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Abstract

We aim to design universal algorithms for online convex
optimization, which can handle multiple common types of
loss functions simultaneously. The previous state-of-the-art
universal method has achieved the minimax optimality for
general convex, exponentially concave and strongly convex
loss functions. However, it remains an open problem whether
smoothness can be exploited to further improve the theoret-
ical guarantees. In this paper, we provide an affirmative an-
swer by developing a novel algorithm, namely UFO, which
achieves O(

√
L∗), O(d logL∗) and O(logL∗) regret bounds

for the three types of loss functions respectively under the
assumption of smoothness, where L∗ is the cumulative loss
of the best comparator in hindsight, and d is dimensionality.
Thus, our regret bounds are much tighter when the compara-
tor has a small loss, and ensure the minimax optimality in the
worst case. In addition, it is worth pointing out that UFO is
the first to achieve the O(logL∗) regret bound for strongly
convex and smooth functions, which is tighter than the exist-
ing small-loss bound by an O(d) factor.

Introduction

Online Convex Optimization (OCO) has become a popu-
lar paradigm for modeling many real-world applications, in-
cluding ad placement, portfolio management and web rank-
ing (Shalev-Shwartz and others 2012). It is conducted in
a repeated manner: In each round t = 1, . . . , T , firstly a
learner selects an action xt from a convex set X ⊆ R

d, at the
same time an adversary reveals a loss function ft : X �→ R,
and then the learner suffers a loss ft(xt). The learner’s goal
is to minimize regret, which is defined as the cumulative loss
of the learner and that of the best action in hindsight (Hazan
and others 2016):

R(T ) =

T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x). (1)

In the literature, various algorithms have been developed
for minimizing the regret under OCO, based on different
assumptions on the properties of loss functions, including

∗Lijun Zhang is the corresponding author.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

general convexity (Zinkevich 2003), exponential concavity
(abbr. exp-concavity) and strong convexity (Hazan, Agar-
wal, and Kale 2007). However, existing methods can only
deal with one type of loss functions. Moreover, for exp-
concave and strongly convex functions, they require prior
knowledge of loss functions as inputs for parameter tun-
ing. This lack of universality not only leaves a heavy bur-
den to users, but also impedes the applications to board
domains. To overcome this obstacle, recent advances in
OCO have developed a series of universal algorithms, such
as AOGD (Hazan, Rakhlin, and Bartlett 2008) and Meta-
Grad (van Erven and Koolen 2016), which are able to han-
dle various types of loss functions simultaneously. Among
them, the state-of-the-art method is Maler (Wang, Lu, and
Zhang 2019), which can adapt to general convex, exp-
concave and strongly convex functions, and achieve O(

√
T ),

O(d log T ) and O(log T ) regret bounds respectively. These
bounds are known to be minimax optimal, as matching lower
bounds have been established (Ordentlich and Cover 1998;
Abernethy et al. 2008).

On the other hand, in a wide range of online learning tasks
such as online least square and �2-regularized regressions,
the loss functions enjoy the property of smoothness. While
there do exist several algorithms that can exploit this prop-
erty for one single type of loss functions, such as convex
and smooth (Srebro, Sridharan, and Tewari 2010), or exp-
concave and smooth (Orabona, Cesa-Bianchi, and Gentile
2012), it remains unclear whether universal algorithms can
make use of smoothness to achieve better performance. In
this paper, we provide an affirmative answer by developing
a novel algorithm, named UFO, which can automatically at-
tain tighter bounds for smooth functions, and thus achieves
broader universality.

Following previous work, our proposed method adopts
the classic Learning with Experts Algorithm (LEA) (Cesa-
Bianchi and Lugosi 2006). The basic idea is to maintain mul-
tiple algorithms with different learning rates in parallel as
experts, and employ a meta-algorithm to identify the best
on the fly. To exploit smoothness, the most straightforward
idea is to use algorithms for smooth functions as experts.
However, it does not provide tight results, because of the
following technical challenges:
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• The current state-of-the-art method for smooth and
strongly convex functions (Orabona, Cesa-Bianchi, and
Gentile 2012) is suboptimal in the worst case, as there
exists a large O(d) gap.

• In existing universal methods, the experts are performed
on a series of surrogate loss functions instead of ft, and
thus the smoothness of ft can not be exploited.

To address these problems, we first propose the Smooth and
Strongly convex Online Gradient Descent (S2OGD) algo-
rithm, and show that it enjoys an O(logL∗) small-loss re-
gret bound, where L∗ = minx∈X

∑T
t=1 ft(x) is the cumula-

tive loss of the the best action in hindsight. Thus, this bound
matches the minimax optimal bound in the worst case, and
automatically becomes tighter whenever L∗ is small, i.e.,
L∗ = o(T ). Then, we develop a Universal algorithm For
Online smooth and convex optimization (UFO), which fol-
lows from the basic LEA, while employing carefully de-
signed novel surrogate loss functions and expert algorithms
to exploit smoothness. Theoretical analysis shows that, un-
der the assumption of smoothness, UFO achieves O(

√
L∗),

O(d logL∗) and O(logL∗) small-loss regret bounds for
general convex, exp-concave, and strongly convex functions,
respectively.

Notation. Throughout the paper, we use ‖ · ‖ to denote the
�2-norm. The weighted �2-norm associated with a positive
semidefinite matrix A ∈ R

d×d is defined as ‖x‖2A = x�Ax.
Given a positive semidefinite matrix B, the B-weighted
projection ΠB

X [x] of x onto X is defined as ΠB
X [x] =

argminy∈X ‖y−x‖2B . For the sake of clarity, we denote the
gradient of ft at xt as gt, i.e., gt = ∇ft(xt). The best action
in hindsight is denoted as x∗ = argminx∈X

∑T
t=1 ft(x),

and the d-dimension identity matrix is denoted as Id.

Related Work

For general convex functions, the classic Online Gradient
Descent (OGD) (Zinkevich 2003) with step size propor-
tional to O(1/

√
t) (referred to as convex OGD) attains an

O(
√
T ) regret bound. If the loss functions are strongly con-

vex, OGD with step size on the order of O(1/t) (referred
to as strongly convex OGD) achieves a regret bound of
O(log T ). For exp-concave functions, the Online Newton
Step (ONS) (Hazan, Agarwal, and Kale 2007) enjoys an
O(d log T ) regret bound.

While the above bounds are minimax optimal, tighter re-
sults are attainable if the loss functions are smooth. Specif-
ically, for general convex and smooth functions, Srebro,
Sridharan, and Tewari (2010) show that OGD with a con-
stant step size attains an O(

√
L) regret bound, where L

is an upper bound of L∗. However, this method requires
the modulus of smoothness as well as L as inputs to tune
the step size, which are typically unavailable in practice.
To tackle this problem, Zhang, Liu, and Zhou (2019) pro-
pose the Scale-free Online Gradient Descent (SOGD) al-
gorithm, which is a special case of the Scale-free Online
Mirror Descent (SOMD) algorithm (Orabona and Pál 2018).

SOGD achieves the O(
√
L∗) regret bound, and is parameter-

free to the modulus of smoothness and L. For exp-concave
and smooth functions, Orabona, Cesa-Bianchi, and Gen-
tile (2012) prove that an O(d logL∗) regret bound can be
achieved by employing the ONS algorithm. Although this
result also implies an O(d logL∗) regret bound for strongly
convex and smooth functions, there still exists an O(d) gap
from the Ω(log T ) lower bound in the worst case. Aside
from achieving small-loss bounds under the smoothness as-
sumption, there are studies work on the variation bounds
(Hazan and Kale. 2010; Chiang et al. 2012). For convex
and smooth functions, Chiang et al. (2012) propose the
extra-gradient descent algorithm, which attains an O(

√
DT )

regret bound, where DT =
∑T

t=2 maxx∈X ‖∇ft(x) −
∇ft−1(x)‖2 measures the variation in gradients of loss
functions. Thus, the regret bounds automatically become
tighter than O(

√
T ) when DT is small. They also de-

velop a variant of ONS which achieves O(d log(DT )) vari-
ation bound. In this paper, we mainly focus on the small-
loss bound, and it is an interesting direction to investigate
whether the variation bounds can also be obtained by uni-
versal methods.

To cope with different types of loss functions simulta-
neously, Hazan, Rakhlin, and Bartlett (2008) develop the
adaptive online gradient descent (AOGD), which can deal
with general convex and strongly convex functions. Later,
Do, Le, and Foo (2009) extend AOGD to the proximal set-
ting. Both algorithms can attain O(

√
T ) and O(log T ) re-

gret bounds for convex and strongly convex functions, re-
spectively. However, they require the curvature of ft as in-
put in each round t, and fail to achieve a logarithmic regret
bound for exp-concave functions. Another cornerstone is the
multiple eta gradient (MetaGrad) (van Erven and Koolen
2016), which can automatically adapt to convex and exp-
concave functions, and guarantees the corresponding min-
imax optimal bounds. However, Metagrad treats strongly
convex functions as exp-concave functions, and thus suffers
the suboptimal O(d log T ) regret bound for strongly con-
vex functions. This limitation is addressed by Wang, Lu, and
Zhang (2019), who propose the multiple sub-algorithms and
learning rates (Maler). Maler achieves minimal optimal re-
gret bounds for general convex, exp-concave and strongly
convex functions.

In this paper, we are devoted to designing algorithms that
can adapt to the structure of the loss functions. A paral-
lel line of research considers adapting to the structure in-
herent in data, such as sparsity (Duchi, Hazan, and Singer
2011; Tieleman and Hinton 2012; Kingma and Ba 2015;
Reddi, Kale, and Kumar 2018). For general convex func-
tions, these algorithms are able to achieve regret bounds
which are tighter than O(

√
T ) when the gradients are sparse.

In the definition of regret, we compare the performance
of the learner with that of a fixed action. However, in some
cases the best action may drift over time. To address this
problem, recently some more stringent performance met-
rics are proposed. One of them is dynamic regret (Zinkevich
2003; Hall and Willett 2013; Zhang, Lu, and Zhou 2018;
Lu and Zhang 2019), which is defined as the difference be-
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tween the cumulative loss of the learner with that of any
sequence of comparators. Another is adaptive regret (Hazan
and Seshadhri 2007; Daniely, Gonen, and Shalev-Shwartz
2015; Jun et al. 2017; Wang, Zhao, and Zhang 2018), which
is the maximum “local” regret over any contiguous time in-
terval. Zhao et al. (2019) and Zhang, Liu, and Zhou (2019)
show how to exploit smoothness to improve dynamic and
adaptive regrets, respectively.

Main Results

In this section, we firstly provide some assumptions and def-
initions, then investigate how to utilize smoothness to im-
prove the regret bound when the loss functions are strongly
convex, and finally present our universal algorithm for multi-
ple types of smooth functions and its theoretical guarantees.

Preliminary

Following previous work (Orabona, Cesa-Bianchi, and Gen-
tile 2012; Wang, Lu, and Zhang 2019), we introduce the
following assumptions and definitions (Boyd and Vanden-
berghe 2004).
Assumption 1. The domain X is convex, and its diameter
is bounded by D, i.e.,

max
x1,x2∈X

‖x1 − x2‖ ≤ D.

Assumption 2. The gradients of all loss functions are
bounded by G, i.e.,

max
x∈X

‖ft(x)‖ ≤ G, ∀t ∈ {1, . . . , T}.
Definition 1. A function f : X �→ R is convex if

f(x1) ≥ f(x2) +∇f(x2)
�(x1 − x2), ∀x1,x2 ∈ X . (2)

Definition 2. A function f : X �→ R is λ-strongly convex if
∀x1,x2 ∈ X ,

f(x1) ≥f(x2) +∇f(x2)
�(x1 − x2)

+
λ

2
‖x1 − x2‖2.

(3)

Definition 3. A function f : X �→ R is α-exp-concave if
exp(−αf(x)) is concave.
Definition 4. A function f : X �→ R is h-smooth if

‖∇f(x1)−∇f(x2)‖ ≤ h‖x1 − x2‖, ∀x1,x2 ∈ X .

Finally, we review some useful properties.
Lemma 1 (Hazan, Agarwal, and Kale (2007), Lemma
3). Suppose Assumptions 1 and 2 hold, and f : X �→
R is α-exp-concave. Then, the following holds: ∀β ≤
1
2 min{ 1

4GD , α},

f(x1) ≥f(x2) + (x1 − x2)
�∇f(x2)

+
β

2

(
(x1 − x2)

�∇f(x2))
)2

, ∀x1,x2 ∈ X .

(4)

Lemma 2 (Srebro, Sridharan, and Tewari (2010), Lemma
3.1). For an h-smooth and nonnegative function f : X �→
R, we have

‖∇f(x)‖ ≤
√
4hf(x), ∀x ∈ X . (5)

Algorithm 1 Smooth and Strongly Convex OGD (S2OGD)
Input: Parameters δ and γ

1: x1 = 0
2: for t = 1, . . . , T do
3: Submit xt and then receive ft
4: Suffer loss ft(xt), and observe gt

5: Update
xt+1 = ΠId

X [xt − αtgt]

where
αt =

γ

δ +
∑t

i=1 ‖gi‖2
.

6: end for

Smooth and Strongly Convex OGD

In this section, we propose a novel algorithm for smooth
and strongly convex functions. The proposed algorithm is
built upon the SOGD algorithm (Zhang, Liu, and Zhou
2019), which is designed for smooth and convex functions.
In SOGD, the action in each round t is updated by the fol-
lowing projected gradient descent step

xt+1 = ΠId
X [xt − αtgt]

where the step size αt is configured as

αt =
γ√

δ +
∑t

i=1 ‖gi‖2

=
γ√

δ + t
(

1
t

∑t
i=1 ‖gi‖2

) (6)

and δ, γ > 0 are constant parameters. Similarly to convex
OGD, the step size of SOGD decreases in general on the or-
der of O(1/

√
t), but is adjusted by the average of past gradi-

ents. This enables SOGD to automatically adapt to smooth-
ness, and achieve the O(

√
L∗) regret bound.

For strongly convex and smooth functions, mimicking the
behavior of strongly convex OGD, where the step size de-
creases on the order of O(1/t), we modify the step size of
SOGD as

αt =
γ

δ + t
(

1
t

∑t
i=1 ‖gi‖2

)
=

γ

δ +
∑t

i=1 ‖gi‖2
(7)

so that its step size decays approximately proportional to
O(1/t), which is similar to that in the strongly convex OGD.
The new algorithm, named Smooth and Strongly convex On-
line Gradient Descent (S2OGD), is summarized in Algo-
rithm 1. For S2OGD, we prove the following theorem.
Theorem 1. Suppose Assumptions 1 and 2 hold, and all loss
functions are λ-strongly convex. Let γ = G2

λ and δ = G2.
Then, S2OGD guarantees the following regret bound:

R(T ) ≤ λD2 +
G2

2λ
ln

(
1

G2

T∑
t=1

‖gt‖2 + 1

)
.
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Moreover, if all loss functions are also nonnegative and h-
smooth, S2OGD enjoys

R(T ) ≤ G2

2λ
ln

(
8h

G2

T∑
t=1

ft(x∗) + μ

)
+ λD2

where

μ =
8λhD2

G2
+

4h

λ
ln

4h+ λe

eλ
+ 2

is a constant.

Remark 1. Theorem 1 implies that S2OGD guarantees an
O(logL∗) small-loss regret bound, which reduces to the
minimax optimal O(log T ) regret bound in the worst case,
and automatically becomes tighter when L∗ is small. We
note that this is the first time that such type of regret bound is
achieved. Compared to O(d logL∗), i.e., the existing state-
of-the-art small-loss regret bound (Orabona, Cesa-Bianchi,
and Gentile 2012), our result is tighter by an O(d) factor,
which is thus of independent interest.

A Parameter-Free Algorithm for Smooth and
Strongly Convex Optimization

While S2OGD successfully achieves the O(logL∗) regret
bound, it requires the modulus of strong convexity λ as in-
put to tune the step size. In this section, we propose a novel
algorithm which ensures the O(logL∗) regret bound while
being parameter-free to λ. Then, in the next section, we ex-
tend the proposed algorithm to support more types of func-
tions. Our proposed algorithm is inspired by Maler (Wang,
Lu, and Zhang 2019), so we first briefly review some intu-
ition behind this algorithm below.

Review of Maler To deal with strongly convex functions,
Maler introduces the following surrogate loss function:

sηt (x) = −η(xt − x)�gt + η2G2‖xt − x‖2

where η ∈ (0, 1
5DG ] is a constant. It can be easily seen that

sηt is 2η2G2-strongly convex. Thus, by applying strongly
convex OGD on sηt , we obtain

T∑
t=1

sηt (xt)−min
x∈X

T∑
t=1

sηt (x) ≤ O(log T ). (8)

On the other hand, we have

R(T )
(2)
≤

T∑
t=1

g�
t (xt − x∗)

=
−∑T

t=1 s
η
t (x∗)

η
+ ηV s

T

=

∑T
t=1 s

η
t (xt)−

∑T
t=1 s

η
t (x∗)

η
+ ηV s

T

≤
∑T

t=1 s
η
t (xt)−min

x∈X
∑T

t=1 s
η
t (x)

η
+ ηV s

T

(8)
≤ O(log T )

η
+ ηV s

T

Algorithm 2 A Parameter-free algorithm for Strongly con-
vex and Smooth functions (PASS)

1: Input: Learning rates η1, η2, . . . , prior weights
πη1,ŝ
1 , πη2,ŝ

1 , . . .
2: for t = 1, . . . , T do

3: Get predictions xη,ŝ
t from Algorithm 3 for all η

4: Play

xt =

∑
η π

η,ŝ
t ηxη,ŝ

t∑
η ηπ

η,ŝ
t

5: Observe gradient gt and send it to all experts
6: Update weights:

πη,ŝ
t+1 =

πη,ŝ
t e−ŝηt (x

η,ŝ
t )∑

η π
η,ŝ
t e−ŝηt (x

η,ŝ
t )

for all η
7: end for

where V s
T =

∑T
t=1 G

2‖xt − x∗‖2, the first equality is de-
rived from the definition of sηt , and the second equality is
due to the fact that ∀t ∈ {1, . . . , T}, sηt (xt) = 0.
By configuring η as

η∗ =

√
O(log T )

V s
T

we have

R(T ) ≤
T∑

t=1

g�
t (xt − x∗) ≤ O(

√
V s
T log T )

which, combining with Definition 2, automatically reduces
to O(log T ) for strongly convex functions. However, the op-
timal η∗ can not be obtained, since it depends on x∗ and
the whole learning history. To resolve this problem, Maler
maintains multiple strongly convex OGD as experts, each of
which runs on sηt with a different η, and then utilizes a meta-
algorithm to identify the expert with the best η adaptively.
Specifically, to deal with strongly convex functions, Maler
keeps C = � 1

2 log2 T +1 experts. In the t-th round, each ex-
pert receives sηt as the loss function, and runs strongly con-
vex OGD to output an action xη,s

t . Maler then calculates the
final action xt according to the Titled Exponential Weighted
Algorithm (TEWA) 1:

xt =

∑
η π

η,s
t ηxη,s

t∑
η ηπ

η,s
t

(9)

where πη,s
t ∝ exp(−∑t

i=1 s
η
i (x

η,s
i )). Theoretical analy-

sis shows that, in this way, we can successfully achieve an
O(

√
V s
T log T + log T ) regret bound.

1Here we only provide the main idea of Maler on how to
deal with strongly convex functions. We refer to Wang, Lu, and
Zhang (2019) for the exact weighting technique.
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Algorithm 3 Strongly convex expert algorithm (S3OGD)

1: xη,ŝ
1 = 0, δ = 2η2G2

2: for t = 1, . . . , T do

3: Send xη,ŝ
t to the meta-algorithm

4: Receive gradient gt from the meta-algorithm
5: Update

xη,ŝ
t+1 = ΠId

X
[
xη,ŝ
t − αη

t∇ŝt(x
η,ŝ
t )

]
where

∇ŝηt (x) = ηgt + 2η2‖gt‖2(x− xt)



Finally, the algorithm observes gt (Step 5) and updates the
weights of experts according to their losses on ŝηt (Step 6).

We obtain the following regret bound for our PASS algo-
rithm:

Theorem 3. Suppose Assumptions 1 and 2 hold, and all
loss functions are λ-strongly convex, h-smooth and nonneg-
ative.Then, PASS achieves the following regret bound:

R(T )

≤m ln

(
8h

G2

T∑
t=1

ft(x∗) +
8hn

G2
+

8mh

G2
ln

(
8mh+ eG2

eG2

)

+ 2

)
+ n

=O

(
1

λ
logL∗

)

where

m =

(
10GD +

9G2

2λ

)

and

n =

(
10GD +

9G2

2λ

)
(ln(log2 T + 3) + 1).

Remark 2. Theorem 3 indicates that PASS achieves the
O( 1λ logL∗) small-loss regret bound for smooth and λ-
strongly convex functions, which becomes much tighter
whenever L∗ is small. Compared to S2OGD, PASS doesn’t
require the modulus of strong convexity to tune parameters,
and is thus parameter-free to λ.

A Universal Algorithm for Online Smooth
Optimization

In this section, we extend PASS to support more types of
loss functions.

To adapt to exp-concave functions, we employ the fol-
lowing surrogate loss function proposed by van Erven and
Koolen (2016):

�ηt (x) = −η(xt − x)�gt + η2
(
(xt − x∗)�gt

)2
. (14)

We introduce the following two lemmas about �ηt . The first
lemma implies that �ηt is also exp-concave for small η, and
the second lemma reflects a direct connection between the
gradients of �ηt and gt.

Lemma 5 (Wang, Lu, and Zhang 2019). For η ∈ (0, 1
5DG ],

�ηt is 1-exp-concave.

Lemma 6. Suppose Assumptions 1 and 2 hold. Then, ∀η ∈
(0, 1

5GD ], ∀x ∈ X ,

‖∇�ηt (x)‖2 ≤ 2η2‖gt‖2.
The two lemmas motivate us to adopt ONS as expert algo-

Algorithm 4 Universal algorithm For Online smooth opti-
mization (UFO)

1: Input: Learning rates η1, η2, . . . , prior weights
πη1,ŝ
1 , πη2,ŝ

1 , . . . , πη1,�
1 , πη2,�

1 , . . . , and πη1,c
1 , πη2,c

1 , . . .
2: for t = 1, . . . , T do

3: Get predictions xη,c
t , xη,�

t and xη,ŝ
t from Algorithms

5, 6 and 3 for all η
4: Update

xt =

∑
η(π

η,ŝ
t ηxη,ŝ

t + πη,�
t ηxη,�

t + πη,c
t ηxη,c

t )∑
η(π

η,ŝ
t η + πη,�

t η + πη,c
t η)

5: Observe gradient gt and send it to all experts
6: Update weights:

πη,c
t+1 =

πη,c
t e−c

η
t (x

η,c
t )

Φt
for all η

πη,ŝ
t+1 =

πη,ŝ
t e

−ŝ
η
t (x

η,ŝ
t )

Φt
for all η

πη,�
t+1 =

πη,�
t e

−�
η
t (x

η,�
t )

Φt
for all η

where

Φt =
∑
η

(
πη,ŝ
t e−ŝηt (x

η,ŝ
t ) + πη,�

t e−�ηt (x
η,�
t )

+πη,c
t e−cηt (x

η,c
t )

)
7: end for

rithm on �ηt , and derive the following regret bound:

R(T )

≤
T∑

t=1

g�
t (xt − x∗)

≤O

⎛
⎝
√√√√V �

T d log

(
T∑

t=1

‖gt‖2
)

+ d log

(
T∑

t=1

‖gt‖2
)⎞
⎠

where V �
T =

∑T
t=1

(
g�
t (xt − x∗)

)2
. When the loss func-

tions are exp-concave and smooth, the above regret bound
can reduce to O(d logL∗) by exploiting Lemma 1 and
Lemma 2.

For convex functions, Wang, Lu, and Zhang (2019) pro-
pose the following convex surrogate loss function:

ct(x) = −ηc(xt − x)�gt + (ηc)2G2D2 (15)

where ηc = 1
2GD

√
T

. A naive approach is to directly apply
algorithms for convex and smooth functions such as SOGD
on ct(x) as experts. However, due to the constant term (the
second term of ct), incorporating this approach into LEA
only gives to an O(

√
T ) regret bound, and fails to achieve

the desired small-loss bound. To address this problem, we
design a new surrogate loss:

cηt (x) = −η(xt − x)�gt + η2‖gt‖2D2 (16)

where the second term is dependent on gt. We then employ
SOGD on cηt as experts. In this way, we are able to obtain
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Algorithm 5 Convex expert algorithm (SOGD)

1: xη,c
1 = 0, δ = η2, γ = D√

2

2: for t = 1, . . . , T do
3: Send xη,c

t to Algorithm 4
4: Receive gradient gt from Algorithm 4
5: Update

xη,c
t+1 = ΠId

X

⎡
⎣xη,c

t − γ∇cηt (x
η,c
t )√

δ +
∑t

i=1 ‖∇cηi (x
η,c
i )‖2

⎤
⎦

where ∇cηt (x) = gt.
6: end for

Algorithm 6 Exp-concave expert algorithm (ONS)

1: xη,�
1 = 0, β = 1

2 min
{

1
4G�D

, 1
}

= 25
56 , where G� =

7
25D , Σ1 = 1

β2D2 Id
2: for t = 1, . . . , T do

3: Send xη,�
t to Algorithm 4

4: Receive gradient gt from Algorithm 4
5: Update

Σt+1 = Σt +∇�ηt

(
xη,�
t

)(
∇�ηt

(
xη,�
t

))�

xη,�
t+1 = Π

Σt+1

X

[
xη,�
t − 1

β
Σ−1

t+1∇�ηt

(
xη,�
t

)]

where ∇�ηt (x
η,�
t ) = ηgt + 2η2gtg

�
t (x

η,�
t − xt).

6: end for

an O(
√∑T

t=1 ‖gt‖2) regret bound, which attains O(
√
L∗)

under the assumption of general convexity and smoothness.
Our Universal algorithm For Online smooth optimization

(UFO) is summarized in Algorithm 4, which is an exten-
sion of PASS algorithm by incorporating more types of ex-
perts. Similar to PASS, our proposed UFO follows from the
LEA, while utilizing different types of algorithms as experts
to deal with multiple types of loss functions. Each expert
algorithm is associated with a carefully designed surrogate
loss. Specifically, in each round t, we maintain three types
of experts:

• Strongly convex experts. For strongly convex functions,
similarly to Pass, we keep C = � 1

2 log2 T  + 1 strongly
convex experts, each of which runs S3OGD (Algorothm
3) on ŝηt to output an action xη,ŝ

t . For each expert i ∈
{0, . . . , C − 1}, we configure its learning rate and prior
weight as

ηi =
2−i

5GD
, πη,ŝ

1 =
1

3C
.

• Exp-concave experts. To handle exp-concave functions,
we also maintain C = � 1

2 log2 T  + 1 experts, each
of which receives �ηt as the loss function, and runs the
standard Online Newton Step (ONS) (Algorithm 6) to
output an action, denoted as xη,�

t . For each expert i ∈

{0, . . . , C − 1}, we set

ηi =
2−i

5GD
, πηi,�

1 =
1

3C
.

• Convex experts. To deal with general convex functions,
we maintain C = � 1

2 log2 T  + 1 convex experts. Each
expert receives cηt as the loss function, and runs SOGD
(Algorithm 5) to output an action, denoted by xη,c

t . For
each i ∈ {0, . . . , C − 1}, we let

ηi =
2−i

5GD
, πη,c

1 =
1

3C
.

In each round t, UFO firstly receives the outputs of all ex-
perts (Step 3), then submits the following action (Step 4):

xt =

∑
η(π

η,ŝ
t ηxη,ŝ

t + πη,�
t ηxη,�

t + πη,c
t ηxη,c

t )∑
η(π

η,ŝ
t η + πη,�

t η + πη,c
t η)

(17)

which is the weighted sum of the outputs of experts titled by
their own η. After the gradient gt is observed (Step 5), UFO
updates the weights based on the historical performance of
the experts (Step 6) on their own surrogate loss functions.

For UFO, we can derive the following theoretical guaran-
tees.
Theorem 4. Suppose Assumptions 1 and 2 hold, and all
loss functions are h-smooth and nonnegative. Then, for
general convex, α-exp-concave, and λ-strongly convex loss
functions, the regret of UFO algorithm is upper bounded
by O(

√
hL∗), O( dα log(hL∗)) and O( 1λ log(hL∗)), respec-

tively. 2

Remark 3. Theorem 4 implies that, under the assumption
of smoothness, for general convex, α-exp-concave and λ-
strongly convex loss functions, UFO attains the minimax
O(

√
T ), O( dα log T ), and O( 1λ log T ) regret bounds in the

worst case, and achieves tighter bounds whenever L∗ =
o(T ).

Conclusion and Future Work

In this paper, we propose a universal algorithm for online
smooth optimization, which can achieve small loss regret
bounds for general convex, exp-concave and strongly convex
functions simultaneously, under the assumption of smooth-
ness. The proposed algorithm, named UFO, follows the LEA
to deal with the uncertainty of the loss function type, and uti-
lizes carefully designed surrogate loss functions and expert
algorithms to make use of the smoothness. We show that, un-
der the smoothness assumption, the regret bound of UFO for
the three types of loss functions attain O(

√
L∗), O(d logL∗)

and O(logL∗) respectively, which match the minimax opti-
mal results in the worst case, and become much tighter as
long as L∗ = o(T ). Finally, we note it is the first time that
the O(logL∗) regret bound is attained for strongly convex
and smooth functions. In the future, we will investigate our
algorithm to achieve broader universality.

2Due to the page limitation, we only provide the order of regret
bounds. The details can be found in the full version.
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