Outlier Analysis

Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj

Outline

- † Introduction
- † Extreme Value Analysis
- † Probabilistic Models
- † Clustering for Outlier Detection
- † Distance-Based Outlier Detection
- † Density-Based Methods
- † Information-Theoretic Models
- † Outlier Validity
- † Summary

Introduction (1)

† A Quote

"You are unique, and if that is not fulfilled, then something has been lost."—Martha Graham

† An Informal Definition

"An outlier is an observation which deviates so much from the other observations as to encourse sure indicates t is at internal surpresented by the difference to incrediment normal μ

† A Complementary Concept to Clustering

- Clustering attempts to determine groups of data points that are similar
- Outliers are individual data points that are different from the remaining data

Introduction (2)

† Applications

- " Data cleaning
	- 9 Remove noise in data

". Credit card fraud

9 Unusual patterns of credit card activity

". Network intrusion detection

9 Unusual records/changes in network traffic

Introduction (3)

† The Key Idea

- Create a model of normal patterns
- Outliers are data points that do not naturally fit within this normal model
- The "outlierness" of a data point is quantified by a outlier score
- † Outputs of Outlier Detection Algorithms
	- Real-valued outlier score
	- " Binary label

Outline

- † Introduction
- † Extreme Value Analysis
- † Probabilistic Models
- † Clustering for Outlier Detection
- † Distance-Based Outlier Detection
- † Density-Based Methods
- † Information-Theoretic Models
- † Outlier Validity
- † Summary

Extreme Value Analysis (1)

- † Statistical Tails
	- http://www.regent sprep.org/regents/ math/algtrig/ats2/ normallesson.htm
- † All extreme values are outliers
- † Outliers may not be extreme values $\{1,3,3,3,50,97,97,97,100\}$ "
	- ", 1 and 100 are extreme values
	- " 50 is an outlier but not extreme value

Extreme Value Analysis (2)

- † All extreme values are outlies
- † Outlies may not be extreme values

Univariate Extreme Value Analysis (1)

- Suppose the density distribution is $f_{\tilde{N}}(x)$
- Tails are extreme regions s.t. $f_{\tilde{N}}(x) \leq \theta$
- † Symmetric **Distribution**
	- " Two symmetric tails
	- The areas inside tails represent the cumulative probability

Univariate Extreme Value Analysis (2)

† Statistical Tail Confidence Tests

The Procedure (1)

† A model distribution is selected

Normal Distribution with mean μ and \mathbf{u} standard deviation σ

$$
f_X(x) = \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot e^{\frac{-(x-\mu)^2}{2 \cdot \sigma^2}}
$$

† Parameter Selection

- Prior domain knowledge
- **Estimate from data**

The Procedure (2)

 $+$ Z-value of a random variable

$$
V_{\dot{U}} L \frac{I_{\ddot{U}} + \ddot{a}}{\hat{e}}
$$

- Large positive values of $\overline{11}$ upper tail
- V_jcorrespond to the
- Large negative values of Vicorrespond to $\overline{11}$ the lower tail
- V_ifollows the normal distribution 33

+ Extreme values $\vert \setminus \vert$ R i $\overline{\mathfrak{g}}$

Multivariate Extreme Values (1)

† Unimodal probability distributions with a single peak

Suppose the density distribution is $f_{\tilde{N}}(x)$ Tails are extreme regions s.t. $f_{\tilde{N}}(x) \leq \theta$

† Multivariate Gaussian Distribution

$$
\frac{f(\overline{X})}{\sum_{i=1}^n \sum_{i=1}^n \overline{\chi_i} \overline{\chi_i} \overline{\chi_i}} = \frac{1}{\sqrt{|\Sigma|} \cdot (2 \cdot \pi)^{(d/2)}} \cdot e^{-\frac{1}{2} \cdot (\overline{X} - \overline{\mu}) \Sigma^{-1} (\overline{X} - \overline{\mu})^T}
$$

where $Maha(X,\bar{\mu},\Sigma)$ is the Mahalanobis distance between \bar{X} and $\bar{\mu}$

Multivariate Extreme Values (2)

\overline{X} † Extreme-value Score of

- $Maha(\overline{X},\overline{\mu},\Sigma)$ ".
"
- " Larger values imply more extreme behavior

Multivariate Extreme Values (2)

t Extreme-value Score of \boldsymbol{X}

- ,, $Maha(\overline{X}, \overline{\mu}, \Sigma)$
- Larger values imply more extreme behavior
- \overline{X} † Extreme-value Probability of
	- $n,$ Let R be the region
		- i $\{ \frac{\$}{\} / = D \in \mathcal{S} \land \mathcal{S} \implies R \neq \mathcal{S} \land \mathcal{S} \implies R$
	- Cumulative probability of $\mathbb R$
	- Cumulative Probability of γ^6 distribution for which the value is larger than $Maha(\overline{X}, \overline{\mu}, \Sigma)$

Why χ^2 distribution?

- † The Mahalanobis distance
	- Let Σ be the covariance matrix

$$
1 = D \in \mathcal{F} \land \mathcal{G} \implies -\sqrt{(\mathcal{F} F) \mathcal{F}^2 \mathcal{F} \mathcal{F}^2 + \mathcal{F}^2 \mathcal{F}^2 + \mathcal{F}^2 \mathcal{F}^2 + \mathcal{F}^2 \mathcal{F}^2 + \mathcal{F}^2 \mathcal{F}^2}
$$

Projection+Normalization $\overline{\mathbf{u}}$ 9 Let - L 7 & $\hat{7}$ L \tilde{A}_{U}^{x} $\hat{\sigma}_{U}^{\hat{6}}$ $\hat{\sigma}_{U}^{C}$ 9 Then, -35 L $7^{2}\sqrt{87}$ L \tilde{A}_{U}^{x} $\omega \hat{q}_{j}^{2}$ ⁶ ωU

$$
I = D \in \mathfrak{F} \land \mathfrak{F} \land \mathfrak{F} \land \mathfrak{F} \land \mathfrak{F} \land \mathfrak{F} \land \mathfrak{F} \lor \mathfrak{F}
$$

Adaptive to the Shape

 \dagger *B* is an extreme value

Depth-Based Methods

† Convex Hull

The convex hull of a set C , denoted conv C , is the set of all convex combinations of points in C :

conv $C = \{\theta_1 x_1 + \cdots + \theta_k x_k \mid x_i \in C, \ \theta_i \geq 0, \ i = 1, \ldots, k, \ \theta_1 + \cdots + \theta_k = 1\}.$

Corners $\overline{11}$

The Procedure

\dagger The index k is the outlier score

", Smaller values indicate a grate tendency

 Δ lgorithm $FindDepthOutliers(Data Set: D. Score. Threshold; r)$ begin $k=1$; repeat Find set S of corners of convex hull of \mathcal{D} ; Assign depth k to points in S ; $\mathcal{D} = \mathcal{D} - S;$ $k = k + 1;$ $until(D is empty);$ Report points with depth at most r as outlier rs; end

† No Normalization

- † Many data points are indistinguishable
- † The computational complexity increases significantly with dimensionality

Outline

- † Introduction
- † Extreme Value Analysis
- † Probabilistic Models
- † Clustering for Outlier Detection
- † Distance-Based Outlier Detection
- † Density-Based Methods
- † Information-Theoretic Models
- † Outlier Validity
- † Summary

Probabilistic Models

- † Related to Probabilistic Model-Based **Clustering**
- † The Key Idea
	- Assume data is generated from a mixture-based generative model
	- Learn the parameter of the model from data
		- 9 EM algorithm
	- Evaluate the probability of each data point being generated by the model
		- 9 Points with low values are outliers

Mixture-based Generative Model

- † Data was generated from a mixture of k distributions with probability distribution g_5 ... , $g_{\mathtt{p}}$
- \dagger G $\ddot{\rm q}$ represents a cluster/mixture component
- † Each point \overline{X} is generated as follows
	- ", Select a mixture component with probability $\quad \alpha \rightleftharpoons P(\mathcal{G} \, \hat{\bm{\mathsf{y}}}, \, \hat{\bm{\mathsf{y}}}$
	- Assume the r -th component is selected Generate a data point from $G_{\hat{a}}$

Learning Parameter from Data

† The probability that $\bar{X}_{\dot{Y}}$ generated by the mixture model M is given by <u>and the part</u> $B^{a \ a \ \dot{\cup} \ a \ \circ \varphi}$ c) L 1 2 ($a\dot{\cup} a\dot{\varphi}$: L 1 $\chi a\dot{\cup} 2$: $\varphi a\dot{\psi}$, L 1 $\dot{\psi}$, $B\dot{\varphi}$, $\ddot{\mathbf{U}} \circledcirc \mathbf{5}$ $\ddot{\mathbf{U}} \circledcirc \mathbf{5}$ $\ddot{\cup}$ @ 5 † The probability of the data set $\mathcal{D} =$ $\{\overline{X}_5 \dots, \overline{X}_4\}$ generated by $\mathcal M$ $f^{data}(\mathcal{D}|\mathcal{M}) = \prod_{i=1}^{n} f^{point}(\overline{X_i}|\mathcal{M}).$ -1 † Learning parameters that maximize

$$
\mathcal{L}(\mathcal{D}|\mathcal{M}) = \log(\prod_{j=1}^n f^{point}(\overline{X_j}|\mathcal{M})) = \sum_{j=1}^n \log(\sum_{i=1}^k \alpha_i f^i(\overline{X_j}))
$$

† Outlier Score is defined as

 $B^{\tilde{a} \hat{a} \hat{U}} \ell^{\alpha} \varphi \varphi \varphi) L$ 12

s, fv a_s O a_{\pm} ot 's

Outline

- † Introduction
- † Extreme Value Analysis
- † Probabilistic Models
- † Clustering for Outlier Detection
- † Distance-Based Outlier Detection
- † Density-Based Methods
- † Information-Theoretic Models
- † Outlier Validity
- † Summary

Clustering for Outlier Detection

- † Outlier Analysis v.s. Clustering
	- Clustering is about finding "crowds" of data points
	- Outlier analysis is about finding data points that are far away from these crowds
- † Every data point is
	- Either a member of a cluster
	- Or an outlier
- † Some clustering algorithms also detect outliers
	- DBSCAN, DENCLUE

The Procedure (1)

† A Simple Way

- 1. Cluster the data
- 2. Define the outlier score as the distance of the data point to its cluster centroid

The Procedure (2)

† A Better Approach

- 1.Cluster the data
- 2. Define the outlier score as the local Mahalanobis distance

9 Suppose : \$belongs to cluster N

 $Maha(\overline{X}, \overline{\mu_r}, \Sigma_r) = \sqrt{(\overline{X} - \overline{\mu_r})\Sigma_r^{-1}(\overline{X} - \overline{\mu_r})^T}.$

- $9\frac{1}{\sqrt{2}}$ is the mean vector of the Nth cluster
- 9 $-$ _å is the covariance matrix of the Nexthell Nuster
- † Multivariate Extreme Value Analysis
	- " Global Mahalanobis distance

A Post-processing Step

† Remove Small-Size Clusters

Outline

- † Introduction
- † Extreme Value Analysis
- † Probabilistic Models
- † Clustering for Outlier Detection
- † Distance-Based Outlier Detection
- † Density-Based Methods
- † Information-Theoretic Models
- † Outlier Validity
- † Summary

Distance-Based Outlier **Detection**

† An Instance-Specific Definition

.. The distance-based outlier score of an object O is its distance to its k -th nearest neighbor

 $k > 3$

Distance-Based Outlier **Detection**

† An Instance-Specific Definition

- The distance-based outlier score of an object O is its distance to its k -th nearest neighbor
- Sometimes, average distance is used
- \dagger High-computational Cost $O(n^6)$
	- Index structure
		- 9 Effective when the dimensionality is low
	- " Pruning tricks
		- 9 Designed for the case that only the topoutliers are needed

The Naïve Approach for Finding Top r -Outliers

1. Evaluate the $n \times n$ distance matrix

The Naïve Approach for Finding Top r -Outliers

1. Evaluate the $n \times n$ distance matrix

2. Find the k -th smallest value in each row

The Naïve Approach for Finding Top r-Outliers

1. Evaluate the $n \times n$ distance matrix

2. Find the k -th smallest value in each row 3. Choose r data points with largest $V_{\mathsf{H}}(\cdot)$

Pruning Methods—Sampling

1. Evaluate a $s \times n$ distance matrix

Pruning Methods—Sampling

1. Evaluate a $s \times n$ distance matrix

2. Find the k -th smallest value in each row

Pruning Methods-Sampling

1. Evaluate a $s \times n$ distance matrix

2. Find the k -th smallest value in each row 3. Identify the r -th score in top s -rows

Pruning Methods—Sampling

1. Evaluate a $s \times n$ distance matrix

2. Find the k-th smallest value in each row 3. Identify the r-th score in top s-rows 4. Remove points with $\widehat{V}_{\mathbf{b}}(\cdot) \leq L_{\hat{\mathbf{a}}}$

Pruning Methods—Early **Termination**

† When completing the empty area

Pruning Methods—Early Termination

† When completing the empty area

- † Update $\widehat{V}_{\mathsf{B}}(\cdot)$ when more distances are known
- † Stop if $\widehat{V}_{\mathsf{b}}(\cdot) \leq L_{\hat{\mathsf{a}}}$
- † Update $L_{\hat{a}}$ if necessary

Local Distance Correction **Methods**

† Impact of Local Variations

Local Outlier Factor (LOF)

- † Let $V^{\mathsf{P}}(\overline{X})$ be the distance of \overline{X} to its $\mathcal{L}_{\mathcal{A}}$ nearest neighbor
- \dagger Let $L_{p}(X)$ be the set of points within \overline{X} the k -nearest neighbor distance of
- † Reachability Distance

 $R_k(\overline{X},\overline{Y}) = \max\{Dist(\overline{X},\overline{Y}), V^k(\overline{Y})\}$

Not symmetric between \overline{X} and \overline{Y}

If $Dist(\overline{X}, \overline{Y})$ is large, $R \cancel{+}(\overline{X}, \overline{Y}) = Dist(\overline{X}, \overline{Y})$

, Otherwise, $R \not\!\perp (\bar X, \bar Y) = V$ ^P

9 Smoothed out by 8^b : $\frac{6}{3}$; more stable

Local Outlier Factor (LOF)

- † Average Reachability Distance $AR_k(\overline{X}) = \text{MEAN}_{\overline{Y} \in L_k(\overline{X})} R_k(\overline{X}, \overline{Y})$
- † Local Outlier Factor

$$
LOF_k(\overline{X}) = \text{MEAN}_{\overline{Y} \in L_k(\overline{X})} \frac{AR_k(\overline{X})}{AR_k(\overline{Y})}
$$

Larger for Outliers Close to 1 for Others † Outlier Score ldx *LUT* þ
Þ

Instance-Specific Mahalanobis Distance (1)

- † Define a local Mahalanobis distance for each point
	- Based on the covariance structure of the neighborhood of a data point

† The Challenge

- Neighborhood of a data point is hard to define with the Euclidean distance
- ". Euclidean distance is biased toward capturing the circular region around that point

Instance-Specific Mahalanobis Distance (2)

† An agglomerative approach for neighborhood construction

.. Add \overline{X} to $L^p(\overline{X})$

Data points are iteratively added to $L^p(\overline{X})$ $L^{\mathsf{b}}(\bar{X})$ that have the smallest distance to

$$
f'' \text{ % } \bullet \text{ % } \bullet \text{ % } \text{ % } \bullet \text{
$$

† Instance-specific Mahalanobis score

 $LMaha_k(\overline{X}) = Maha(\overline{X}, \overline{\mu_k(X)}, \Sigma_k(\overline{X}))$

+ Outlier score • $f \pm 1 = D \pm 1.5$;

Instance-Specific Mahalanobis Distance (3)

† Can be applied to both cases

† Relation to clustering-based approaches

Outline

- † Introduction
- † Extreme Value Analysis
- † Probabilistic Models
- † Clustering for Outlier Detection
- † Distance-Based Outlier Detection
- † Density-Based Methods
- † Information-Theoretic Models
- † Outlier Validity
- † Summary

Density-Based Methods

† The Key Idea

- ", Determine sparse regions in the underlying data
- † Limitations
	- ", Cannot handle variations of density

Histogram- and Grid-Based **Techniques**

[†] Histogram for 1-dimensional data

Data points that lie in bins with very low frequency are reported as outliers

https://www.mathsisfun.com/data/histograms.html

- † Grid for high-dimensional data
- † Challenges
	- Size of grid
	- Too local
	- " Sparsity

Kernel Density Estimation

† Given n data points $X_5, \ldots, X_{\hat{a}}$ **Density** $f(\overline{X}) = \frac{1}{n} \sum_{i=1}^{n} K(\overline{X} - \overline{X_i}).$

 $K(\cdot)$ is a kernel function

$$
K(\overline{X} - \overline{X_i}) = \left(\frac{1}{h\sqrt{2\pi}}\right)^d e^{-\frac{||\overline{X} - \overline{X_i}|}{2 \cdot h^2}}
$$

† The density at each data point

- Computed without including the point itself in the density computation
- Low values of the density indicate greater tendency to be an outlier

Outline

- † Introduction
- † Extreme Value Analysis
- † Probabilistic Models
- † Clustering for Outlier Detection
- † Distance-Based Outlier Detection
- † Density-Based Methods
- † Information-Theoretic Models
- † Outlier Validity
- † Summary

Information-Theoretic Models

† An Example

ABABABABABABABABABABABABABABABAB ABABACABABABABABABABABABABABABAB The 1st One: "AB 17 times"

- C in 2nd string increases its minimum description length
- † Conventional Methods
	- Fix model, then calculate the deviation
- **Information-Theoretic Models**
	- Fix the deviation, then learn the model
	- Outlier score of \mathcal{F} increase of the model size when :^{\$} is present

Probabilistic Models

† The Conventional Method

- Learn the parameters of generative model with a fixed size
- Use the fit of each data point as the outlier score
- † Information-Theoretic Method
	- Fix a maximum allowed deviation (a minimum value of fit)
	- ", Learn the size and values of parameters
	- Increase of size is used as the outlier score

Outline

- † Introduction
- † Extreme Value Analysis
- † Probabilistic Models
- † Clustering for Outlier Detection
- † Distance-Based Outlier Detection
- † Density-Based Methods
- † Information-Theoretic Models
- † Outlier Validity
- † Summary

Outlier Validity

† Methodological Challenges

- Internal criteria are rarely used in outlier analysis
- A particular validity measure will favor an algorithm using a similar objective function criterion
- ". Magnified because of the small sample solution space
- † External Measures
	- The known outlier labels from a synthetic data set
	- The rare class labels from a real data set

Receiver Operating Characteristic (ROC) curve

- \uparrow \mathcal{G} is the set of outliers (ground-truth)
- † An algorithm outputs a outlier score
- \dagger Given a threshold t , we denote the set of outliers by $S(t)$

True-positive rate (recall)

$$
TPR(t) = Recall(t) = 100 * \frac{|\mathcal{S}(t) \cap \mathcal{G}|}{|\mathcal{G}|}
$$

The false positive rate

$$
FPR(t) = 100 * \frac{|\mathcal{S}(t) - \mathcal{G}|}{|\mathcal{D} - \mathcal{G}|}
$$

† ROC Curve

Plot 62 (4P versus $(24:P;$

An Example

Outline

- † Introduction
- † Extreme Value Analysis
- † Probabilistic Models
- † Clustering for Outlier Detection
- † Distance-Based Outlier Detection
- † Density-Based Methods
- † Information-Theoretic Models
- † Outlier Validity
- † Summary

Summary

† Extreme Value Analysis

- Univariate, Multivariate, Depth-Based
- † Probabilistic Models
- † Clustering for Outlier Detection
- † Distance-Based Outlier Detection
	- Pruning, LOF, Instance-Specific
- † Density-Based Methods
	- Histogram- and Grid-Based, Kernel Density
- **Information-Theoretic Models**
- † Outlier Validity
	- ROC curve