Cluster Analysis (b)

 Grid-Based and Density-Based Algorithms

□ Graph-Based Algorithms

□ Non-negative Matrix Factorization

□ Cluster Validation

O Summary

Density-Based Algorithms

- □ One Motivation
	- \blacksquare Find clusters with arbitrary shape
- □ The Key Idea
	- **I** Identify fine-grained dense regions
	- **Merge regions into clusters**
- □ Representative Algorithms
	- Grid-Based Methods
	- **DBSCAN**
	- DENCLUE

Grid-Based Methods

□ The Algorithn

Algorithm *Generic Grid*(Data: D, Ranges: p, Density: τ) begin

Discretize each dimension of data \mathcal{D} into p ranges:

Determine dense grid cells at density level τ ;

Create graph in which dense grids are connected if they are adjacent;

Determine connected components of graph;

return points in each connected component as a cluster;

end

Limitations-2 Parameters (1)

□ The number of Grids

Limitations-2 Parameters (2)

□ The Level of Density

DBSCAN (1)

1. Classify data points into

- Core point: A data point is defined as a core point, if it contains at least τ data points within a radius Eps .
- Border point: A data point is defined as a border point, if it contains less than τ points, but it also contains at least one core point within a radius Eps .
- Noise point: A data point that is neither a core point nor a border point is defined as a noise point.

DBSCAN (2)

1. Classify data points into Core point, Border point, and Noise points.

DBSCAN (3)

- 1. Classify data points into Core point, Border point, and Noise points.
- 2. A connectivity graph is constructed with respect to the core points
	- Core points are connected if they are within Eps of one another
- 3. Determine connected components
- 4. Assign each border point to connected component
	- **U** with which it is best connected

Limitations of DBSCAN

□ Two Parameters

■ Radius

DENCLUE—Preliminary

□ Kernel-density Estimation Given n data points

DENCLUE—The Key Idea

□ Determine clusters by using a density threshold τ

2 clusters

3 clusters

DENCLUE—Procedure

D Density Attractors **Local Maximum/Peak**

DENCLUE—Procedure

- D Density Attractors
	- **Local Maximum/Peak**
- □ Identify a Peak for Each Data Point
	- An iterative gradient ascent

DENCLUE—Procedure

- D Density Attractors
	- **Local Maximum/Peak**
- □ Identify a Peak for Each Data Point
	- An iterative gradient ascent

 $\overline{X^{(t+1)}} = \overline{X^{(t)}} + \alpha \nabla f(\overline{X^{(t)}})$

- □ Post-Processing
	- Attractors whose density is smaller than τ are excluded
	- Density attractors are connected to each other by a path of density at least τ will be merged

DENCLUE—Implementation

□ Gradient Ascent

Gradient
$$
\nabla f(\overline{X}) = \frac{1}{n} \sum_{i=1}^{n} \nabla K(\overline{X} - \overline{X_i}).
$$

■ Gaussian Kernel

$$
\nabla K(\overline{X} - \overline{X_i}) \propto (\overline{X_i} - \overline{X})K(\overline{X} - \overline{X_i})
$$

□ Mean-shift Method

$$
\overline{X^{(t+1)}} = \frac{\sum_{i=1}^{n} \overline{X_i} K(\overline{X^{(t)}} - \overline{X_i})}{\sum_{i=1}^{n} K(\overline{X^{(t)}} - \overline{X_i})}
$$

Converges much faster

□ Grid-Based and Density-Based Algorithms

- **Graph-Based Algorithms**
- □ Non-negative Matrix Factorization
- □ Cluster Validation
- **O** Summary

□ A node is defined for each

Spectral Clustering **D** Dimensionality Reduction Find a low-dimensional representation for each node in the graph

 Laplacian Eigenmap [Belkin and Niyogi, 2002]

\Box k-means

Apply -means to new representations of the data

Laplacian Eigenmap (1)

\Box The Objective Function $(k = 1)$

- \blacksquare $y \in \mathbb{R}$ is a 1-dimensional representation of O
- \blacksquare w is the similarity between 0 and

Similar points will be mapped closer \checkmark Similar points have larger weights

\Box The Objective Function $(k = 1)$ **Nector Form** □ The Objective Function $(k = 1)$
■ Vector Form
■ $y = [y, ..., y]$

$$
\blacksquare \mathbf{y} = [y \, \dots, y \,]
$$

Laplacian Eigenmap (3)

 \Box The Optimization Problem $(k = 1)$

min y Ly

s.t. $y \, Dy = 1$

- Generalized Eigenproblem [Luxburg 2007]
- The smallest eigenvector is
	- Useless since

Laplacian Eigenmap (3)

O The Optimization Problem (

Laplacian Eigenmap (4)

 \square The Objective Function $(k > 1)$ **Nector Form**

 \parallel \parallel 2trace()

 $L = D - W \in \mathbb{R}$ is the graph Laplacian \blacksquare $W = |w| \in \mathbb{R}$ is the similarity matrix $D \in \mathbb{R}$ is a diagonal matrix with $\sum_{i=1}^{\infty}$

Laplacian Eigenmap (4)

 \Box The Optimization Problem $(k > 1)$ min $trace(YLY)$

s.t. $YDY = I$

□ The Solution

$$
L\mathbf{y} = \lambda D\mathbf{y}
$$

- Generalized Eigenproblem [Luxburg 2007]
- Use [,…,] as the optimal solution
	- \checkmark is the -th generalized eigenvector
	- \checkmark The new representation for is the -th row of
- Don't forget the normalization

Properties of Spectral **Clustering**

□ Varying Cluster Shape and Density

Due to the nearest neighbor graph □ High Computational Cost

□ Grid-Based and Density-Based Algorithms □ Graph-Based Algorithms **Non-negative Matrix Factorization** □ Cluster Validation **O** Summary

Non-negative Matrix Factorization (NMF)

 \Box Let $X = \{x, ..., x\} = \mathbb{R}$ be a nonnegative data matrix \Box NMF aims to factor X as $U \in \mathbb{R}$ and $V \in \mathbb{R}$ are non-negative **O The Optimization Problen**

Interpretation of NMF (1)

□ Matrix Appromation $X \approx UV$

□ Element-wise

- $X = \{x, ..., x \} \in \mathbb{R}$, where
- \blacksquare $U = \lceil u \rceil, ..., u \rceil \in \mathbb{R}$, where
- $V = [v, ..., v] \in \mathbb{R}$, where
	- \checkmark is the -th column of
	- \checkmark is the -th row of
- **Then**
	- \checkmark is the -th element of vector

Interpretation of NMF (2)

Parts-Based Representations

\square When each x is a face image

■ [Lee and Seung, 1999]

Clustering by NMF

D Vector Approximation

- **u** can be treated as an representative of the *i-*th cluster
- ν can be treated as the association between x and u
- \square The cluster label l for

ൌ argmax

■ [Xu et al., 2003]

An Example

□ Discover both Row and Column **Clusters**

 $\boldsymbol{\approx}$

 \times

Optimization in NMF

 \square Alternating between U and

$$
u_{ij} \leftarrow u_{ij} \frac{(\mathbf{X} \mathbf{V})_{ij}}{(\mathbf{U} \mathbf{V}^T \mathbf{V})_{ij}} \\ v_{ij} \leftarrow v_{ij} \frac{(\mathbf{X}^T \mathbf{U})_{ij}}{(\mathbf{V} \mathbf{U}^T \mathbf{U})_{ij}}
$$

Local Optimal Solutions

 \checkmark Run multiple times and choose the best one

□ Other Optimization Algorithms are also Possible

Outline

- □ Grid-Based and Density-Based Algorithms
- □ Graph-Based Algorithms
- □ Non-negative Matrix Factorization
- **Cluster Validation**
- **O** Summary

□ Cluster validation

Exaluate the quality of a clustering

□ Internal Validation Criteria **Do not need additional information Biased toward one algorithm or the other**

□ External Validation Criteria

- Ground-truth clusters are known
- Ground-truth may not reflect the natural clusters in the data

Internal Validation Criteria

□ Sum of square distances to centroids

- □ Intracluster to intercluster distance ratio*Intra* = \sum *dist* $(\overline{X_i}, \overline{X_j})/|P|$ $(\overline{X_i}, \overline{X_j}) \in P$ $\label{eq:inter} \begin{array}{lll} \quad & \displaystyle Inter = & \sum & \; dist(\overline{X_i},\overline{X_j})/|Q|. \end{array}$ $(\overline{X_i}, \overline{X_j}) \in Q$
- □ Silhouette coefficient □ Probabilistic measure

External Validation Criteria

□ Class Labels

- **The Ground-truth**
- □ Confusion Matrix
	- **Each row i corresponds to the class label**
	- **Each column j corresponds to the** algorithm-determined cluster j

Ideal clustering \Rightarrow a diagonal matrix after permutation

Notations

- \Box *m* : number of data points from class (*ground-truth*) cluster *i* that are mapped to (*algorithm-determined*) cluster
- : number of data points in *true cluster*

$$
N_i = \sum_{j=1}^{k_d} m_{ij} \qquad \qquad \forall i = 1 \dots k_t
$$

 : number of data points in *algorithmdetermined* cluster

$$
M=\sum\limits_{i=1}^{k_t} m_{ij}, \qquad \text{where } m_2, m_3, \ldots, m_{ij}, m_{ij}, \ldots, n_{ij}, \ldots, n_{ij}
$$

□ For a given algorithm-determined cluster

Gini index

Low values

□ Limitation of Purity

- Only accounts for the dominant label in the cluster and ignores the distribution of the remaining points
- \square Gini index G for column (algorithmdetermined cluster) *i*

$$
\overbrace{\text{max}}^{k_t} \sum_{i=1}^{m_{ij}} \left(\frac{m_{ij}}{n-1}\right)^2
$$

□ The average Gini coefficient

Outline

□ Grid-Based and Density-Based Algorithms

□ Graph-Based Algorithms

□ Non-negative Matrix Factorization

□ Cluster Validation

Summary

Summary

- Grid-Based Methods
- DBSCAN, DENCLUE
- □ Graph-Based Algorithms
	- **Laplacian Eigenmap**
- □ Non-negative Matrix Factorization
- □ Cluster Validation
	- **Purity, Gini index**

Reference

- \Box [Belkin and Niyogi, 2002] Belkin, M. and Niyogi, P. (2002). Laplacian eigenmaps and spectral techniques for embedding and clustering. In NIPS 14, pages 585–591.
- □ [Luxburg, 2007] Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416.
- □ [Lee and Seung, 1999] Lee, D. D. and Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755): 788-791.
- □ [Xu et al., 2003] Xu, W., Liu, X., and Gong, Y. (2003). Document clustering based on non-negative matrix factorization. In SIGIR, pages 267–273.
- 口 [Hinneburg and Keim, 1998] Hinneburg, A. and Keim, D. A. (1998). An efficient approach to clustering in large multimedia databases with noise. In KDD, pages 58–65.