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Introduction

 Let ଵ ௣
ୃ be a data point, a linear 

regression model assumes

is a linear function of ଵ ௣

 Advantages
 They are simple and often provide an adequate 

and interpretable description 
 They can sometimes outperform nonlinear 

models
 Small numbers of training cases, low signal-to-

noise ratio or sparse data
 Linear methods can be applied to 

transformations of the inputs

E ܻ ܺ



Outline

 Introduction
 Linear Regression Models and 

Least Squares
 Subset Selection
 Shrinkage Methods
 Methods Using Derived Input 

Directions
 Discussions
 Summary



Linear Regression Models

 The Linear Regression Model

௝’s are unknown coefficients

 The variable ௝ could be
 Quantitative inputs
 Transformations of quantitative inputs

 Log, square-root or square
 Basis expansions ( ଶ ଵ

ଶ
ଷ ଵ

ଷ)
 Numeric coding of qualitative inputs

݂ ܺ ൌ ଴ߚ ൅ ෍ ௝ܺߚ௝
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Least Squares

 Given a set of training data ଵ ଵ

ே ே where ௜ ௜ଵ ௜ଶ ௜௣
ୃ

 Minimize the Residual Sum of Squares

 Valid if the ௜’s are conditionally 
independent given the inputs ௜



A Geometric Interpretation







Optimization (2)

 Differentiate with respect to 

 Set the derivative to zero

 Assume ୃ is invertible



Predictions

 The Prediction of ଴

 The Predictions of Training Data

 Let ଴ ଵ ௣

 is the orthogonal projection of onto 
the subspace spanned by ଴ ଵ ௣

ଶ
ଶ
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Understanding (1)

 Assume the linear model is right, but 
the observation contains noise

 Where ଶ

 Then መߚ ൌ ܆ୃ܆ ିଵܡୃ܆
ൌ 	 ܆ୃ܆ ିଵୃ܆ ߚ܆ ൅ ૓

ൌ ܆ୃ܆ ିଵ +ߚ܆ୃ܆ ܆ୃ܆ ିଵୃ܆૓

ൌ +ߚ	 ܆ୃ܆ ିଵୃ܆૓

૓ ൌ ߳ଵ, … , ߳ே
ୃ



Understanding (2)

 Since ଵ ே
ୃ is a Gaussian 

random vector, thus

is also a Gaussian random vector

 Thus ୃ ିଵ ଶ

መߚ ൌ +ߚ ܆ୃ܆ ିଵୃ܆૓

E መߚ ൌ ߚ ൅ E ܆ୃ܆ ିଵୃ܆૓
ൌ ߚ ൅ ܆ୃ܆ ିଵୃ܆E ૓ ൌ ߚ

Cov መߚ ൌ Cov ܆ୃ܆ ିଵୃ܆૓
ൌ ܆ୃ܆ ିଵୃ܆Cov ૓ ܆ ܆ୃ܆ ିଵ

ൌ ଶߪ ܆ୃ܆ ିଵ܆ୃ܆ ܆ୃ܆ ିଵ ൌ ܆ୃ܆ ିଵߪଶ



Expected Prediction Error (EPE)

 Given a test point ଴, assume

 The EPE of               is

 The Mean Squared Error (MSE) 
MSE ሚ݂ ଴ݔ ൌ E ଴ݔ

෨ߚୃ െ ݂ ଴ݔ
ଶ

ൌ E ଴ݔ
෨ߚୃ െ E ଴ݔ

෨ߚୃ
ଶ

൅ E ଴ݔ
෨ߚୃ െ ݂ ଴ݔ

ଶ

Bias ଴ݔ
෨Varianceߚୃ ଴ݔ

෨ߚୃ

߳଴~ܰ 0, ଶ଴ܻߪ ൌ ݂ ଴ݔ ൅ ߳଴

൅ൌ



EPE of Least Squares

 Under the assumption that

 The EPE of ଴ ଴
ୃ is

 The Mean Squared Error (MSE) 

݂ ଴ݔ ൌ ଴ݔ
ߚୃ ߳଴~ܰ 0, ଶߪ

଴ܻ ൌ ݂ ଴ݔ ൅ ߳଴

E ଴ܻ െ መ݂ ଴ݔ
ଶ

ൌ ଶߪ ൅ E ଴ݔ
መߚୃ െ ଴ݔ

ߚୃ
ଶ

ൌ ଶߪ ൅ MSE ଴ݔ
መߚୃ

ଶ

MSE ଴ݔ
መߚୃ ൌ E ଴ݔ

መߚୃ െ ଴ݔ
ߚୃ

ଶ

ൌ E ଴ݔ
መߚୃ െ E ଴ݔ

መߚୃ
ଶ

ൌ Varሺݔ଴
መሻߚୃ



The Gauss–Markov Theorem

 has the smallest variance among all 
linear unbiased estimates.

 We aim to estimate ଴ ଴
ୃ , the 

estimation of ଴ ଴
ୃ is

 From precious discussions, we have

and for all ୃ

ୃ



Multiple Outputs (1)

 Suppose we aim to predict outputs 



Multiple Outputs (2)

 The Residual Sum of Squares

 The Solution

 It is equivalent to performing 
independent least squares



Large-scale Setting

 The Problem

 Sampling
 Faster least squares approximation
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Subset Selection

 Limitations of Least Squares
 Prediction Accuracy: the least squares 

estimates often have low bias but large 
variance

 Interpretation: We often would like to 
determine a smaller subset that exhibit 
the strongest effects

 Shrink or Set Some Coefficients to 
Zero
 We sacrifice a little bit of bias to reduce 

the variance of the predicted values



Best-Subset Selection

 Select the subset of variables (features) 
such that the RSS is minimized

݌ ൌ 8



Forward- and Backward-
Stepwise Selection

 Forward-stepwise Selection
1. Start with the intercept
2. Sequentially add into the model the 

predictor that most improves the fit
 Backward-stepwise Selection

1. Start with the full model
2. Sequentially delete the predictor that 

has the least impact on the fit
 Both are greedy algorithms
 Both can be solved quite efficiently



Forward-Stagewise Regression

1. Start with an intercept equal to and 
centered predictors with coefficients 
initially all 

2. Identify the variable most correlated 
with the current residual

3. Compute the simple linear regression 
coefficient of the residual on this chosen 
variable

 None of the other variables are adjusted
when a term is added to the model



Comparisons
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Shrinkage Methods

 Limitation of  Subset Selection
 A discrete process—variables are either 

retained or discarded
 It often exhibits high variance, and so 

doesn’t reduce the prediction error
 Shrinkage Methods

 More continuous, low variance

 Ridge Regression
 The Lasso
 Least Angle Regression



Ridge Regression

 Shrink the regression coefficients
 By imposing a penalty on their size

 The Objective

 is a complexity parameter
 An Equivalent Form

Coefficients cannot be 
too large even when 

variables are correlated



Optimization (1)

 Let be a matrix with each row an 
input vector

ଵ ௣
ୃ and ଵ ே

ୃ

 The Objective Becomes

 Where ே
ୃ ே

܆ ൌ

ଵଵݔ ଵଶݔ ⋯ ଵ௣ݔ
ଶଵݔ ଶଶݔ ⋯ ଶ௣ݔ
⋮ ⋮ ⋮ ⋮

ேଵݔ ேଶݔ ⋯ ே௣ݔ

∈ Թேൈ௣

min
ఉబ∈Թ,ఉ∈Թ೛ ܡ െ ߚ܆ െ ૚ேߚ଴ ଶ

ଶ ൅ ߣ ߚ ଶ
ଶ



Optimization (2)

 Differentiate with respect to ଴ and 
set it to zero

 Differentiate with respect to and set 
it to zero

െ2 ⋅ ૚ே
ୃ ܡ െ ߚ܆ െ ૚ேߚ଴ ൌ 0

଴ߚ ൌ
1
ܰ ૚ே

ୃ ܡ െ ߚ܆

2 ⋅ ୃ܆ ߚ܆ െ ܡ ൅ ૚ேߚ଴ ൅ 2 ⋅ ߚߣ ൌ 0

ୃ܆ ߚ܆ െ ܡ െ
1
ܰ ૚ே૚ே

ୃ ߚ܆ െ ܡ ൅ ߚߣ ൌ 0

ୃ܆ ܫ െ
1
ܰ ૚ே૚ே

ୃ ܆ ൅ ۷ߣ ߚ ൌ ୃ܆ ܫ െ
1
ܰ ૚ே૚ே

ୃ ܡ





Understanding (1)

 Assume is centered, then

 Let the SVD of be

 ܃ ൌ ሾܝଵ, … , ௣ሿܝ contains the left singular 
vectors

 ۲ is a diagonal matrix with diagonal entries 
݀ଵ ൒ ݀ଶ ൒ ⋯ ൒ ݀௣ ൒ 0

 Then, we examine the prediction of 
training data 



Understanding (2)

 Least Squares

 Ridge Regression

 Shrink the coordinates by 
ௗೕ

మ

ௗೕ
మାఒ

ൌ 				෍ ௝ܝ௝ܝ
ܡୃ

௣

௝ୀଵ



Understanding (3)

 Connection with PCA



An Example





Optimization

 The First Formulation

 Gradient descent followed by Projection [1]
 The Second Formulation

 Convex Composite Optimization [2]



An Example

Hit 0
Piece-wise linear



Subset Selection, Ridge, Lasso

 Columns of are orthonormal

Soft-thresholdingHard-thresholding Scaling



Ridge v.s. Lasso (1)

 Ridge Regression

 ଶ-norm appears in the constraint
 Lasso

 ଵ-norm appears in the constraint



Ridge v.s. Lasso (2)



Generalization (1)

 A General Formulation

 Contours of Constant Value of ௝
௤

௝



Generalization (2)

 A Mixed Formulation
 The elastic-net penalty



Least Angle Regression (LAR)

 The Procedure
1. Identify the variable most correlated with 

the response
2. Move the coefficient of this variable 

continuously toward its least squares value 
3. As soon as another variable “catches up” in 

terms of correlation with the residual, the 
process is paused

4. The second variable then joins the active 
set, and their coefficients are moved 
together in a way that keeps their 
correlations tied and decreasing



An Example



LAS v.s. Lasso



Comparisons
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Methods Using Derived Input 
Directions

 We have a large number of inputs
 Often very correlated

1. Generate a small number of linear 
combinations

of the original inputs ௝

2. Use ௠ in place of ௝ as inputs in the 
regression

 Linear Dimensionality Reduction + 
Regression

ܼ௠, ݉ ൌ 1, … , ܯ



Principal Components 
Regression (PCR)

 The linear combinations ௠ are 
generated by PCA

 is centered, and ௠ is the -th right 
singular vector

 Since ௠’s are orthogonal

 where

௠ܢ ൌ ௠ݒ܆



PCR v.s. Ridge



Partial Least Squares (PLS)

 The Procedure
1. Compute ଵ௝ ௝ for each feature ௝

2. Construct the 1st derived input ଵ
ଵ௝ ௝௝

is regressed on ଵ giving coefficient ଵ

4. Orthogonalize ଵ ௣ with respect to ଵ

5. Repeat the above process





Discussions (1)
 Model complexity 

increases as we 
move from left to 
right.



Discussions (2)



Discussions (3)
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Summary

 Linear Regression Models
 Least Squares
 Shrinkage Methods

 Ridge Regression
 Lasso
 Least Angle Regression (LAR)

 Methods Using Derived Input 
Directions
 Principal Components Regression (PCR)
 Partial Least Squares (PLS)
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