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Density-Based Algorithms

 One Motivation
 Find clusters with arbitrary shape

 The Key Idea
 Identify fine-grained dense regions
 Merge regions into clusters

 Representative Algorithms
 Grid-Based Methods
 DBSCAN
 DENCLUE



Grid-Based Methods

 The Algorithm



Limitations-2 Parameters (1)

 The number of Grids 



Limitations-2 Parameters (2)

 The Level of Density



DBSCAN (1)

1. Classify data points into
 Core point: A data point is defined as a 

core point, if it contains at least data 
points within a radius .

 Border point: A data point is defined as a 
border point, if it contains less than 
points, but it also contains at least one 
core point within a radius .

 Noise point: A data point that is neither 
a core point nor a border point is defined 
as a noise point.



DBSCAN (2)

1. Classify data points into Core point, 
Border point, and Noise points.



DBSCAN (3)

1. Classify data points into Core point, 
Border point, and Noise points.

2. A connectivity graph is constructed 
with respect to the core points
 Core points are connected if they are 

within of one another
3. Determine connected components
4. Assign each border point to 

connected component
 with which it is best connected



Limitations of DBSCAN 

 Two Parameters
 Radius 



DENCLUE—Preliminary

 Kernel-density Estimation
 Given data points 



DENCLUE—The Key Idea

 Determine clusters by using a density 
threshold 

2 clusters 3 clusters



DENCLUE—Procedure

 Density Attractors
 Local Maximum/Peak



DENCLUE—Procedure

 Density Attractors
 Local Maximum/Peak

 Identify a Peak for Each Data Point
 An iterative gradient ascent



DENCLUE—Procedure

 Density Attractors
 Local Maximum/Peak

 Identify a Peak for Each Data Point
 An iterative gradient ascent

 Post-Processing
 Attractors whose density is smaller than 

are excluded
 Density attractors are connected to each 

other by a path of density at least will 
be merged



DENCLUE—Implementation

 Gradient Ascent
 Gradient

 Gaussian Kernel

 Mean-shift Method

 Converges much faster
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Graph Construction for a Set 
of Points 

 A node is defined for each 



Spectral Clustering

 Dimensionality Reduction
 Find a low-dimensional representation for 

each node in the graph

 Laplacian Eigenmap [Belkin and Niyogi, 
2002]

 -means
 Apply ݇-means to new representations of 

the data
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Laplacian Eigenmap (1)

 The Objective Function ( )
 ௜ is a -dimensional representation 

of ௜

 ௜௝ is the similarity between ௜ and ௝

 Similar points will be mapped closer
 Similar points have larger weights
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Laplacian Eigenmap (3)

 The Optimization Problem ( )

 Add a Constraint to Remove Scaling Factor
 ܦ is introduced for normalization [Luxburg, 2007]

 The Solution

 Generalized Eigenproblem [Luxburg 2007]
 The smallest eigenvector is ܡଵ ൌ ૚
 Useless since ݕଵ
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Laplacian Eigenmap (3)

 The Optimization Problem (



Laplacian Eigenmap (4)

 The Objective Function ( )
 Vector Form

 ଵ ௡
ୃ ௡ൈ௞

 ௡ൈ௡ is the graph Laplacian
 ௜௝

௡ൈ௡ is the similarity matrix
 ௡ൈ௡ is a diagonal matrix with ௜௜
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Laplacian Eigenmap (4)

 The Optimization Problem ( )

 The Solution

 Generalized Eigenproblem [Luxburg 2007]
 Use ܻ ൌ ,ଶܡ … , ௞ାଵܡ ∈ Թ௡ൈ௞ as the optimal 

solution
 ௜ܡ is the ݅-th generalized eigenvector
 The new representation ܡ௜ ∈ Թ௞ for ௜ܱ is the ݅-th

row of ܻ
 Don’t forget the normalization ܻୃܻܦ ൌ ܫ
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Properties of Spectral 
Clustering

 Varying Cluster Shape and Density

 Due to the nearest neighbor graph
 High Computational Cost
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Non-negative Matrix 
Factorization (NMF)

 Let ଵ ௡
ௗൈ௡ be a non-

negative data matrix
 NMF aims to factor as ୃ

 ௗൈ௞ and ௡ൈ௞ are non-negative
 The Optimization Problem

 Non-convex
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Interpretation of NMF (1)

 Matrix Appromation

 Element-wise
 ଵ ௡

ௗൈ௡, where ௜
ௗ

 ଵ ௞
ௗൈ௞, where ௜

ௗ

 ୃ
ଵ ௡

௞ൈ௡, where ௜
௞

 ௜ܞ is the ݅-th column of ܸୃ

 ௜ܞ
ୃ is the ݅-th row of ܸ

 Then,

 ௜௝ݒ is the ݆-th element of vector ܞ௜

ୃ
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Interpretation of NMF (2)



Parts-Based Representations

 When each ௜ is a face image

 [Lee and Seung, 1999] 



Clustering by NMF

 Vector Approximation

 ௝ can be treated as an representative of 
the -th cluster

 ௜௝ can be treated as the association 
between ௜ and ௝

 The cluster label ௜ for ௜

 [Xu et al., 2003] 
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An Example

 Discover both Row and Column 
Clusters



Optimization in NMF

 Alternating between and 

 Local Optimal Solutions
 Run multiple times and choose the best one

 Other Optimization Algorithms are 
also Possible
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Concepts

 Cluster validation
 Evaluate the quality of a clustering

 Internal Validation Criteria
 Do not need additional information
 Biased toward one algorithm or the other

 External Validation Criteria
 Ground-truth clusters are known
 Ground-truth may not reflect the natural 

clusters in the data



Internal Validation Criteria

 Sum of square distances to centroids

 Intracluster to intercluster distance 
ratio

 Silhouette coefficient
 Probabilistic measure
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External Validation Criteria

 Class Labels
 The Ground-truth

 Confusion Matrix
 Each row corresponds to the class label 
 Each column corresponds to the 

algorithm-determined cluster 

 Ideal clustering a diagonal matrix after 
permutation



Notations

 ௜௝: number of data points from class 
(ground-truth) cluster that are mapped 
to (algorithm-determined) cluster 

 ௜: number of data points in true cluster 

 ௝: number of data points in algorithm-
determined cluster 





Gini index

 Limitation of Purity
 Only accounts for the dominant label in 

the cluster and ignores the distribution of 
the remaining points

 Gini index ௝ for column (algorithm-
determined cluster) 

 The average Gini coefficient
 Low values



Outline

 Grid-Based and Density-Based 

Algorithms

 Graph-Based Algorithms

 Non-negative Matrix Factorization

 Cluster Validation

 Summary



Summary

 Grid-Based and Density-Based 
Algorithms
 Grid-Based Methods
 DBSCAN, DENCLUE

 Graph-Based Algorithms
 Laplacian Eigenmap

 Non-negative Matrix Factorization
 Cluster Validation
 Purity, Gini index
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