A Simple Approach for Non-stationary Linear Bandits

A Proof of Lemma 3

Proof of Lemma 3. We rst prove the upper bound of
A¢. The essential proof is actually due to Cheung et al.
[2019a] in analyzing sliding window based approach.
For self-containedness, we restate here in the notations
of our proposed restarted strategy.
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where (21) holds by rearranging over the index pair
of (s;p), (22) holds due to the triangle inequality, (23)
and (24) can be obtained by the same argument in
Appendix B of Cheung et al. [2019b]. We thus prove
the upper bound of A;.

We proceed to prove the upper bound of B¢. From
the self-normalized concentration inequality [Abbasi-
Yadkori et al., 2011, Theorem 1], restated in Theorem 5
of Appendix C, we know that
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where the last inequality is obtained from the analysis
of the determinant, as shown in the proof of Lemma 4.

Meanwhile, since V¢ I, we know that

k tk\2/,1 1= min(Vt 1)k tk% Ek tk% 52:

Therefore, the upper bound of B¢ can be immediately
obtained by combining the above inequalities. O

B Bandit-over-Bandits Mechanism
and Proof of Theorem 4

The RestartUCB algorithm requires prior informa-
tion of the path-length Pt, which is generally un-
known. Such a limitation can be avoided by utilizing
the Bandits-over-bandits (BOB) mechanism, proposed
by Cheung et al. [2019a] in designing parameter-free
algorithm for non-stationary linear bandits based on
sliding window least square estimator.

In the following, we rst describe how to apply the
BOB mechanism to eliminate the requirement of the
unknown path-length in RestartUCB. Then, we present
the proof of Theorem 4.

B.1 RestartUCB with BOB Mechanism

We name the RestartUCB algorithm with Bandit-over-
Bandits mechanism as \RestartUCB-BOB", whose
main idea is illustrated in Figure 4.
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Figure 4: Illustration of Bandit-over-Bandits mecha-
nism with application to RestartUCB algorithm.

From a high-level view, although the exact value of the
optimal epoch size (or equivalently, the path-length
Pt) is not clear, we can make some random guesses
of its possible value, since the Pt is always bounded.
Then, we can use a certain meta-algorithm to adap-
tively track the best epoch size, based on the returned
reward returned. Speci cally, The RestartUCB-BOB
algorithm rst sets an update period Hy, and then
runs the RestartUCB with a particular epoch size in
each period, and the epoch size will be adaptively ad-
justed by employing EXP3 [Auer et al., 2002] as the
meta-algorithm. We refer the reader to Section 7.3
of Cheung et al. [2019b] for more descriptions of design
motivations and algorithmic details.

'”Hle con guration of RestartUCB-BOB, we set Hy =
dd" Te and the pool of epoch sizes J as

J =fH; =bd=(2S))*™® 2' cji=1;2; ;Ng;
where N = dIn(d'=3T 172(25)273)e + 1.

Denoted by H,,i, (Hmax) the minimal (maximal) epoch
size in the pool J, we know that

Huin = b(d=(25))*72¢; Humax = bdpfc Ho:  (25)
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B.2 Proof of Theorem 4

Proof of Theorem 4. We begin with the following de-
composition of the dynamic regret.
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where HY is the best epoch size to approximate the
optimal epoch size H in the pool J, and H =
b(dT=(1 + Pt))?73c. Hence, it su ces to bound terms
() and (ii). In the following, we consider two cases,
gither (1 +P7) d 2T or (1+Py) <d P27,

d 1=2T 1=4 .

In this case, it is easy to verify that H H.x and
we thus conclude that H lies in the the range of
[Himin: Hmax]. Furthermore, from the con guration of
the pool J, we con rm that there exists an epoch size
HY 2 J such that HY H 2HY. So term (ii) can
be upper bounded by
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where (26) is due to Theorem 2 and P; denotes the
path-length in the i-th update period. (27) follows by
summing over all update periods, and the last inequality
holds since the optimal epoch size H is provably in the

range of [Huyin; Himax] and satis es HY  H 2HY.
Next, we bound the term (i),
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where the rst inequality follows by the same argument
as in the sliding window based approach [Cheung et al.,
2019b, Lemma 13], building upon the of EXP3. In

addition, the last inequality holds due to the fact that
1+Py) d =27 implies,
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Hence, by combining the upper bounds of term (i)
and term (ii), we know that the dynamic regret
of RestartUCB-BOB is bounded by @(d*=3T23(1 +
P1)'=3) under the condition of (1 +Pt) d 'F2T1%4,
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In this case, we cannot guarantee that the optimal
epoch size H lies in the range of [Hin; Himax], SO we
set HY as Hg,

tern (ii) © HyPT+pd%

@ H()PT =+ p—dl
Ho
=@ d TPy +d=2T
© gl=2734

where the last inequality holds by exploiting the condi-
tion of (1 +P7) d 2T The result in conjunc-
tion with the upper bound of term (i) in (28) gives the
©(d'=2T 3%%) dynamic regret under this condition.

Finally, note that the dynamic regret of above two
cases can be rewritten in the following uni ed form,

term (i)+term (ii) © d3T? maxfPr;d Tig ¥ :

Hence, we complete the proof of Theorem 4. O

C Technical Lemmas

In this section, we provide several technical lemmas
that frequently used in the proofs.

Theorem 5 (Self-Normalized Bound for Vector-Valued
Martingales [Abbasi-Yadkori et al., 2011, Theorem 1]).
Let fFegl, be a Itration. Let f (g1, be a real-valued
stochastic process such that ¢ is Fy-measurable and
conditionally R-sub-Gaussian for some R > 0, namely,
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Let FX.gi&, be an R%valued stochastic process such
that X; is Fy 1-measurable. Assume that V isad d
positive de nite matrix. For any t 0, de ne

S¢ = X (30)
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Then, for any > 0, with probability at least 1, for
allt o,

det(Ve)=2 det(V) 172

kStkg -1 2R*log (31)

Lemma 4 (Elliptical Potential Lemma). Suppose Uy =
I, Ug = Up 1+ XeXE, and kX¢ky L, then
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Proof. First, we have the following decomposition,
Up=Ug 1+ XeXE = U2 (1 +U, 2XXTU, 2)U;
Taking the determinant on both sides, we get

det(Uy) = det(Uy 1) det(l + U, 3XXTU, 2);
which in conjunction with Lemma 5 yields

det(Uy) = det(Ue 1)(L+ kU, 2Xck3)
det(U; 1) exp(kU; 2 Xck2=2):

Note that in the rst inequality, we utilize the fact that
1+x exp(x=2) holds for any x 2 [0;1]. By taking
advantage of the telescope structure, we have
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where the last inequality follows from the fact that
Tr(Ur)  Tr(Up) + LT = d+ LT, and thus
det(Ut) ( =+ L2T=d)".

Therefore, Cauchy-Schwartz inequality gives,
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Lemma 5.
det(l +wvb) =1+ kvkZ: (33)

Proof. Notice that

@@ (1 +whv = (1 + kvk3)v, therefore, v is its
eigenvector with (1 + kvk3) as the eigenvalue;

(i) (1 +vwh)v? =v7?, therefore, v? ? v is its eigen-
vector with 1 as the eigenvalue.

Consequently, det(l +vvT) = 1 + kvk3. O
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