Outlier Analysis

Lijun Zhang <u>zlj@nju.edu.cn</u> http://cs.nju.edu.cn/zlj

Outline

- † Introduction
- **†** Extreme Value Analysis
- **†** Probabilistic Models
- **†** Clustering for Outlier Detection
- † Distance-Based Outlier Detection
- † Density-Based Methods
- † Information-Theoretic Models
- **†** Outlier Validity
- † Summary

Introduction (1)

† A Quote

"You are unique, and if that is not fulfilled, then something has been lost."—Martha Graham

† An Informal Definition

"An outlier is an observation which deviates so much from the other observations as to $\frac{1}{2}$

† A Complementary Concept to Clustering

- " Clustering attempts to determine groups of data points that are similar
- " Outliers are individual data points that are different from the remaining data

Introduction (2)

- **†** Applications
 - " Data cleaning
 - 9 Remove noise in data
 - " Credit card fraud
 - 9 Unusual patterns of credit card activity
 - " Network intrusion detection
 - 9 Unusual records/changes in network traffic

Introduction (3)

† The Key Idea

- " Create a model of **normal** patterns
- " Outliers are data points that do not naturally fit within this normal model
- The "outlierness" of a data point is quantified by a outlier score
- † Outputs of Outlier Detection Algorithms
 - " Real-valued outlier score
 - " Binary label

Outline

- † Introduction
- **†** Extreme Value Analysis
- **†** Probabilistic Models
- **†** Clustering for Outlier Detection
- † Distance-Based Outlier Detection
- † Density-Based Methods
- † Information-Theoretic Models
- **†** Outlier Validity
- † Summary

Extreme Value Analysis (1)

- **†** Statistical Tails
 - http://www.regent sprep.org/regents/ math/algtrig/ats2/ normallesson.htm
- † All extreme values are outliers
- - " 1 and 100 are extreme values
 - " 50 is an outlier but not extreme value

Extreme Value Analysis (2)

- **†** All extreme values are outlies
- **†** Outlies may not be extreme values

Univariate Extreme Value Analysis (1)

, Suppose the density distribution is $f_{\tilde{N}}(x)$

, Tails are extreme regions s.t. $f_{\tilde{N}}(x) \le \theta$

- † Symmetric Distribution
 - " Two symmetric tails
 - ", The areas inside tails represent the cumulative probability

Univariate Extreme Value Analysis (2)

† Statistical Tail Confidence Tests

"

The Procedure (1)

† A model distribution is selected

, Normal Distribution with mean μ and standard deviation σ

$$f_X(x) = \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot e^{\frac{-(x-\mu)^2}{2 \cdot \sigma^2}}$$

† Parameter Selection

- " Prior domain knowledge
- " Estimate from data

The Procedure (2)

+ Z-value of a random variable To F \ddot{a}

V_ÜL
$$\frac{1$$
ÜF a

" Large positive values of upper tail

V_icorrespond to the

- " Large negative values of V₀correspond to the lower tail
- "V₀follows the normal distribution

Extreme values

Multivariate Extreme Values (1)

† Unimodal probability distributions with a single peak

, Suppose the density distribution is $f_{\tilde{N}}(x)$, Tails are extreme regions s.t. $f_{\tilde{N}}(x) \le \theta$

† Multivariate Gaussian Distribution

$$\begin{split} f(\overline{X}) &= \frac{1}{\pi} \underbrace{(2 \cdot \pi)^{(d/2)}}_{= \frac{1}{\sqrt{|\Sigma|} \cdot (2 \cdot \pi)^{(d/2)}}} \cdot e^{-\frac{1}{2} \cdot (\overline{X} - \overline{\mu}) \Sigma^{-1} (\overline{X} - \overline{\mu})^T} \\ &= \frac{1}{\sqrt{|\Sigma|} \cdot (2 \cdot \pi)^{(d/2)}} \cdot e^{-\frac{1}{2} \cdot Maha(\overline{X}, \overline{\mu}, \Sigma)^2} \end{split}$$

where $Maha(\overline{X}, \overline{\mu}, \Sigma)$ is the Mahalanobis distance between \overline{X} and $\overline{\mu}$

Multivariate Extreme Values (2)

† Extreme-value Score of \overline{X}

- " $Maha(\overline{X}, \overline{\mu}, \Sigma)$
- " Larger values imply more extreme behavior

(b) Multivariate extreme values

Multivariate Extreme Values (2)

† Extreme-value Score of \overline{X}

- " $Maha(\overline{X}, \overline{\mu}, \Sigma)$
- " Larger values imply more extreme behavior
- **†** Extreme-value Probability of \overline{X}
 - , Let ${\mathcal R}$ be the region
 - ì L{;\$ / = D (=;\$ á §ã) R / (=:\$bá §ã)}-
 - " Cumulative probability of \mathcal{R}
 - " Cumulative Probability of χ^6 distribution for which the value is larger than $Maha(\bar{X}, \bar{\mu}, \Sigma)$

Why χ^2 distribution?

- † The Mahalanobis distance
 - , Let Σ be the covariance matrix

, Projection+Normalization
9 Let - L 7 & 7 L Ã^x₀ @ 6⁶₅ U U
9 Then, -^{? 5} L 7[?] & 7^C L Ã^x₀ @ 6²₅ ⁶ U U

$$/ = D (=; \$á \$i) - \sqrt{(; \$F)} \left(\begin{array}{c} \times \\ \hat{I} & \hat{e} \\ \vdots \\ \ddot{U} & 0 \end{array} \right)^{6} (; \$F) (1, $\$F) (1, $$\$F) (1, $\$F) (1, $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

Adaptive to the Shape

† B is an extreme value

Depth-Based Methods

† Convex Hull

The convex hull of a set C, denoted $\operatorname{conv} C$, is the set of all convex combinations of points in C:

conv $C = \{\theta_1 x_1 + \dots + \theta_k x_k \mid x_i \in C, \ \theta_i \ge 0, \ i = 1, \dots, k, \ \theta_1 + \dots + \theta_k = 1\}.$

" Corners

The Procedure

† The index k is the outlier score

" Smaller values indicate a grate tendency

† Peeling Layers of an Onion

† No Normalization

- † Many data points are indistinguishable
- † The computational complexity increases significantly with dimensionality

Outline

- † Introduction
- **†** Extreme Value Analysis
- **†** Probabilistic Models
- **†** Clustering for Outlier Detection
- † Distance-Based Outlier Detection
- † Density-Based Methods
- † Information-Theoretic Models
- **†** Outlier Validity
- **†** Summary

Probabilistic Models

- † Related to Probabilistic Model-Based Clustering
- † The Key Idea
 - " Assume data is generated from a mixture-based generative model
 - " Learn the parameter of the model from data
 - 9 EM algorithm
 - " Evaluate the probability of each data point being generated by the model
 - 9 Points with low values are outliers

Mixture-based Generative Model

- **†** Data was generated from a mixture of k distributions with probability distribution $\mathcal{G}_5 \dots, \mathcal{G}_P$
- † G ürepresents a cluster/mixture component
- **†** Each point \overline{X} is generated as follows
 - "Select a mixture component with probability $a_{ij} = D(C_{ij})$ i = 1
 - probability $\alpha = P(\mathcal{G}), i = 1, ..., k$
 - , Assume the *r*-th component is selected Generate a data point from G_{a}

Learning Parameter from Data

† The probability that $\overline{X}_{\mathbf{Y}}$ generated by the mixture model \mathcal{M} is given by B^{ã â Ü (≜} ⅔% ç) L Í 2 (áijá⅔): L Í 2 (áij 2 : ⅔ áij; L Í Ùӈ,, ӴВ:⅔; Ü@5 Ü@5 Ü@5 **†** The probability of the data set $\mathcal{D} =$ $\{\overline{X_5}, \dots, \overline{X_6}\}$ generated by \mathcal{M} $f^{data}(\mathcal{D}|\mathcal{M}) = \prod_{j=1}^{n} f^{point}(\overline{X_j}|\mathcal{M}).$ **†** Learning parameters that maximize $\mathcal{L}(\mathcal{D}|\mathcal{M}) = \log(\prod^{n} f^{point}(\overline{X_{j}}|\mathcal{M})) = \sum^{n} \log(\sum^{k} \alpha_{i} f^{i}(\overline{X_{j}}))$

B^{ã â Ü}(^â ⅔ ç) L Í 2 :

Outline

- † Introduction
- **†** Extreme Value Analysis
- **†** Probabilistic Models
- **†** Clustering for Outlier Detection
- † Distance-Based Outlier Detection
- † Density-Based Methods
- † Information-Theoretic Models
- **†** Outlier Validity
- † Summary

Clustering for Outlier Detection

- † Outlier Analysis v.s. Clustering
 - " Clustering is about finding "crowds" of data points
 - " Outlier analysis is about finding data points that are far away from these crowds
- **†** Every data point is
 - , Either a member of a cluster
 - " Or an outlier
- + Some clustering algorithms also detect outliers
 - , DBSCAN, DENCLUE

The Procedure (1)

† A Simple Way

- 1. Cluster the data
- 2. Define the outlier score as the distance of the data point to its cluster centroid

The Procedure (2)

† A Better Approach

- 1. Cluster the data
- 2. Define the outlier score as the local Mahalanobis distance

9 Suppose :\$belongs to cluster N

 $Maha(\overline{X}, \overline{\mu_r}, \Sigma_r) = \sqrt{(\overline{X} - \overline{\mu_r})\Sigma_r^{-1}(\overline{X} - \overline{\mu_r})^T}.$

- 9 \overline{a}_{a} is the mean vector of the **Nth** cluster
- 9 *a* is the covariance matrix of the **Nth** cluster
- † Multivariate Extreme Value Analysis" Global Mahalanobis distance

A Post-processing Step

† Remove Small-Size Clusters

Outline

- † Introduction
- **†** Extreme Value Analysis
- **†** Probabilistic Models
- **†** Clustering for Outlier Detection
- † Distance-Based Outlier Detection
- † Density-Based Methods
- † Information-Theoretic Models
- **†** Outlier Validity
- † Summary

Distance-Based Outlier Detection

+ An Instance-Specific Definition

", The distance-based outlier score of an object *O* is its distance to its *k*-th nearest neighbor

k > 3

Distance-Based Outlier Detection

Ν

† An Instance-Specific Definition

- The distance-based outlier score of an object *O* is its distance to its *k*-th nearest neighbor
- " Sometimes, average distance is used
- + High-computational Cost $O(n^6)$
 - " Index structure
 - 9 Effective when the dimensionality is low
 - " Pruning tricks
 - 9 Designed for the case that only the topoutliers are needed

The Naïve Approach for Finding Top r-Outliers

1. Evaluate the $n \times n$ distance matrix

The Naïve Approach for Finding Top r-Outliers

1. Evaluate the $n \times n$ distance matrix

2. Find the k-th smallest value in each row

The Naïve Approach for Finding Top r-Outliers

1. Evaluate the $n \times n$ distance matrix

2. Find the *k*-th smallest value in each row 3. Choose *r* data points with largest $V_{\rm P}(\cdot)$

1. Evaluate a $s \times n$ distance matrix

1. Evaluate a $s \times n$ distance matrix

2. Find the *k*-th smallest value in each row

1. Evaluate a $s \times n$ distance matrix

Find the *k*-th smallest value in each row
Identify the *r*-th score in top *s*-rows

1. Evaluate a $s \times n$ distance matrix

Find the *k*-th smallest value in each row
Identify the *r*-th score in top *s*-rows
Remove points with $\widehat{V}_{\mathsf{P}}(\cdot) \leq L_{\mathsf{a}}$

Pruning Methods—Early Termination

+ When completing the empty area

Pruning Methods—Early Termination

+ When completing the empty area

- † Update $\widehat{V}_{\mathsf{P}}(\cdot)$ when more distances are known
- + Stop if $\widehat{V}_{\mathsf{P}}(\cdot) \leq L_{\mathsf{a}}$
- † Update L_å if necessary

Local Distance Correction Methods

† Impact of Local Variations

Local Outlier Factor (LOF)

- + Let $V \stackrel{\text{b}}{(X)}$ be the distance of \overline{X} to its knearest neighbor
- **†** Let $L_{\mathbf{P}}(\overline{X})$ be the set of points within the *k*-nearest neighbor distance of \overline{X}
- **†** Reachability Distance

 $\underline{R_k}(\overline{X}, \overline{Y}) = \max\{\underline{Dist}(\overline{X}, \overline{Y}), \underline{V^k}(\overline{Y})\}$

, Not symmetric between \overline{X} and \overline{Y}

- , If $Dist(\overline{X}, \overline{Y})$ is large, $R_{\flat}(\overline{X}, \overline{Y}) = Dist(\overline{X}, \overline{Y})$
- , Otherwise, $R_{\mathsf{P}}(\overline{X},\overline{Y}) = V^{\mathsf{P}}(\overline{Y})$
 - 9 Smoothed out by 8^b: \$; more stable

Local Outlier Factor (LOF)

- + Average Reachability Distance $AR_k(\overline{X}) = MEAN_{\overline{Y} \in L_k(\overline{X})}R_k(\overline{X}, \overline{Y})$
- **†** Local Outlier Factor

$$LOF_k(\overline{X}) = MEAN_{\overline{Y} \in L_k(\overline{X})} \frac{AR_k(\overline{X})}{AR_k(\overline{Y})}$$

", Larger for Outliers ", Close to 1 for Others **† Outlier Score** $\max_{P} LOF_{P}(\overline{X})$ Instance-Specific Mahalanobis Distance (1)

- † Define a local Mahalanobis distance for each point
 - " Based on the covariance structure of the neighborhood of a data point

† The Challenge

- " Neighborhood of a data point is hard to define with the Euclidean distance
- " Euclidean distance is biased toward capturing the circular region around that point

Instance-Specific Mahalanobis Distance (2)

† An agglomerative approach for neighborhood construction

" Add \overline{X} to $L^{P}(\overline{X})$

" Data points are iteratively added to $L^{P}(\overline{X})$ that have the smallest distance to $L^{P}(\overline{X})$

† Instance-specific Mahalanobis score

 $LMaha_k(\overline{X}) = Maha(\overline{X}, \overline{\mu_k(X)}, \Sigma_k(\overline{X}))$

+ Outlier score • $f_{P} \check{s}. / = D_{P} :: \$;$

Instance-Specific Mahalanobis Distance (3)

+ Can be applied to both cases

† Relation to clustering-based approaches

Outline

- † Introduction
- **†** Extreme Value Analysis
- **†** Probabilistic Models
- **†** Clustering for Outlier Detection
- † Distance-Based Outlier Detection
- † Density-Based Methods
- † Information-Theoretic Models
- **†** Outlier Validity
- † Summary

Density-Based Methods

† The Key Idea

- " Determine sparse regions in the underlying data
- **†** Limitations
 - " Cannot handle variations of density

Histogram- and Grid-Based Techniques

† Histogram for 1-dimensional data

" Data points that lie in bins with very low frequency are reported as outliers

https://www.mathsisfun.com/data/histograms.html

- + Grid for high-dimensional data
- **†** Challenges
 - "Size of grid
 - " Too local
 - " Sparsity

Kernel Density Estimation

† Given *n* data points $\overline{X_5}$..., $\overline{X_{\acute{a}}}$ $f(\overline{X}) = \frac{1}{n} \sum_{i=1}^{n} K(\overline{X} - \overline{X_i}).$

" $K(\cdot)$ is a kernel function

$$K(\overline{X} - \overline{X_i}) = \left(\frac{1}{h\sqrt{2\pi}}\right)^d e^{-\frac{||\overline{X} - \overline{X_i}|}{2 \cdot h^2}}$$

† The density at each data point

- " Computed without including the point itself in the density computation
- " Low values of the density indicate greater tendency to be an outlier

Outline

- † Introduction
- **†** Extreme Value Analysis
- **†** Probabilistic Models
- **†** Clustering for Outlier Detection
- † Distance-Based Outlier Detection
- † Density-Based Methods
- **†** Information-Theoretic Models
- **†** Outlier Validity
- † Summary

Information-Theoretic Models

† An Example

- " C in 2 nd string increases its minimum description length
- † Conventional Methods
 - Fix model, then calculate the deviation
- Information-Theoretic Models
 - , Fix the deviation, then learn the model
 - " Outlier score of :\$ increase of the model size when :\$ is present

Probabilistic Models

† The Conventional Method

- " Learn the parameters of generative model with a fixed size
- " Use the fit of each data point as the outlier score
- † Information-Theoretic Method
 - " Fix a maximum allowed deviation (a minimum value of fit)
 - " Learn the size and values of parameters
 - " Increase of size is used as the outlier score

Outline

- † Introduction
- **†** Extreme Value Analysis
- **†** Probabilistic Models
- **†** Clustering for Outlier Detection
- † Distance-Based Outlier Detection
- † Density-Based Methods
- † Information-Theoretic Models
- **†** Outlier Validity
- † Summary

Outlier Validity

† Methodological Challenges

- " Internal criteria are rarely used in outlier analysis
- " A particular validity measure will favor an algorithm using a similar objective function criterion
- " Magnified because of the small sample solution space
- † External Measures
 - " The known outlier labels from a synthetic data set
 - " The rare class labels from a real data set

Receiver Operating Characteristic (ROC) curve

- $\dagger G$ is the set of outliers (ground-truth)
- † An algorithm outputs a outlier score
- † Given a threshold t, we denote the set of outliers by S(t)

" True-positive rate (recall)

$$TPR(t) = Recall(t) = 100 * \frac{|\mathcal{S}(t) \cap \mathcal{G}|}{|\mathcal{G}|}$$

" The false positive rate

$$FPR(t) = 100 * \frac{|\mathcal{S}(t) - \mathcal{G}|}{|\mathcal{D} - \mathcal{G}|}$$

† ROC Curve

"Plot 62(4) versus (24:P;

An Example

Algorithm	Rank of ground-truth outliers			
Algorithm A	1, 5, 8, 15, 20			
Algorithm B	3, 7, 11, 13, 15			
Random Algorithm	17, 36, 45, 59, 66			
Perfect Oracle	1, 2, 3, 4, 5			

Outline

- † Introduction
- **†** Extreme Value Analysis
- **†** Probabilistic Models
- **†** Clustering for Outlier Detection
- † Distance-Based Outlier Detection
- † Density-Based Methods
- † Information-Theoretic Models
- **†** Outlier Validity
- **†** Summary

Summary

† Extreme Value Analysis

- " Univariate, Multivariate, Depth-Based
- † Probabilistic Models
- **†** Clustering for Outlier Detection
- † Distance-Based Outlier Detection
 - , Pruning, LOF, Instance-Specific
- † Density-Based Methods
 - , Histogram- and Grid-Based, Kernel Density
- Information-Theoretic Models
- † Outlier Validity
 - " ROC curve