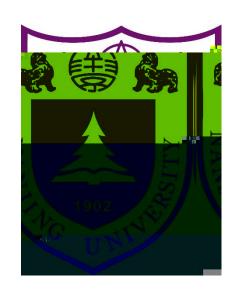
Cluster Analysis (b)



Outline

- □ Grid-Based and Density-Based Algorithms
- ☐ Graph-Based Algorithms
- Non-negative Matrix Factorization
- Cluster Validation
- Summary

Density-Based Algorithms

- One Motivation
 - Find clusters with arbitrary shape
- □ The Key Idea
 - Identify fine-grained dense regions
 - Merge regions into clusters
- □ Representative Algorithms
 - Grid-Based Methods
 - DBSCAN
 - DENCLUE

Grid-Based Methods

☐ The Algorithm

Algorithm $\mathit{GenericGrid}(\mathsf{Data} \colon \mathcal{D}, \mathsf{Ranges} \colon p, \mathsf{Density} \colon \tau$) begin

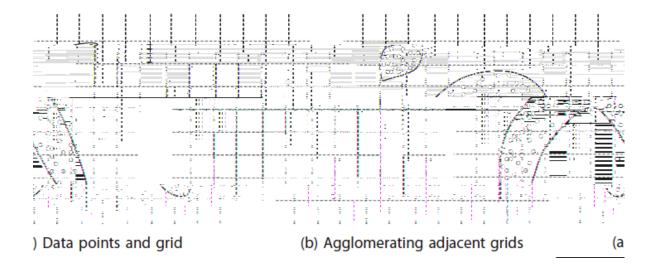
Discretize each dimension of data D into pranges:

Determine dense grid cells at density level τ ;

Create graph in which dense grids are connected if they are adjacent;

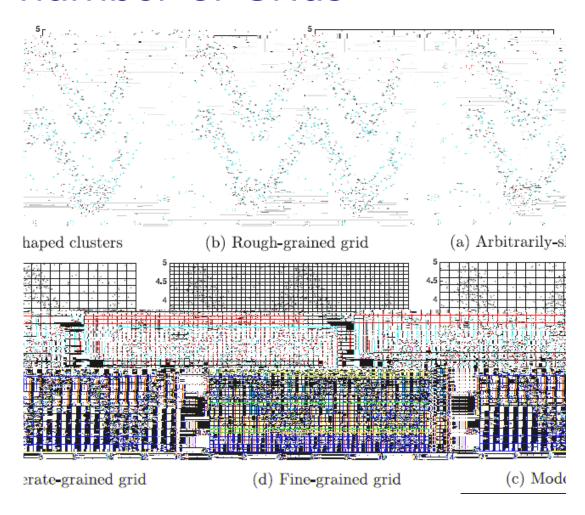
Determine connected components of graph;

return points in each connected component as a cluster; end



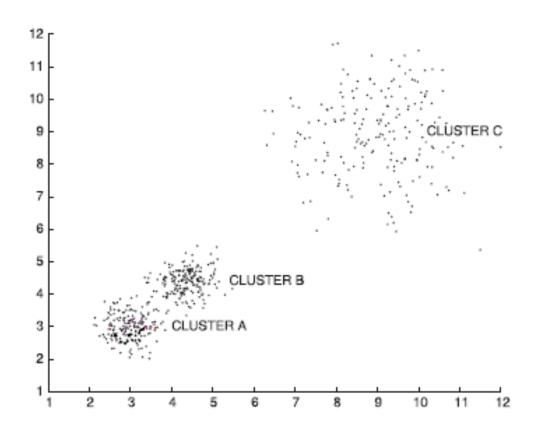
Limitations-2 Parameters (1)

■ The number of Grids



Limitations-2 Parameters (2)

☐ The Level of Density



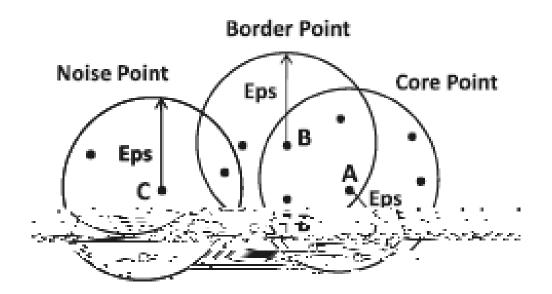
DBSCAN (1)

1. Classify data points into

- Core point: A data point is defined as a core point, if it contains at least τ data points within a radius Eps.
- Border point: A data point is defined as a border point, if it contains less than τ points, but it also contains at least one core point within a radius Eps.
- Noise point: A data point that is neither a core point nor a border point is defined as a noise point.

DBSCAN (2)

1. Classify data points into Core point, Border point, and Noise points.



DBSCAN (3)

- 1. Classify data points into Core point, Border point, and Noise points.
- 2. A connectivity graph is constructed with respect to the core points
 - Core points are connected if they are within *Eps* of one another
- 3. Determine connected components
- 4. Assign each border point to connected component
 - with which it is best connected

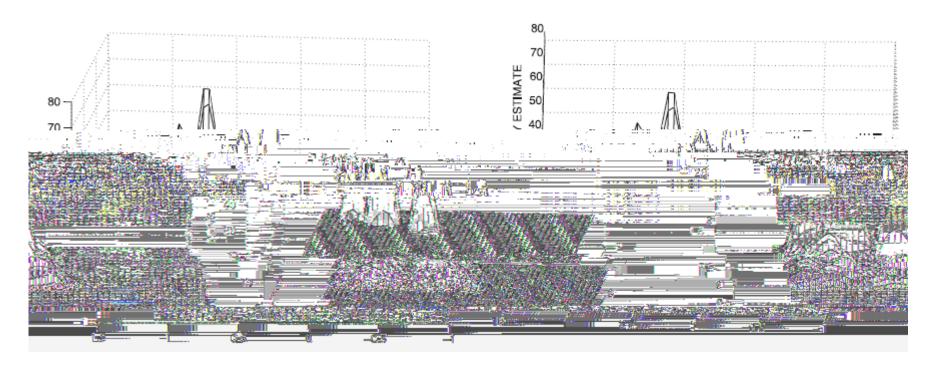
Limitations of DBSCAN

- Two Parameters
 - Radius

DENCLUE—Preliminary

- □ Kernel-density Estimation
 - \blacksquare Given n data points X

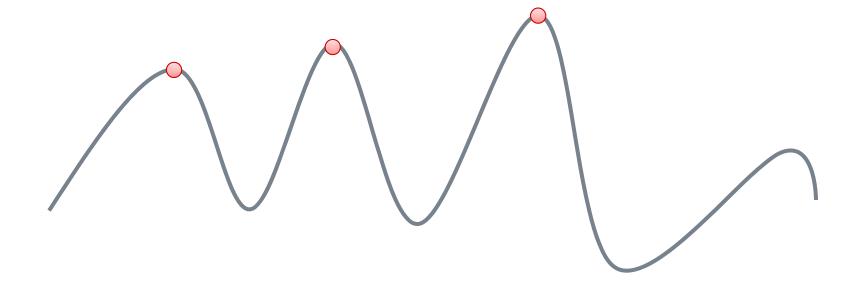
 \Box Determine clusters by using a density threshold τ



2 clusters 3 clusters

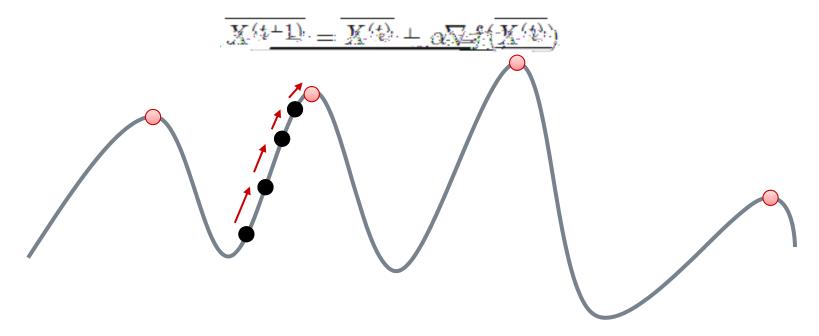
DENCLUE—Procedure

- Density Attractors
 - Local Maximum/Peak



DENCLUE—Procedure

- □ Density Attractors
 - Local Maximum/Peak
- ☐ Identify a Peak for Each Data Point
 - An iterative gradient ascent



DENCLUE—Procedure

- □ Density Attractors
 - Local Maximum/Peak
- ☐ Identify a Peak for Each Data Point
 - An iterative gradient ascent

$$\overline{X^{(t+1)}} = \overline{X^{(t)}} + \alpha \overline{X^{(t)}}$$

- □ Post-Processing
 - Attractors whose density is smaller than τ are excluded
 - Density attractors are connected to each other by a path of density at least τ will be merged

DENCLUE—Implementation

- □ Gradient Ascent
 - Gradient

$$\nabla f(\overline{X}) = \frac{1}{n} \sum_{i=1}^{n} \nabla K(\overline{X} - \overline{X_i}).$$

Gaussian Kernel

$$\nabla K(\overline{X} - \overline{X_i}) \propto (\overline{X_i} - \overline{X})K(\overline{X} - \overline{X_i})$$

■ Mean-shift Method

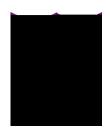
$$\overline{X^{(t+1)}} = \frac{\sum_{i=1}^{n} \overline{X_i} K(\overline{X^{(t)}} - \overline{X_i})}{\sum_{i=1}^{n} K(\overline{X^{(t)}} - \overline{X_i})}$$

Converges much faster

Outline

- ☐ Grid-Based and Density-Based Algorithms
- □ Graph-Based Algorithms
- Non-negative Matrix Factorization
- Cluster Validation
- □ Summary

Graph Construction for a Set of n Points $\mathcal{O} = \{O_1, ..., O_n\}$

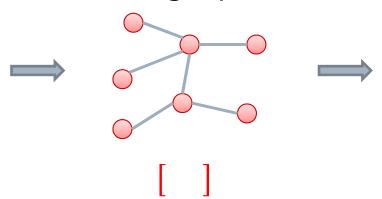


☐ A node is defined for each

Spectral Clustering

Dimensionality Reduction

■ Find a low-dimensional representation for each node in the graph



Laplacian Eigenmap [Belkin and Niyogi, 2002]

\square k-means

Apply -means to new representations of the data

Laplacian Eigenmap (1)

- \square The Objective Function (k = 1)
 - $y \in \mathbb{R}$ is a 1-dimensional representation of 0
 - \blacksquare w is the similarity between 0 and 0

(

- Similar points will be mapped closer
 - ✓ Similar points have larger weights

- \square The Objective Function (k = 1)
 - Vector Form

$$\mathbf{y} = [y, ..., y]$$

Laplacian Eigenmap (3)

 \square The Optimization Problem (k = 1)

$$min$$
 y Ly

s.t.
$$y Dy = 1$$

- Add a Constraint to Remove Scaling Factor
 - ✓ is introduced for normalization [Luxburg, 2007]
- □ The Solution

$$L\mathbf{y} = \lambda D\mathbf{y}$$

- Generalized Eigenproblem [Luxburg 2007]
- The smallest eigenvector is
 - ✓ Useless since

Laplacian Eigenmap (3)

 \square The Optimization Problem (k =

Laplacian Eigenmap (4)

- \square The Objective Function (k > 1)
 - Vector Form

- $Y = [\mathbf{y}, ..., \mathbf{y}] \in \mathbb{R}$
- $L = D W \in \mathbb{R}$ is the graph Laplacian
- $W = [w] \in \mathbb{R}$ is the similarity matrix

Laplacian Eigenmap (4)

 \square The Optimization Problem (k > 1)

```
min trace(Y LY)
```

s. t.
$$Y DY = I$$

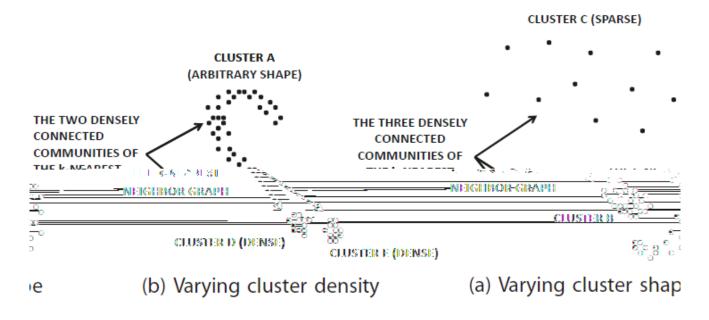
□ The Solution

$$L\mathbf{y} = \lambda D\mathbf{y}$$

- Generalized Eigenproblem [Luxburg 2007]
- Use [,...,] as the optimal solution
 - ✓ is the -th generalized eigenvector
 - ✓ The new representation for is the -th row of
- Don't forget the normalization

Properties of Spectral Clustering

■ Varying Cluster Shape and Density



- Due to the nearest neighbor graph
- ☐ High Computational Cost

Outline

- ☐ Grid-Based and Density-Based Algorithms
- ☐ Graph-Based Algorithms
- Non-negative Matrix Factorization
- Cluster Validation
- □ Summary

Non-negative Matrix Factorization (NMF)

- Let $X = [\mathbf{x}, ..., \mathbf{x}] = \mathbb{R}$ be a non-negative data matrix
- \square NMF aims to factor X as $U \times V$
 - $U \in \mathbb{R}$ and $V \in \mathbb{R}$ are non-negative
- □ The Optimization Problem

min
$$||X - UV||$$

s.t. $U \ge 0, V \ge 0$

Non-convex

Interpretation of NMF (1)

Matrix Appromation

$$X \approx UV$$

- □ Element-wise
 - $X = [x, ..., x] \in \mathbb{R}$, where $x \in \mathbb{R}$
 - $\mathbf{U} = [\mathbf{u}, ..., \mathbf{u}] \in \mathbb{R}$, where $\mathbf{u} \in \mathbb{R}$
 - $V = [v, ..., v] \in \mathbb{R}$, where $v \in \mathbb{R}$
 - ✓ is the -th column of
 - ✓ is the -th row of
 - Then,
 - ✓ is the -th element of vector

Interpretation of NMF (2)

Parts-Based Representations

☐ When each x is a face image

[Lee and Seung, 1999]

Clustering by NMF

■ Vector Approximation

- u can be treated as an representative of the j-th cluster
- v can be treated as the association between x and u
- \square The cluster label l for x

argmax

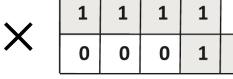
[Xu et al., 2003]

An Example

☐ Discover both Row and Column Clusters

2	2	1	2	0	0
2	3	3	3	0	0
1	1	1	1	0	0
2	2	2	3	1	1
0	0	0	1	1	1
0	0	0	2	1	2





0

Optimization in NMF

□ Alternating between *U* and *V*

$$u_{ij} \leftarrow u_{ij} \frac{(\mathbf{X}\mathbf{V})_{ij}}{(\mathbf{U}\mathbf{V}^T\mathbf{V})_{ij}}$$
$$v_{ij} \leftarrow v_{ij} \frac{(\mathbf{X}^T\mathbf{U})_{ij}}{(\mathbf{V}\mathbf{U}^T\mathbf{U})_{ij}}$$

- Local Optimal Solutions
 - ✓ Run multiple times and choose the best one
- Other Optimization Algorithms are also Possible

Outline

- ☐ Grid-Based and Density-Based Algorithms
- ☐ Graph-Based Algorithms
- Non-negative Matrix Factorization
- □ Cluster Validation
- Summary

Concepts

- □ Cluster validation
 - Evaluate the quality of a clustering
- Internal Validation Criteria
 - Do not need additional information
 - Biased toward one algorithm or the other
- External Validation Criteria
 - Ground-truth clusters are known
 - Ground-truth may not reflect the natural clusters in the data

Internal Validation Criteria

- Sum of square distances to centroids
- ☐ Intracluster to intercluster distance ratio $Intra = \sum_{dist(\overline{X_i}, \overline{X_j})/|P|}$

$$Inter = \sum_{(\overline{X_i}, \overline{X_j}) \in Q} dist(\overline{X_i}, \overline{X_j}) / |Q|.$$

- ☐ Silhouette coefficient
- □ Probabilistic measure

External Validation Criteria

- ☐ Class Labels
 - The Ground-truth
- □ Confusion Matrix
 - Each row i corresponds to the class label j
 - Each column j corresponds to the algorithm-determined cluster j

Cluster Indices	1	2	3	4
1	97	0	2	1
2	5	191	1	3
3	4	3	87	6
4	0	0	5	195

Cluster Indices	1	2	3	4
1	33	30	17	20
2	51	101	24	24
3	24	23	31	22
4	46	40	44	70

■ Ideal clustering ⇒ a diagonal matrix after permutation

Notations

- □ m: number of data points from class
 (ground-truth) cluster i that are mapped to (algorithm-determined) cluster j
- \square N: number of data points in true cluster i

$$N_i = \sum_{j=1}^{k_d} m_{ij} \qquad \forall i = 1 \dots k_t$$

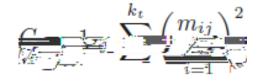
 □ M: number of data points in algorithm-determined cluster j

Purity

☐ For a given algorithm-determined cluster

Gini index

- ☐ Limitation of Purity
 - Only accounts for the dominant label in the cluster and ignores the distribution of the remaining points
- ☐ Gini index G for column (algorithmdetermined cluster) j



- □ The average Gini coefficient

Low values
$$G_{average} = \frac{\sum_{j=1}^{k_d} G_j \cdot M_j}{\sum_{j=1}^{k_d} M_j}.$$

Outline

- ☐ Grid-Based and Density-Based Algorithms
- ☐ Graph-Based Algorithms
- Non-negative Matrix Factorization
- Cluster Validation
- □ Summary

Summary

- ☐ Grid-Based and Density-Based Algorithms
 - Grid-Based Methods
 - DBSCAN, DENCLUE
- ☐ Graph-Based Algorithms
 - Laplacian Eigenmap
- Non-negative Matrix Factorization
- □ Cluster Validation
 - Purity, Gini index

Reference

- □ [Belkin and Niyogi, 2002] Belkin, M. and Niyogi, P. (2002). Laplacian eigenmaps and spectral techniques for embedding and clustering. In NIPS 14, pages 585–591.
- ☐ [Luxburg, 2007] Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416.
- ☐ [Lee and Seung, 1999] Lee, D. D. and Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788–791.
- □ [Xu et al., 2003] Xu, W., Liu, X., and Gong, Y. (2003). Document clustering based on non-negative matrix factorization. In SIGIR, pages 267–273.
- ☐ [Hinneburg and Keim, 1998] Hinneburg, A. and Keim, D. A. (1998). An efficient approach to clustering in large multimedia databases with noise. In KDD, pages 58–65.