5 = s

1274 84

, and

< 4y/S.

W —w.ls < =
W — w2



C.1 Proof of Lemma 10
From the assumption, we have
(X=X, VA(A,) + RRT A" w., )
- <X ~ AL, VA(A) + ATW*> + <X “A.(RRT - I)ATW*>

(12) ~
> — A=A (J(RRT = DATw. | +5)

(32) < < <
2 — paIX = Al = —pa (IRg, I+ 1Xey = Aullt) -

Substituting the above inequality into (17), and the rest proof is identical to
that of Lemma 1.

C.2 Proof of Lemma 11
Similarly, we have
<VAV —w,,Vg(w,) — ARRTX>

= (W — w., Vg(w,) — AX.) + (W — wa, AT — RRTA) + <w —w., ARRT (A, — X)>
ay . . -

> — % = wal (JJAT - RRDA  + HARR (A, — A)H +<)
(33) ~ ~ ~
= = pullW = willi = —pu (IWe, [l + [Wa, —w.l).

Substituting the above inequality into (23), and the rest proof is identical to
that of Lemma 4.



