Outlier Analysis

Lijun Zhang

zlj@nju. edu. cn

http://cs. nju. edu. cn/zlj

Outline

- † Introduction
- † Extreme Value Analysis
- † Probabilistic Models
- **†** Clustering for Outlier Detection
- † Distance-Based Outlier Detection
- † Density-Based Methods
- † Information-Theoretic Models
- **†** Outlier Validity
- † Summary

Introduction (1)

† A Quote

"You are unique, and if that is not fulfilled, then something has been lost."—Martha Graham

† An Informal Definition

"An outlier is an observation which deviates so much from the other observations as to

† A Complementary Concept to Clustering

- Clustering attempts to determine groups of data points that are similar
- " Outliers are individual data points that are different from the remaining data

Introduction (2)

- † Applications
 - " Data cleaning
 - 9 Remove noise in data
 - ... Credit card fraud
 - 9 Unusual patterns of credit card activity
 - Network intrusion detection
 - 9 Unusual records/changes in network traffic

Introduction (3)

- † The Key Idea
 - " Create a model of normal patterns
 - " Outliers are data points that do not naturally fit within this normal model
 - " The "outlierness" of a data point is quantified by a outlier score
- † Outputs of Outlier Detection Algorithms
 - Real-valued outlier score
 - " Binary label

Outline

- † Introduction
- † Extreme Value Analysis
- † Probabilistic Models
- **†** Clustering for Outlier Detection
- † Distance-Based Outlier Detection
- † Density-Based Methods
- † Information-Theoretic Models
- **†** Outlier Validity
- † Summary

Extreme Value Analysis (1)

† Statistical Tails

http://www.regent sprep.org/regents/ math/algtrig/ats2/ normallesson.htm

- † All extreme values are outliers
- † Outliers may not be extreme values
 - " {1,3,3,3,50,97,97,97,100}
 - 1 and 100 are extreme values
 - 50 is an outlier but not extreme value

Extreme Value Analysis (2)

- † All extreme values are outlies
- † Outlies may not be extreme values

Univariate Extreme Value Analysis (1)

† Statistical Tail Confidence Tests

" Suppose the density distribution is $f_{\tilde{N}}(x)$

" Tails are extreme regions s.t. $f_{\tilde{N}}(x) \le \theta$

† Symmetric Distribution

- " Two symmetric tails
- " The areas inside tails represent the cumulative probability

(a) Symmetric distribution

Univariate Extreme Value Analysis (2)

† Statistical Tail Confidence Tests

"

The Procedure (1)

† A model distribution is selected

, Normal Distribution with mean μ and standard deviation σ

$$f_X(x) = \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot e^{\frac{-(x-\mu)^2}{2 \cdot \sigma^2}}$$

† Parameter Selection

- " Prior domain knowledge
- Estimate from data

$$\ddot{a}_{s}L - \begin{matrix} s \\ J \end{matrix} \dot{1} T \ddot{U} \\ \ddot{U} @ 5 \end{matrix} \dot{E} L - \begin{matrix} s \\ J \end{matrix} \dot{F} \dot{S} (T \ddot{U} F) \dot{A} \end{matrix} \dot{B}$$

The Procedure (2)

† Z-value of a random variable

" Large positive values of Vücorrespond to the upper tail

" Large negative values of V₀correspond to the lower tail

, Vifollows the normal distribution

† Extreme values

" | **** R ì

Multivariate Extreme Values (1)

- † Unimodal probability distributions with a single peak
 - " Suppose the density distribution is $f_{\tilde{N}}(x)$
 - " Tails are extreme regions s.t. $f_{\tilde{N}}(x) \le \theta$
- † Multivariate Gaussian Distribution

$$f(\overline{X}) = \frac{1}{\pi^{\sqrt{(d/2)}}} \cdot e^{-\frac{1}{2} \cdot (\overline{X} - \overline{\mu}) \Sigma^{-1} (\overline{X} - \overline{\mu})^{T}}$$

$$= \frac{1}{\sqrt{|\Sigma|} \cdot (2 \cdot \pi)^{(d/2)}} \cdot e^{-\frac{1}{2} \cdot Maha(\overline{X}, \overline{\mu}, \Sigma)^{2}}$$

where $Maha(\bar{X}, \bar{\mu}, \Sigma)$ is the Mahalanobis distance between \bar{X} and $\bar{\mu}$

Multivariate Extreme Values (2)

- † Extreme-value Score of \bar{X}
 - " $Maha(\bar{X}, \bar{\mu}, \Sigma)$
 - " Larger values imply more extreme behavior

Multivariate Extreme Values (2)

- † Extreme-value Score of \bar{X}
 - " $Maha(\bar{X}, \bar{\mu}, \Sigma)$
 - " Larger values imply more extreme behavior
- † Extreme-value Probability of \bar{X}
 - " Let \mathcal{R} be the region

$$i \ L\{; \$/=D \in ; \$ á \S a) - R / \in : \$ b á \S a) - R$$

- ", Cumulative probability of \mathcal{R}
- " Cumulative Probability of χ^6 distribution for which the value is larger than $Maha(\bar{X}, \bar{\mu}, \Sigma)$

Why χ^2 distribution?

† The Mahalanobis distance

Let Σ be the covariance matrix

" Projection+Normalization

9 Then,
$$-^{?}{}^{5}$$
 L $7^{?}$ & 7^{C} L $\tilde{A}_{\ddot{U}}^{x}$ ${}_{@}$ $\hat{\mathbf{e}}_{\ddot{\mathbf{b}}}^{?}{}^{6}$ $\ddot{\mathbf{U}}$ $\ddot{\ddot{\mathbf{U}}}$

$$/ = D = \$ \text{ a sa} - \sqrt{ (\$ F) \$ \left(\frac{x}{\hat{0} \otimes 5} + \frac{y}{\hat{0} \otimes 5} \right) (\$ F) \$ \left(\frac{x}{\hat{0} \otimes 5} + \frac{y}{\hat{0} \otimes 5} \right) (\$ F) \$ \left(\frac{x}{\hat{0} \otimes 5} + \frac{y}{\hat{0} \otimes 5} \right) (\$ F) \$ \left(\frac{x}{\hat{0} \otimes 5} + \frac{y}{\hat{0} \otimes 5} \right) (\$ F) \$ \left(\frac{x}{\hat{0} \otimes 5} + \frac{y}{\hat{0} \otimes 5} \right) (\$ F) \$ \left(\frac{x}{\hat{0} \otimes 5} + \frac{y}{\hat{0} \otimes 5} \right) (\$ F) \$ \left(\frac{x}{\hat{0} \otimes 5} + \frac{y}{\hat{0} \otimes 5} \right) (\$ F) \$ \left(\frac{x}{\hat{0} \otimes 5} + \frac{y}{\hat{0} \otimes 5} \right) (\$ F) \$ \left(\frac{x}{\hat{0} \otimes 5} + \frac{y}{\hat{0} \otimes 5} \right) (\$ F) \$ \left(\frac{x}{\hat{0} \otimes 5} + \frac{y}{\hat{0} \otimes 5} \right) (\$ F) (\$ F)$$

Adaptive to the Shape

† B is an extreme value

Depth-Based Methods

† Convex Hull

The $convex\ hull$ of a set C, denoted $\mathbf{conv}\ C$, is the set of all convex combinations of points in C:

conv
$$C = \{\theta_1 x_1 + \dots + \theta_k x_k \mid x_i \in C, \ \theta_i \ge 0, \ i = 1, \dots, k, \ \theta_1 + \dots + \theta_k = 1\}.$$

.. Corners

The Procedure

- † The index k is the outlier score
 - " Smaller values indicate a grate tendency

```
begin
k = 1;
repeat
Find set S of corners of convex hull of D;
Assign depth k to points in S;
D = D - S;
k = k + 1;
until(D is empty);
Report points with depth at most r as outlief end
```

An Example

† Peeling Layers of an Onion

Limitations

† No Normalization

- † Many data points are indistinguishable
- † The computational complexity increases significantly with dimensionality

Outline

- † Introduction
- † Extreme Value Analysis
- † Probabilistic Models
- **†** Clustering for Outlier Detection
- † Distance-Based Outlier Detection
- † Density-Based Methods
- † Information-Theoretic Models
- † Outlier Validity
- † Summary

Probabilistic Models

- † Related to Probabilistic Model-Based Clustering
- † The Key Idea
 - " Assume data is generated from a mixture-based generative model
 - " Learn the parameter of the model from data
 - 9 EM algorithm
 - " Evaluate the probability of each data point being generated by the model
 - 9 Points with low values are outliers

Mixture-based Generative Model

- † Data was generated from a mixture of k distributions with probability distribution $G_5 \dots, G_P$
- † *G* ürepresents a cluster/mixture component
- † Each point \bar{X} is generated as follows
 - " Select a mixture component with probability $\alpha = P(G_i)$, i = 1, ..., k
 - " Assume the r-th component is selected
 - " Generate a data point from $G_{\dot{a}}$

Learning Parameter from Data

† The probability that $\overline{X}_{\acute{Y}}$ generated by the mixture model \mathcal{M} is given by

† The probability of the data set $\mathcal{D} = \{\overline{X}_5, \dots, \overline{X}_{\acute{\mathbf{a}}}\}$ generated by \mathcal{M}

$$f^{data}(\mathcal{D}|\mathcal{M}) = \prod_{j=1}^{n} f^{point}(\overline{X_j}|\mathcal{M}).$$

† Learning parameters that maximize

$$\mathcal{L}(\mathcal{D}|\mathcal{M}) = \log(\prod_{j=1}^n f^{point}(\overline{X_j}|\mathcal{M})) = \sum_{j=1}^n \log(\sum_{i=1}^k \alpha_i f^i(\overline{X_j}))$$

Identify Outliers

: %

s,,fv a, Œ a±•t '5

Outline

- † Introduction
- † Extreme Value Analysis
- † Probabilistic Models
- **†** Clustering for Outlier Detection
- † Distance-Based Outlier Detection
- † Density-Based Methods
- † Information-Theoretic Models
- **†** Outlier Validity
- † Summary

Clustering for Outlier Detection

- † Outlier Analysis v.s. Clustering
 - " Clustering is about finding "crowds" of data points
 - " Outlier analysis is about finding data points that are far away from these crowds
- † Every data point is
 - Either a member of a cluster
 - " Or an outlier
- † Some clustering algorithms also detect outliers
 - " DBSCAN, DENCLUE

The Procedure (1)

† A Simple Way

- 1. Cluster the data
- 2. Define the outlier score as the distance of the data point to its cluster centroid

The Procedure (2)

† A Better Approach

- Cluster the data
- Define the outlier score as the local Mahalanobis distance
 - 9 Suppose :\$belongs to cluster N

$$Maha(\overline{X}, \overline{\mu_r}, \Sigma_r) = \sqrt{(\overline{X} - \overline{\mu_r})\Sigma_r^{-1}(\overline{X} - \overline{\mu_r})^T}.$$

- 9 ä is the mean vector of the Nth cluster
- 9 å is the covariance matrix of the Nth cluster
- † Multivariate Extreme Value Analysis
 - " Global Mahalanobis distance

A Post-processing Step

† Remove Small-Size Clusters

Outline

- † Introduction
- † Extreme Value Analysis
- † Probabilistic Models
- **†** Clustering for Outlier Detection
- † Distance-Based Outlier Detection
- † Density-Based Methods
- † Information-Theoretic Models
- **†** Outlier Validity
- † Summary

Distance-Based Outlier Detection

† An Instance-Specific Definition

" The distance-based outlier score of an object $\,O$ is its distance to its $\,k$ -th nearest neighbor

Distance-Based Outlier Detection

- † An Instance-Specific Definition
 - " The distance-based outlier score of an object \mathcal{O} is its distance to its k-th nearest neighbor
 - "Sometimes, average distance is used
- † High-computational Cost $O(n^6)$
 - Index structure
 - 9 Effective when the dimensionality is low
 - " Pruning tricks
 - 9 Designed for the case that only the topoutliers are needed

The Naïve Approach for Finding Top r-Outliers

1. Evaluate the $n \times n$ distance matrix

The Naïve Approach for Finding Top r-Outliers

1. Evaluate the $n \times n$ distance matrix

2. Find the k-th smallest value in each row

The Naïve Approach for Finding Top r-Outliers

1. Evaluate the $n \times n$ distance matrix

- 8_p∷₅;
- 8_p::₆;
- 8_p: :₇;
 - R
 - 8_D::á
- 2. Find the k-th smallest value in each row
- 3. Choose r data points with largest $V_{\bowtie}(\cdot)$

1. Evaluate a $s \times n$ distance matrix

2. Find the k-th smallest value in each row

- 2. Find the *k*-th smallest value in each row
- 3. Identify the r-th score in top s-rows

- 2. Find the k-th smallest value in each row
- 3. Identify the r-th score in top s-rows
- 4. Remove points with $\widehat{V}_{\mathsf{b}}(\cdot) \leq L_{\mathsf{a}}$

Pruning Methods—Early Termination

† When completing the empty area

Pruning Methods—Early Termination

† When completing the empty area

- † Update $\widehat{V}_{\mathsf{P}}(\cdot)$ when more distances are known
- † Stop if $\widehat{V}_{\beta}(\cdot) \leq L_{\dot{a}}$
- † Update $L_{å}$ if necessary

Local Distance Correction Methods

† Impact of Local Variations

Local Outlier Factor (LOF)

- † Let $V^{\triangleright}(\bar{X})$ be the distance of \bar{X} to its k-nearest neighbor
- † Let $L_{\mathbf{P}}(\overline{X})$ be the set of points within the k-nearest neighbor distance of \overline{X}
- † Reachability Distance

$$R_k(\overline{X}, \overline{Y}) = \max\{Dist(\overline{X}, \overline{Y}), \underline{V}^k(\overline{Y})\}$$

- " Not symmetric between \bar{X} and \bar{Y}
- " If $Dist(\bar{X}, \bar{Y})$ is large, $R \not (\bar{X}, \bar{Y}) = Dist(\bar{X}, \bar{Y})$
- " Otherwise, $R_{\vdash}(\bar{X}, \bar{Y}) = V^{\vdash}(\bar{Y})$
 - 9 Smoothed out by 8^b: \$; more stable

Local Outlier Factor (LOF)

† Average Reachability Distance

$$AR_k(\overline{X}) = \text{MEAN}_{\overline{Y} \in L_k(\overline{X})} R_k(\overline{X}, \overline{Y})$$

† Local Outlier Factor

$$LOF_k(\overline{X}) = MEAN_{\overline{Y} \in L_k(\overline{X})} \frac{AR_k(\overline{X})}{AR_k(\overline{Y})}$$

- " Larger for Outliers
- " Close to 1 for Others
- † Outlier Score

$$\max_{\triangleright} LOF_{\triangleright}(\bar{X})$$

Instance-Specific Mahalanobis Distance (1)

- † Define a local Mahalanobis distance for each point
 - Based on the covariance structure of the neighborhood of a data point

† The Challenge

- " Neighborhood of a data point is hard to define with the Euclidean distance
- " Euclidean distance is biased toward capturing the circular region around that point

Instance-Specific Mahalanobis Distance (2)

- † An agglomerative approach for neighborhood construction
 - " Add \bar{X} to $L^{\triangleright}(\bar{X})$
 - " Data points are iteratively added to $L^{P}(\bar{X})$ that have the smallest distance to $L^{P}(\bar{X})$

† Instance-specific Mahalanobis score

$$LMaha_k(\overline{X}) = Maha(\overline{X}, \overline{\mu_k(X)}, \Sigma_k(\overline{X}))$$

† Outlier score

•
$$f \le . / = D = ::$;$$

Instance-Specific Mahalanobis Distance (3)

† Can be applied to both cases

† Relation to clustering-based approaches

Outline

- † Introduction
- † Extreme Value Analysis
- † Probabilistic Models
- **†** Clustering for Outlier Detection
- † Distance-Based Outlier Detection
- † Density-Based Methods
- † Information-Theoretic Models
- **†** Outlier Validity
- † Summary

Density-Based Methods

† The Key Idea

" Determine sparse regions in the underlying data

† Limitations

" Cannot handle variations of density

Histogram- and Grid-Based Techniques

- † Histogram for 1-dimensional data
 - " Data points that lie in bins with very low frequency are reported as outliers

https://www.mathsisfun.com/data/histograms.html

- † Grid for high-dimensional data
- † Challenges
 - " Size of grid
 - " Too local
 - " Sparsity

Kernel Density Estimation

$$f(\overline{X}) = \frac{1}{n} \sum_{i=1}^{n} K(\overline{X} - \overline{X_i}).$$

" $K(\cdot)$ is a kernel function

$$K(\overline{X} - \overline{X_i}) = \left(\frac{1}{h\sqrt{2\pi}}\right)^d e^{-\frac{||\overline{X} - \overline{X_i}|}{2 \cdot h^2}}$$

- " Computed without including the point itself in the density computation
- " Low values of the density indicate greater tendency to be an outlier

Outline

- † Introduction
- † Extreme Value Analysis
- † Probabilistic Models
- **†** Clustering for Outlier Detection
- † Distance-Based Outlier Detection
- † Density-Based Methods
- † Information-Theoretic Models
- **†** Outlier Validity
- † Summary

Information-Theoretic Models

† An Example

- ... The 1 st One: "AB 17 times"
- " C in 2 nd string increases its minimum description length
- **†** Conventional Methods
 - " Fix model, then calculate the deviation
- † Information-Theoretic Models
 - " Fix the deviation, then learn the model
 - "Outlier score of :\\$ increase of the model size when :\\$is present

Probabilistic Models

† The Conventional Method

- " Learn the parameters of generative model with a fixed size
- Use the fit of each data point as the outlier score

† Information-Theoretic Method

- " Fix a maximum allowed deviation (a minimum value of fit)
- " Learn the size and values of parameters
- " Increase of size is used as the outlier score

Outline

- † Introduction
- † Extreme Value Analysis
- † Probabilistic Models
- **†** Clustering for Outlier Detection
- † Distance-Based Outlier Detection
- † Density-Based Methods
- † Information-Theoretic Models
- **†** Outlier Validity
- † Summary

Outlier Validity

† Methodological Challenges

- " Internal criteria are rarely used in outlier analysis
- " A particular validity measure will favor an algorithm using a similar objective function criterion
- " Magnified because of the small sample solution space

† External Measures

- " The known outlier labels from a synthetic data set
- " The rare class labels from a real data set

Receiver Operating Characteristic (ROC) curve

- † *G* is the set of outliers (ground-truth)
- † An algorithm outputs a outlier score
- † Given a threshold t, we denote the set of outliers by S(t)
 - " True-positive rate (recall)

$$TPR(t) = Recall(t) = 100 * \frac{|\mathcal{S}(t) \cap \mathcal{G}|}{|\mathcal{G}|}$$

" The false positive rate

$$FPR(t) = 100 * \frac{|\mathcal{S}(t) - \mathcal{G}|}{|\mathcal{D} - \mathcal{G}|}$$

- † ROC Curve
 - " Plot 624 Programs (24:P;

An Example

Algorithm	Rank of ground-truth outliers
Algorithm A	1, 5, 8, 15, 20
Algorithm B	3, 7, 11, 13, 15
Random Algorithm	17, 36, 45, 59, 66
Perfect Oracle	1, 2, 3, 4, 5

Outline

- † Introduction
- † Extreme Value Analysis
- † Probabilistic Models
- **†** Clustering for Outlier Detection
- † Distance-Based Outlier Detection
- † Density-Based Methods
- † Information-Theoretic Models
- **†** Outlier Validity
- † Summary

Summary

- † Extreme Value Analysis
 - " Univariate, Multivariate, Depth-Based
- † Probabilistic Models
- † Clustering for Outlier Detection
- † Distance-Based Outlier Detection
 - " Pruning, LOF, Instance-Specific
- † Density-Based Methods
 - " Histogram- and Grid-Based, Kernel Density
- † Information-Theoretic Models
- † Outlier Validity
 - " ROC curve