
Mining Web Data

Lijun Zhang

zlj@nju. edu. cn

http://cs. nju. edu. cn/zlj

Outline

- Introduction
- Web Crawling and Resource Discovery
- □ Search Engine Indexing and Query Processing
- □ Ranking Algorithms
- □ Recommender Systems
- Summary

Introduction

■ Web is an unique phenomenon

The scale, the distributed and uncoordinated nature of its creation, the openness of the underlying platform, and the diversity of applications

■ Two Primary Types of Data

- Web content information
 - ✓ Document data, Linkage data (Graph)
- Web usage data
 - Web transactions, ratings, and user feedback, Web logs

Applications on the Web

- Content-Centric Applications
 - Data mining applications
 - Cluster or classify web documents
 - Web crawling and resource discovery
 - Web search
 - ✓ Linkage and content
 - Web linkage mining
- Usage-Centric Applications
 - Recommender systems
 - Web log analysis
 - ✓ Anomalous patterns, and Web site design

Outline

- Introduction
- ☐ Web Crawling and Resource Discovery
- □ Search Engine Indexing and Query Processing
- □ Ranking Algorithms
- ☐ Recommender Systems
- □ Summary

Web Crawling

- Web Crawlers or Spiders or Robots
- Motivations
 - Resources on the Web are dispensed widely across globally distributed sites
 - Sometimes, it is necessary to download all the relevant pages at a central location
- Universal Crawlers
 - Crawl all pages on the Web (Google, Bing)
- Preferential Crawlers
 - Crawl pages related to a particular subject or belong to a particular site

Crawler Algorithms

- ☐ A real crawler algorithm is complex
 - A selection Algorithm, Parsing, Distributed, multi-threads
- □ A Basic Crawler Algorithm

end

Selection Algorithms

- Breadth-first
- ☐ Depth-first
- □ Frequency-Based
 - Most universal crawlers are incremental crawlers that are intended to refresh previous crawls
- □ PageRank-Based
 - Choose Web pages with high PageRank

Combatting Spider Traps

- □ The crawling algorithm maintains a list of previously visited URLs for comparison purposes
 - So, it always visits distinct Web pages
- □ However, many sites create dynamic URLs
 - http://www.examplesite.com/page1
 - http://www.examplesite.com/page1/page2
 - Limit the maximum size of the URL
 - Limit the number of URLs from a site

Outline

- Introduction
- Web Crawling and Resource Discovery
- Search Engine Indexing and Query Processing
- □ Ranking Algorithms
- □ Recommender Systems
- □ Summary

The Process of Search

□ Offline Stage

- The search engine preprocesses the crawled documents to extract the tokens and constructs an index
- A quality-based ranking score is also computed for each page

Online Query Processing

The relevant documents are accessed and then ranked using both their relevance to the query and their quality

Offline Stage

- ☐ The Preprocessing Steps
 - The relevant tokens are extracted and stemmed
 - Stop words are removed
- □ Construct the Inverted Index
 - Maps each word identifier to a list of document identifiers containing it
 - ✓ Document ID, Frequency, Position
- ☐ Construct the Vocabulary Index
 - Access the storage location of the inverted word

Ranking (1)

□ Content-Based Score

- A word is given different weights, depending upon whether it occurs in the title, body, URL token, or the anchor text
- The number of occurrences of a keyword in a document will be used in the score
- The prominence of a term in font size and color may be leveraged for scoring
- When multiple keywords are specified, their relative positions in the documents are used as well

Ranking (2)

■ Limitations of Content-Based Score

- It does not account for the reputation, or the quality, of the page
 - ✓ A user may publish incorrect material
- Web Spam
 - ✓ Content-spamming: The Web host owner fills up repeated keywords in the hosted Web page
 - ✓ Cloaking: The Web site serves different content to crawlers than it does to users
- Search Engine Optimization (SEO)
 - ✓ The Web set owners attempt to optimize search results by using their knowledge

Ranking (3)

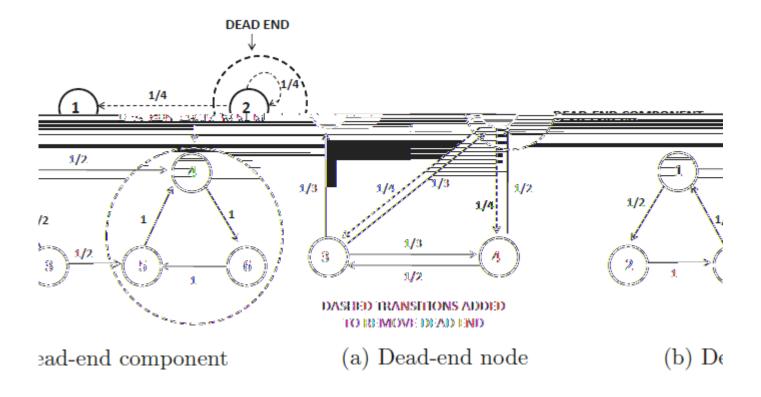
- Reputation-Based Score
 - Page citation mechanisms: When a page is of high quality, many other Web pages point to it
 - User feedback or behavioral analysis mechanisms: When a user chooses a Web page, this is clear evidence of the relevance of that page to the user
- □ The Final Ranking Score

RankScore = f(IRScore, RepScore).

Spams always exist

Outline

- Introduction
- Web Crawling and Resource Discovery
- □ Search Engine Indexing and Query Processing
- □ Ranking Algorithms
- □ Recommender Systems
- Summary


Google's PageRank (1)

□ Random Walk Model

- A random surfer who visits random pages on the Web by selecting random links on a page
- The long-term relative frequency of visits to any particular page is clearly influenced by the number of in-linking pages to it
- 2. The long-term frequency of visits to any page will be higher if it is linked to by other frequently visited pages

Google's PageRank (2)

- □ Random Walk Model
 - Dead ends: pages with no outgoing links
 - Dead-end component

Google's PageRank (3)

□ Random Walk Model

- Dead ends: pages with no outgoing links
 - ✓ Add links from the dead-end node (Web page) to all nodes (Web pages), including a self-loop to itself
- Dead-end component
 - ✓ A teleportation (restart) step: The random surfer may either jump to an arbitrary page with probability , or it may follow one of the links on the page with probability 1

Steady-state Probabilities (1)

Steady-state Probabilities (2)

- \Box The probability of a teleportation into i
- \square The probability of a transition into i (1)
- Then, we have

$$\pi(i) = \alpha/n + (1 - \alpha) \cdot \sum_{j \in In(i)} \pi(j) \cdot p_{ji}$$

Steady-state Probabilities (3)

 \Box Let $\bar{\pi} = [\pi(1), ..., \pi(n)]$

- With the constraint $\sum \pi(i) = 1$
- Optimization
 - $\bar{\pi} = -$
 - $\bar{\pi} = + (1 \alpha)P \bar{\pi}$
 - $\bar{\pi} \leftarrow \frac{1}{||}$

Outline

- Introduction
- Web Crawling and Resource Discovery
- □ Search Engine Indexing and Query Processing
- □ Ranking Algorithms
- **□** Recommender Systems
- □ Summary

Recommender Systems

Data About User Buying Behaviors

 User profiles, interests, browsing behavior, buying behavior, and ratings about various items

□ The Goal

Leverage such data to make recommendations to customers about possible buying interests

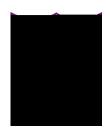
Utility Matrix (1)

- \square For n users and d items, there is an $n \times d$ matrix D of utility values
 - The utility value for a user-item pair could correspond to either the buying behavior or the ratings of the user for the item
 - Typically, a small subset of the utility values are specified

Utility Matrix (2)

- \square For n users and d items, there is an $n \times d$ matrix D of utility values
 - Positive preferences only
 - ✓ A specification of a "like" option on a social networking site, the browsing of an item at an online site, the buying of a specified quantity of an item, or the raw quantities of the item bought by each user
 - Positive and negative preferences (ratings)
 - The user specifies the ratings that represent their like or dislike for the item

Utility Matrix (3)


 \square For n users and d items, there is an $n \times d$ matrix D of utility values

	GLADIATOR	GODFATHER	BEN-HUR	GOODFELLAS	SCARFACE	SPARTACUS		GLADIATOR	GODFATHER	BEN-HUR	GOODFELLAS	SCARFACE	SPARTACUS	
U ₁	1			5		2	Uı	1			1		1	
U ₂		5			4		U ₂		1			1		

Types of Recommendation

- □ Content-Based Recommendations
 - The users and items are both associated with feature-based descriptions
 - ✓ The text of the item description
 - ✓ The interests of user in a profile
- □ Collaborative Filtering
 - Leverage the user preferences in the form of ratings or buying behavior in a "collaborative" way
 - The utility matrix is used to determine either relevant users for specific items, or relevant items for specific users

Content-Based Recommendations (1)

- □ User is associated with some documents that describe his/her interests
 - Specified demographic profile
 - Specified interests at registration time
 - Descriptions of the items bought
- □ The items are also associated with textual descriptions
- 1. If no utility matrix is available
 - k-nearest neighbor approach: find the top-k items that are closest to the user
 - ✓ The cosine similarity with tf-idf can be used

Content-Based Recommendations (1)

- User is associated with some documents that describe his/her interests
 - Specified demographic profile
 - Specified interests at registration time
 - Descriptions of the items bought
- □ The items are also associated with textual descriptions
- 1. If no utility matrix is available

Content-Based Recommendations (2)

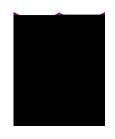
2. If a utility matrix is available

- Classification-Based Approach
 - ✓ Training documents representing the descriptions of the items for which that user has specified utilities
 - ✓ The labels represent the utility values.
 - ✓ The descriptions of the remaining items for that user can be viewed as the test documents
- Regression-Based Approach

■ Limitations

Depends on the quality of features

Collaborative Filtering


■ Missing-value Estimation or Matrix Completion

- The Matrix is extremely large
- The Matrix is extremely sparse

Algorithms for Collaborative Filtering

- Neighborhood-Based Methods for Collaborative Filtering
 - User-Based Similarity with Ratings
 - Item-Based Similarity with Ratings
- □ Graph-Based Methods
- ☐ Clustering Methods
 - Adapting -Means Clustering
 - Adapting Co-Clustering
- Latent Factor Models
 - Singular Value Decomposition
 - Matrix Factorization
 - Matrix Completion

User-Based Similarity with Ratings

- A Similarity Function between Users
 - ,..., and ,..., be the common ratings between a pair of users
 - The Pearson correlation coefficient

$$\operatorname{Pearson}(\overline{X}, \overline{Y}) = \frac{\sum_{i=1}^{s} (x_i - \hat{x}) \cdot (y_i - \hat{y})}{\sqrt{\sum_{i=1}^{s} (x_i - \hat{x})^2} \cdot \sqrt{\sum_{i=1}^{s} (y_i - \hat{y})^2}}$$
\(\text{and} \)

- 1. Identify the peer group of the target user
 - Top- users with the highest Pearson coefficient
- 2. Return the weighted average ratings of each of the items of this peer group
 - Normalization is needed

Clustering Methods (1)

- Motivations
 - Reduce the computational cost
 - Address the issue of data sparsity to some extent
- □ The Result of Clustering
 - Clusters of users
 - ✓ User-user similarity recommendations
 - Clusters of items
 - ✓ Item-item similarity recommendations

Clustering Methods (2)

- User-User Recommendation Approach
 - 1. Cluster all the users into n groups of users using any clustering algorithm
 - 2. For any user i, compute the average

Adapting k-Means Clustering

- 1. In an iteration of *k*-means, centroids are computed by averaging each dimension over the number of specified values in the cluster members
 - Furthermore, the centroid itself may not be fully specified
- 2. The distance between a data point and a centroid is computed only over the specified dimensions in both
 - Furthermore, the distance is divided by the number of such dimensions in order to fairly compare different data points

Latent Factor Models

□ The Key Idea

- Summarize the correlations across rows and columns in the form of lower dimensional vectors, or latent factors
- These latent factors become hidden variables that encode the correlations in the data matrix and can be used to make predictions
- Estimation of the *k*-dimensional dominant latent factors is often possible even from incompletely specified data

Modeling

- ☐ The n users are represented by n factors: \overline{U} ,..., \overline{U} $\in \mathbb{R}$
- ☐ The d items are represented by d factors: \overline{I} ,..., \overline{I} $\in \mathbb{R}$
- □ The rating r for user i and item j $\overline{\langle \cdot \cdot \rangle}$ $\overline{}$
- \square The rating matrix D = [r]

lacksquare $F \in \mathbb{R}$ and $F \in \mathbb{R}$

Matrix Factorization (MF)

□ The Goal

- \square The objective when D is fully observed
- ☐ The objective when *D* is partially observed

- \blacksquare Ω is the set of observed indices
- Constrains can be added: $U \ge 0$ and $\stackrel{\triangleright}{V}$

Matrix Completion

☐ Assuming the Utility matrix is low-

rank

□ The Optimization Problem

 \blacksquare Ω is the set of observed indices

Outline

- Introduction
- Web Crawling and Resource Discovery
- □ Search Engine Indexing and Query Processing
- □ Ranking Algorithms
- □ Recommender Systems
- □ Summary

Summary

- Web Crawling and Resource Discovery
 - Universal, Preferential, Spider Traps
- □ Search Engine Indexing and Query Processing
 - Content-based score, reputation-based scores
- ☐ Ranking Algorithms
 - PageRank and its variants, HITS
- □ Recommender Systems
 - Content-Based, Collaborative Filtering