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Proof of Theorem 2
Note that s, ~¢wjw <~} [X] is the optimal solution to the following problem
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The Lagrangian function associated with (6) is
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where Y; 2 R4*? and Y, 2 R¥9 are dual variables for constraints A2 S, and 1 A 2S,.Let A*Y;Y, be the optimal

primal and dual solutions. The KKT conditions are
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where Y; 2 R¥? and 2 R are dual variables for constraints A 2 S, and kAk . Let A*Y;*, * be the optimal primal
and dual solutions. The KKT conditions are
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We complete the proof by noticing that
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satisfy these KKT conditions.





