A Proof of Lemma 3

Proof of Lemma 3. We rst prove the upper bound of A_t . The essential proof is actually due to Cheung et al. [2019a] in analyzing sliding window based approach. For self-containedness, we restate here in the notations of our proposed restarted strategy.

$$V_{t} \stackrel{1}{}_{1} \stackrel{\swarrow}{}_{s=t_{0}} X_{s} X_{s}^{T} (s t)$$

$$= V_{t} \stackrel{1}{}_{1} \stackrel{\swarrow}{}_{s=t_{0}} X_{s} X_{s}^{T} (\rho \rho \rho + 1)$$

$$\stackrel{s=t_{0}}{}_{s=t_{0}} \stackrel{p=s}{}_{p=s} \stackrel{\rho=s}{}_{s} \stackrel{\rho=s}{}_{s}$$

$$= V_{t} \stackrel{1}{}_{1} \stackrel{\swarrow}{}_{s} X_{s} X_{s}^{T} (\rho \rho + 1) \quad (21)$$

$$p = t_0 \quad s = t_0 \qquad 2$$

$$(x + 1) \quad x = 0$$

$$V_{t \ 1}^{1} X_{s} X_{s}^{T} (p \ p+1)$$
(22)

$$k_{p} = p_{+1}k_{2};$$
 (24)

where (21) holds by rearranging over the index pair of (s; p), (22) holds due to the triangle inequality, (23) and (24) can be obtained by the same argument in Appendix B of Cheung et al. [2019b]. We thus prove the upper bound of A_t .

We proceed to prove the upper bound of B_t . From the self-normalized concentration inequality [Abbasi-Yadkori et al., 2011, Theorem 1], restated in Theorem 5 of Appendix C, we know that

where the last inequality is obtained from the analysis of the determinant, as shown in the proof of Lemma 4.

Meanwhile, since V_{t-1} I, we know that

$$k t k_{V_{t-1}}^2 \quad 1 = \min(V_{t-1})k t k_2^2 \quad \frac{1}{-}k t k_2^2 \quad S^2:$$

Therefore, the upper bound of B_t can be immediately obtained by combining the above inequalities.

B Bandit-over-Bandits Mechanism and Proof of Theorem 4

The RestartUCB algorithm requires prior information of the path-length P_T , which is generally unknown. Such a limitation can be avoided by utilizing the Bandits-over-bandits (BOB) mechanism, proposed by Cheung et al. [2019a] in designing parameter-free algorithm for non-stationary linear bandits based on sliding window least square estimator.

In the following, we rst describe how to apply the BOB mechanism to eliminate the requirement of the unknown path-length in RestartUCB. Then, we present the proof of Theorem 4.

B.1 RestartUCB with BOB Mechanism

We name the RestartUCB algorithm with Bandit-over-Bandits mechanism as \RestartUCB-BOB", whose main idea is illustrated in Figure 4.

	LIM 9 Selects I	adaptiv	Ciy		
					_
RestartUCB (H_1)	$RestartUCB(H_2)$		Re	startUCB	$(H_{[T/H_{\circ}]})$
			_		
H_{0}	$2H_{\theta}$		$(\lceil T/H_0 \rceil$	$1)H_0$	T

EXP3 solocts H adaptively

Figure 4: Illustration of Bandit-over-Bandits mechanism with application to RestartUCB algorithm.

From a high-level view, although the exact value of the optimal epoch size (or equivalently, the path-length P_T) is not clear, we can make some random guesses of its possible value, since the P_T is always bounded. Then, we can use a certain meta-algorithm to adaptively track the best epoch size, based on the returned reward returned. Speci cally, The RestartUCB-BOB algorithm rst sets an update period H_0 , and then runs the RestartUCB with a particular epoch size in each period, and the epoch size will be adaptively adjusted by employing EXP3 [Auer et al., 2002] as the meta-algorithm. We refer the reader to Section 7.3 of Cheung et al. [2019b] for more descriptions of design motivations and algorithmic details.

In the conguration of RestartUCB-BOB, we set $H_0 = dd \overline{T}e$ and the pool of epoch sizes J as

$$J = fH_i = b(d=(2S))^{2=3} 2^{i-1}cji = 1;2; ; Ng;$$

where $N = d \ln(d^{1=3}T^{1=2}(2S)^{2=3})e + 1$.

Denoted by H_{\min} (H_{\max}) the minimal (maximal) epoch size in the pool J, we know that

$$H_{\min} = b(d=(2S))^{2=3}C_{H_{\max}} = bd^{O_{T_{C}}}T_{C} \quad H_{0}:$$
 (25)

B.2 Proof of Theorem 4

Proof of Theorem 4. We begin with the following decomposition of the dynamic regret.

$$\begin{array}{c} \bigvee \\ hX_{t}; t^{i} & hX_{t}; t^{i} \\ t=1 \\ \xrightarrow{} & MX_{t}; t^{i} \\ hX_{t}; t^{i} \\ \frac{t=1}{1 \\ t=1 \\ t=1$$

where H^y is the best epoch size to approximate the optimal epoch size H in the pool J, and $H = b(dT=(1 + P_T))^{2=3}c$. Hence, it su ces to bound terms (i) and (ii). In the following, we consider two cases, either $(1 + P_T)$ $d^{1=2}T^{1=4}$ or $(1 + P_T) < d^{1=2}T^{1=4}$.

Case 1. when $(1 + P_T) = d^{-1=2}T^{1=4}$.

In this case, it is easy to verify that $H = H_{\text{max}}$ and we thus conclude that H lies in the the range of $[H_{\text{min}}; H_{\text{max}}]$. Furthermore, from the conguration of the pool J, we con rm that there exists an epoch size $H^y \ 2 \ J$ such that $H^y = H = 2H^y$. So term (ii) can be upper bounded by

term (ii)
$$\overset{dT_{\overleftarrow{X}}H_0e}{\underset{i=1}{\overset{\partial}}} \partial H^y P_i + \overset{dH_0}{\overset{\partial}{\overset{}}}$$
(26)

$$= \hat{\Theta} H^{y} P_{T} + \frac{dT}{P_{T}}$$

$$\hat{\Theta} H P_{T} + \frac{dT}{2H}$$

$$= \hat{\Theta} (d^{2-3} P_{T}^{1-3} T^{2-3});$$
(27)

where (26) is due to Theorem 2 and P_i denotes the path-length in the *i*-th update period. (27) follows by summing over all update periods, and the last inequality holds since the optimal epoch size H is provably in the range of $[H_{\min}, H_{\max}]$ and satis es H^y H $2H^y$.

Next, we bound the term (i),

term (i)
$$\Theta(\stackrel{\square}{\overline{H_0NT}})$$

 $\Theta(d^{1=2}T^{3=4})$ (28)
 $\Theta(d^{2=3}T^{2=3}(1+P_T)^{1=3});$

where the rst inequality follows by the same argument as in the sliding window based approach [Cheung et al., 2019b, Lemma 13], building upon the of EXP3. In addition, the last inequality holds due to the fact that $(1 + P_T) = d^{-1=2}T^{1=4}$ implies,

$$d^{1=2}T^{3=4} = d^{2=3}T^{2=3}d^{-1=3}T^{1=6} d^{2=3}T^{2=3}(1+P_T)^{1=3}$$

Hence, by combining the upper bounds of term (i) and term (ii), we know that the dynamic regret of RestartUCB-BOB is bounded by $\hat{\Theta}(d^{2=3}T^{2=3}(1 + P_T)^{1=3})$ under the condition of $(1 + P_T)$ $d^{1=2}T^{1=4}$.

Case 2. when $(1 + P_T) < d^{-1=2}T^{1=4}$.

In this case, we cannot guarantee that the optimal epoch size H lies in the range of $[H_{\min}; H_{\max}]$, so we set H^y as H_0 ,

term (ii)
$$\bigcirc H^{y}P_{T} + \rho \frac{dT}{H^{y}}$$

 $\oslash H_{0}P_{T} + \rho \frac{dT}{H_{0}}$
 $= \oslash d^{O}\overline{T}P_{T} + d^{1=2}T^{3=4}$
 $\bigotimes d^{1=2}T^{3=4}$

where the last inequality holds by exploiting the condition of $(1 + P_T)$ $d^{1=2}T^{1=4}$. The result in conjunction with the upper bound of term (i) in (28) gives the $\mathcal{O}(d^{1=2}T^{3=4})$ dynamic regret under this condition.

Finally, note that the dynamic regret of above two cases can be rewritten in the following uni ed form,

term (i)+term (ii)
$$\mathcal{O} \ d^{\frac{2}{3}}T^{\frac{2}{3}} \max f \mathcal{P}_T; d^{-\frac{1}{2}}T^{\frac{1}{4}}g^{-\frac{1}{3}}:$$

Hence, we complete the proof of Theorem 4.

C Technical Lemmas

In this section, we provide several technical lemmas that frequently used in the proofs.

Theorem 5 (Self-Normalized Bound for Vector-Valued Martingales [Abbasi-Yadkori et al., 2011, Theorem 1]). Let $fF_tg_{t=0}^{1}$ be a ltration. Let $f_tg_{t=0}^{1}$ be a real-valued stochastic process such that t is F_t -measurable and conditionally *R*-sub-Gaussian for some R > 0, namely,

8 2
$$\mathbb{R}$$
; $\mathbb{E}[\exp(t)/F_{t-1}] = \exp(t-\frac{2R^2}{2})$; (29)

Let $fX_tg_{t=1}^{\uparrow}$ be an \mathbb{R}^d -valued stochastic process such that X_t is F_{t-1} -measurable. Assume that V is a d d positive de nite matrix. For any t = 0, de ne

$$V_t = V + \sum_{i=1}^{t} X X^T; \quad S_t = X :$$
 (30)

Then, for any > 0, with probability at least 1 , for all t 0,

$$kS_t k_{\bar{V}_t}^2 = 2R^2 \log \frac{\det(V_t)^{1=2} \det(V)^{1=2}}{2}$$
 (31)

Lemma 4 (Elliptical Potential Lemma). Suppose $U_0 = I$, $U_t = U_{t-1} + X_t X_t^T$, and $kX_t k_2 = L$, then

$$X_{t=1} K U_t \frac{1}{2} X_t k_2 \qquad S \frac{1}{2dT \log 1 + \frac{L^2 T}{d}} : \quad (32)$$

Proof. First, we have the following decomposition,

$$U_{t} = U_{t-1} + X_{t}X_{t}^{\mathrm{T}} = U_{t-1}^{\frac{1}{2}}(I + U_{t-1}^{\frac{1}{2}}X_{t}X_{t}^{\mathrm{T}}U_{t-1}^{\frac{1}{2}})U_{t-1}^{\frac{1}{2}}$$

Taking the determinant on both sides, we get

$$\det(U_t) = \det(U_{t-1}) \det(I + U_t \stackrel{\frac{1}{2}}{_1} X_t X_t^{\mathrm{T}} U_t \stackrel{\frac{1}{2}}{_1});$$

which in conjunction with Lemma 5 yields

$$det(U_t) = det(U_{t-1})(1 + kU_t \stackrel{\frac{1}{2}}{_1}X_tk_2^2)$$
$$det(U_{t-1})exp(kU_t \stackrel{\frac{1}{2}}{_1}X_tk_2^2=2)$$

Note that in the rst inequality, we utilize the fact that $1 + x = \exp(x=2)$ holds for any $x \ge [0,1]$. By taking advantage of the telescope structure, we have

$$\frac{X}{t=1} k U_t \frac{1}{2} X_t k_2^2 = 2 \log \frac{\det(U_T)}{\det(U_0)} = 2d \log 1 + \frac{L^2 T}{d}$$

where the last inequality follows from the fact that $Tr(U_T)$ $Tr(U_0) + L^2T = d + L^2T$, and thus $det(U_T)$ $(+L^2T=d)^d$.

Therefore, Cauchy-Schwartz inequality gives,

Lemma 5.

$$det(I + vv^{T}) = 1 + kvk_{2}^{2}$$
(33)

Proof. Notice that

- (i) $(I + \mathbf{v}\mathbf{v}^{\mathrm{T}})\mathbf{v} = (1 + k\mathbf{v}k_{2}^{2})\mathbf{v}$, therefore, \mathbf{v} is its eigenvector with $(1 + k\mathbf{v}k_{2}^{2})$ as the eigenvalue;
- (ii) $(I + \mathbf{v}\mathbf{v}^{\mathrm{T}})\mathbf{v}^{?} = \mathbf{v}^{?}$, therefore, $\mathbf{v}^{?} ? \mathbf{v}$ is its eigenvector with 1 as the eigenvalue.

Consequently, det
$$(I + \mathbf{v}\mathbf{v}^{\mathrm{T}}) = 1 + k\mathbf{v}k_2^2$$
.