
A Simple Approach for Non-stationary Linear Bandits

A Proof of Lemma 3

Proof of Lemma 3. We �rst prove the upper bound of
At. The essential proof is actually due to Cheung et al.
[2019a] in analyzing sliding window based approach.
For self-containedness, we restate here in the notations
of our proposed restarted strategy.V �1
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where (21) holds by rearranging over the index pair
of (s; p), (22) holds due to the triangle inequality, (23)
and (24) can be obtained by the same argument in
Appendix B of Cheung et al. [2019b]. We thus prove
the upper bound of At.

We proceed to prove the upper bound of Bt. From
the self-normalized concentration inequality [Abbasi-
Yadkori et al., 2011, Theorem 1], restated in Theorem 5
of Appendix C, we know that
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where the last inequality is obtained from the analysis
of the determinant, as shown in the proof of Lemma 4.

Meanwhile, since Vt�1 � �I, we know that
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Therefore, the upper bound of Bt can be immediately
obtained by combining the above inequalities.

B Bandit-over-Bandits Mechanism
and Proof of Theorem 4

The RestartUCB algorithm requires prior informa-
tion of the path-length PT , which is generally un-
known. Such a limitation can be avoided by utilizing
the Bandits-over-bandits (BOB) mechanism, proposed
by Cheung et al. [2019a] in designing parameter-free
algorithm for non-stationary linear bandits based on
sliding window least square estimator.

In the following, we �rst describe how to apply the
BOB mechanism to eliminate the requirement of the
unknown path-length in RestartUCB. Then, we present
the proof of Theorem 4.

B.1 RestartUCB with BOB Mechanism

We name the RestartUCB algorithm with Bandit-over-
Bandits mechanism as \RestartUCB-BOB", whose
main idea is illustrated in Figure 4.
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Figure 4: Illustration of Bandit-over-Bandits mecha-
nism with application to RestartUCB algorithm.

From a high-level view, although the exact value of the
optimal epoch size (or equivalently, the path-length
PT ) is not clear, we can make some random guesses
of its possible value, since the PT is always bounded.
Then, we can use a certain meta-algorithm to adap-
tively track the best epoch size, based on the returned
reward returned. Speci�cally, The RestartUCB-BOB
algorithm �rst sets an update period H0, and then
runs the RestartUCB with a particular epoch size in
each period, and the epoch size will be adaptively ad-
justed by employing EXP3 [Auer et al., 2002] as the
meta-algorithm. We refer the reader to Section 7.3
of Cheung et al. [2019b] for more descriptions of design
motivations and algorithmic details.

In the con�guration of RestartUCB-BOB, we set H0 =
dd
p
T e and the pool of epoch sizes J as

J = fHi = b(d=(2S))
2=3 � 2i�1c j i = 1; 2; � � � ; Ng;

where N = dln(d1=3T 1=2(2S)2=3)e+ 1.

Denoted by Hmin (Hmax) the minimal (maximal) epoch
size in the pool J , we know that

Hmin = b(d=(2S))
2=3c; Hmax = bd

p
T c � H0: (25)
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B.2 Proof of Theorem 4

Proof of Theorem 4. We begin with the following de-
composition of the dynamic regret.
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where Hy is the best epoch size to approximate the
optimal epoch size H� in the pool J , and H� =
b(dT=(1 + PT ))2=3c. Hence, it su�ces to bound terms
(i) and (ii). In the following, we consider two cases,
either (1 + PT ) � d�1=2T 1=4 or (1 + PT ) < d�1=2T 1=4.

Case 1. when (1 + PT ) � d�1=2T 1=4.

In this case, it is easy to verify that H� � Hmax and
we thus conclude that H� lies in the the range of
[Hmin; Hmax]. Furthermore, from the con�guration of
the pool J , we con�rm that there exists an epoch size
Hy 2 J such that Hy � H� � 2Hy. So term (ii) can
be upper bounded by
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where (26) is due to Theorem 2 and Pi denotes the
path-length in the i-th update period. (27) follows by
summing over all update periods, and the last inequality
holds since the optimal epoch size H� is provably in the
range of [Hmin; Hmax] and satis�es Hy � H� � 2Hy.

Next, we bound the term (i),
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where the �rst inequality follows by the same argument
as in the sliding window based approach [Cheung et al.,
2019b, Lemma 13], building upon the of EXP3. In

addition, the last inequality holds due to the fact that
(1 + PT ) � d�1=2T 1=4 implies,

d1=2T 3=4 = d2=3T 2=3d�1=3T 1=6 � d2=3T 2=3(1 +PT )1=3:

Hence, by combining the upper bounds of term (i)
and term (ii), we know that the dynamic regret

of RestartUCB-BOB is bounded by eO(d2=3T 2=3(1 +
PT )1=3) under the condition of (1 + PT ) � d�1=2T 1=4.

Case 2. when (1 + PT ) < d�1=2T 1=4.

In this case, we cannot guarantee that the optimal
epoch size H� lies in the range of [Hmin; Hmax], so we
set Hy as H0,
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where the last inequality holds by exploiting the condi-
tion of (1 + PT ) � d�1=2T 1=4. The result in conjunc-
tion with the upper bound of term (i) in (28) gives theeO(d1=2T 3=4) dynamic regret under this condition.

Finally, note that the dynamic regret of above two
cases can be rewritten in the following uni�ed form,
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Hence, we complete the proof of Theorem 4.

C Technical Lemmas

In this section, we provide several technical lemmas
that frequently used in the proofs.

Theorem 5 (Self-Normalized Bound for Vector-Valued
Martingales [Abbasi-Yadkori et al., 2011, Theorem 1]).
Let fFtg1t=0 be a �ltration. Let f�tg1t=0 be a real-valued
stochastic process such that �t is Ft-measurable and
conditionally R-sub-Gaussian for some R > 0, namely,
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Let fXtg1t=1 be an Rd-valued stochastic process such
that Xt is Ft�1-measurable. Assume that V is a d� d
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Then, for any � > 0, with probability at least 1� �, for
all t � 0,
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Lemma 4 (Elliptical Potential Lemma). Suppose U0 =
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Proof. First, we have the following decomposition,

Ut = Ut�1 +XtX
T
t = U

1
2
t�1(I + U

� 1
2

t�1XtX
T
t U
� 1

2
t�1)U

1
2
t�1:

Taking the determinant on both sides, we get
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which in conjunction with Lemma 5 yields
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Note that in the �rst inequality, we utilize the fact that
1 + x � exp(x=2) holds for any x 2 [0; 1]. By taking
advantage of the telescope structure, we have
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where the last inequality follows from the fact that
Tr(UT ) � Tr(U0) + L2T = �d + L2T , and thus
det(UT ) � (�+ L2T=d)d.

Therefore, Cauchy-Schwartz inequality gives,

TX
t=1

kU�
1
2

t�1Xtk2 �

vuutT

TX
t=1

kU�
1
2

t�1Xtk22

�

s
2dT log

�
1 +

L2T

�d

�
:

Lemma 5.

det(I + vvT) = 1 + kvk22: (33)

Proof. Notice that

(i) (I + vvT)v = (1 + kvk22)v, therefore, v is its
eigenvector with (1 + kvk22) as the eigenvalue;

(ii) (I + vvT)v? = v?, therefore, v? ? v is its eigen-
vector with 1 as the eigenvalue.

Consequently, det(I + vvT) = 1 + kvk22.
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