Linear Methods for Regression

Lijun Zhang

zlj@nju. edu. cn

http://cs.nju. edu. cn/zlj

Outline

Introduction

Linear Regression Models and Least Squares

Subset Selection

Shrinkage Methods

Methods Using Derived Input

Directions

Discussions

Summary

Introduction

Let X = [X, ..., X] be a data point, a linear regression model assumes

E(|)

is a linear function of X,...,X

Advantages

They are simple and often provide an adequate and interpretable description

They can sometimes outperform nonlinear models

Small numbers of training cases, low signal-tonoise ratio or sparse data

Linear methods can be applied to transformations of the inputs

Outline

Introduction

Linear Regression Models and Least Squares

Subset Selection

Shrinkage Methods

Methods Using Derived Input

Directions

Discussions

Summary

Linear Regression Models

The Linear Regression Model

()

 β 's are unknown coefficients

The variable X could be

Quantitative inputs

Transformations of quantitative inputs

Log, square-root or square

Basis expansions (X = X, X = X)

Numeric coding of qualitative inputs

Least Squares

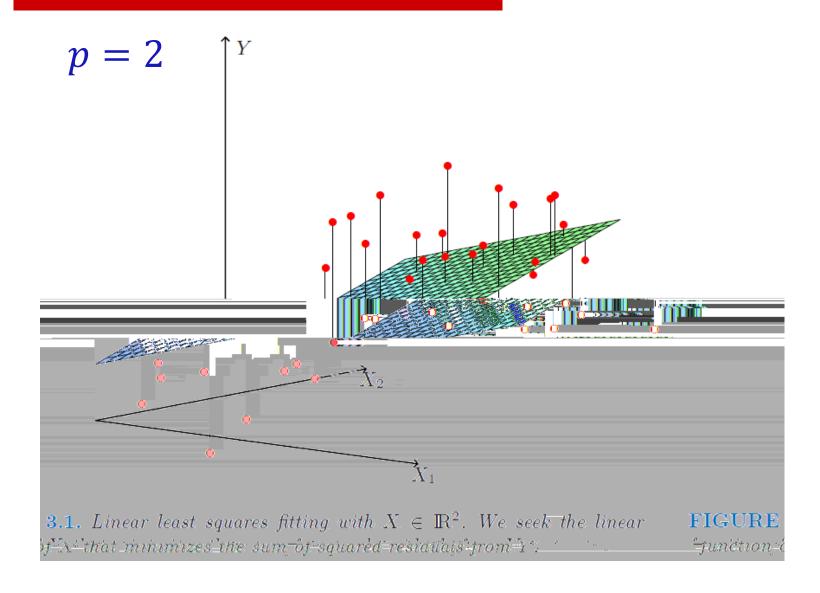
Given a set of training data $(x, y) \cdots$ (x, y) where x = [x, x, ..., x]Minimize the Residual Sum of Squares

$$\sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta)^2$$

$$= \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta)^2$$

Valid if the y 's are conditionally independent given the inputs x

A Geometric Interpretation



Optimization (2)

Differentiate with respect to β

$$\frac{\partial RSS}{\partial \beta} = -2\mathbf{X}^T(\mathbf{y} - \mathbf{X}\beta)$$

Set the derivative to zero

$$\mathbf{X}^T(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = 0$$

Assume *X X* is invertible

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Predictions

The Prediction of x

$$\hat{f}(x_0) = (1 : x_0)^T \hat{\beta}$$

The Predictions of Training Data

$$\hat{\mathbf{v}} = \mathbf{X} \hat{\boldsymbol{\beta}} = \mathbf{X} (\mathbf{X}^T \mathbf{Y})^{-1} \mathbf{X}^T \mathbf{y}$$

Let
$$\mathbf{X} = [\mathbf{x}, \mathbf{x}, ..., \mathbf{x}]$$

$$\hat{\beta} = \operatorname{argmin} \|\mathbf{y} - \mathbf{X}\beta\|$$

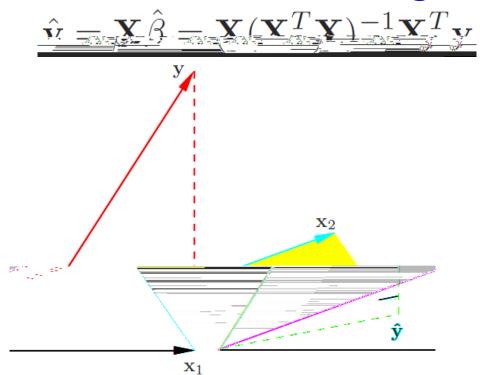
 \hat{y} is the orthogonal projection of y onto the subspace spanned by x, x, ..., x

Predictions

The Prediction of x

$$\hat{f}(\underline{x}_{\Omega}) = (1 : \underline{x}_{\Omega})^{T} \hat{\beta}$$

The Predictions of Training Data



Understanding (1)

Assume the linear model is right, but the observation contains noise

$$Y = E(Y|X_1, ..., X_p) + \varepsilon$$
$$= \beta_0 + \sum_{j=1}^p X_j \beta_j + \varepsilon,$$

Where $\epsilon \sim N(0, \sigma)$

Understanding (2)

```
Since \epsilon = [\epsilon, ..., \epsilon] is a Gaussian
random vector, thus
              +( )
is also a Gaussian random vector
       E() E(()
               ( ) E( )
     Cov() Cov(())
             ( ) Cov( ) ( )
                ( ) ( ) ( )
Thus \hat{\beta} \sim N(\beta, (\mathbf{X} \ \mathbf{X}) \ \sigma)
```

Expected Prediction Error (EPE)

Given a test point x, assume

The EPE of $\tilde{f}(x_0) = x_0^T \tilde{\beta}$ is

$$\mathbb{E}(\tilde{f}(x_0)) \mathbb{E}(\tilde{f}(x_0)) \mathbb{E}(\tilde{f}(x_$$

The Mean Squared Error (MSE)

$$MSE(()) E(())$$

$$E(E()) (E())$$

$$Variance() Bias()$$

EPE of Least Squares

```
Under the assumption that
  ( ) \qquad \qquad \sim ( 0,   )
The EPE of \hat{f}(x) = x \hat{\beta} is
  MSE( )
The Mean Squared Error (MSE)
    MSE( ) E(
            E(E())
             Var
```

The Gauss-Markov Theorem

 $\hat{\beta}$ has the smallest variance among all linear unbiased estimates.

We aim to estimate $f(x) = x \beta$, the estimation of $\hat{f}(x) = x \hat{\beta}$ is

From precious discussions, we have

and for all c

Multiple Outputs (1)

Suppose we aim to predict *K* outputs

Multiple Outputs (2)

The Residual Sum of Squares

RSS(B) =
$$\sum_{k=1}^{K} \sum_{i=1}^{N} (y_{ik} - f_k(x_i))^2$$
$$= \operatorname{tr}[(\mathbf{Y} - \mathbf{XB})^T (\mathbf{Y} - \mathbf{XB})]$$

The Solution

$$\hat{\mathbf{B}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

It is equivalent to performing *K* independent least squares

Large-scale Setting

The Problem

$$\sum_{i=1}^{N} \underbrace{y_i \cdot y_j}_{i=1}^{2} \underbrace{y_i \cdot y_j}_{i=1}^{2}$$

$$= \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta \right)$$

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Sampling

Faster least squares approximation

Outline

- Introduction
- Linear Regression Models and Least Squares
- **Subset Selection**
- Shrinkage Methods
- Methods Using Derived Input
- **Directions**
- **Discussions**
- Summary

Subset Selection

Limitations of Least Squares

Prediction Accuracy: the least squares estimates often have low bias but large variance

Interpretation: We often would like to determine a smaller subset that exhibit the strongest effects

Shrink or Set Some Coefficients to Zero

We sacrifice a little bit of bias to reduce the variance of the predicted values

Best-Subset Selection

Select the subset of variables (features) such that the RSS is minimized

$$RSS(eta) = \sum_{i=1}^{N} (y_i - f(x_i))^2$$

Forward- and Backward-Stepwise Selection

Forward-stepwise Selection

- 1. Start with the intercept
- 2. Sequentially add into the model the predictor that most improves the fit

Backward-stepwise Selection

- 1. Start with the full model
- 2. Sequentially delete the predictor that has the least impact on the fit

Both are greedy algorithms

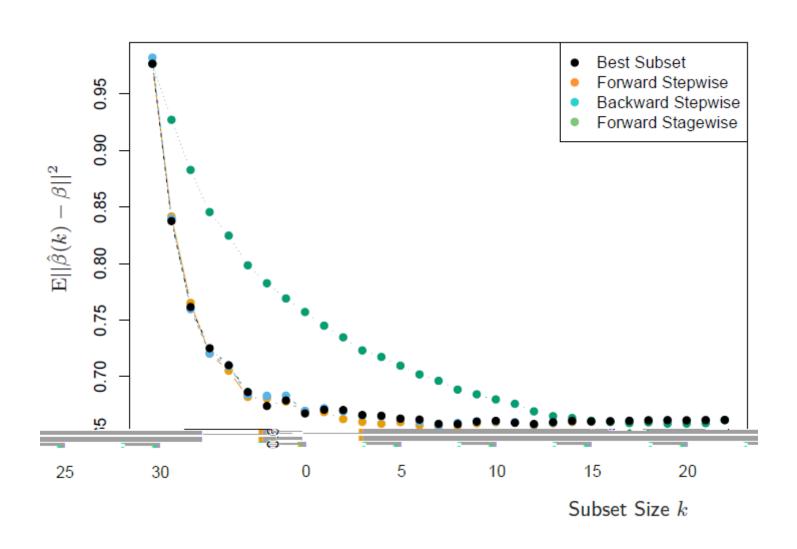
Both can be solved quite efficiently

Forward-Stagewise Regression

- 1. Start with an intercept equal to \bar{y} and centered predictors with coefficients initially all 0
- 2. Identify the variable most correlated with the current residual
- 3. Compute the simple linear regression coefficient of the residual on this chosen variable

None of the other variables are adjusted when a term is added to the model

Comparisons



Outline

- Introduction
- Linear Regression Models and Least Squares
- **Subset Selection**
- **Shrinkage Methods**
- Methods Using Derived Input
- **Directions**
- **Discussions**
- Summary

Limitation of Subset Selection

A discrete process—variables are either retained or discarded

It often exhibits high variance, and so doesn't reduce the prediction error

Shrinkage Methods

More continuous, low variance

Ridge Regression

The Lasso

Least Angle Regression

Ridge Regression

Shrink the regression coefficients

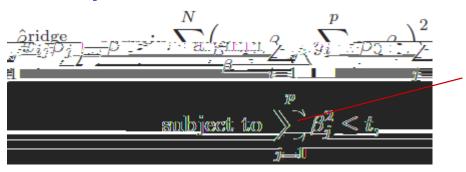
By imposing a penalty on their size

The Objective

$$\hat{\beta}^{\text{ridge}} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$$

 $\lambda \geq 0$ is a complexity parameter

An Equivalent Form



Coefficients cannot be too large even when variables are correlated

Optimization (1)

Let X be a matrix with each row an input vector

$$\beta = [\beta, ..., \beta]$$
 and $\mathbf{y} = [y, ..., y]$

The Objective Becomes

Optimization (2)

Differentiate with respect to β and set it to zero

$$\frac{1}{2}$$
 () 0

Differentiate with respect to β and set it to zero

Optimization (3)

The Final Solution

Let
$$H = I - - 1$$

Understanding (1)

Assume X is centered, then

Let the SVD of X be

,..., contains the left singular

vectors

is a diagonal matrix with diagonal entries 0

Then, we examine the prediction of training data

Understanding (2)

Least Squares

$$\mathbf{X}\hat{\beta}^{\text{ls}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$$

= $\mathbf{U}\mathbf{U}^T\mathbf{y}$,

Ridge Regression

$$\mathbf{X}\hat{\beta}^{\text{ridge}} = \mathbf{X}(\mathbf{X}^T\mathbf{X} + \lambda\mathbf{I})^{-1}\mathbf{X}^T\mathbf{y}$$

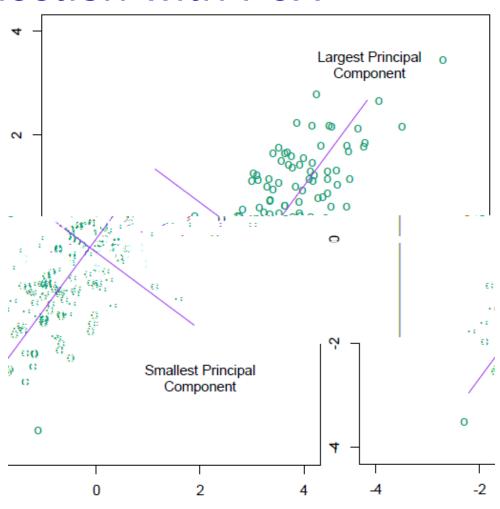
$$= \mathbf{U}\mathbf{D}(\mathbf{D}^2 + \lambda\mathbf{I})^{-1}\mathbf{D}\mathbf{U}^T\mathbf{y}$$

$$= \sum_{j=1}^{p} \mathbf{u}_j \frac{d_j^2}{d_j^2 + \lambda} \mathbf{u}_j^T\mathbf{y},$$

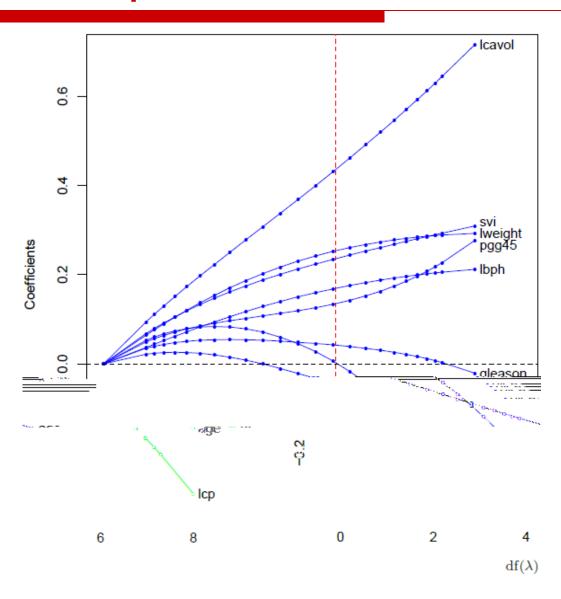
Shrink the coordinates by $--- \le 1$

Understanding (3)

Connection with PCA



An Example



Optimization

The First Formulation

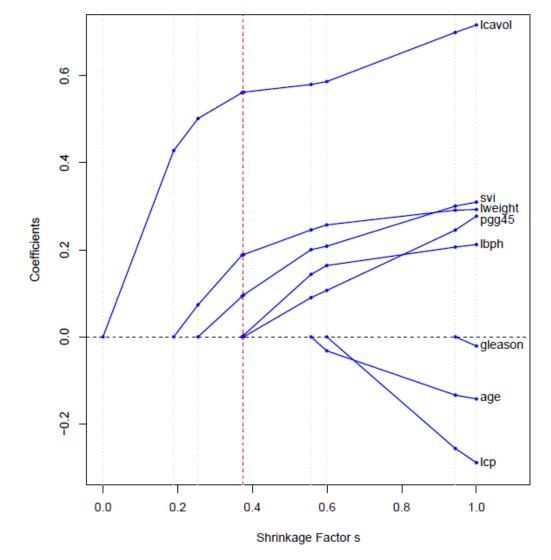
$$\hat{\beta}^{\text{lasso}} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2$$
subject to
$$\sum_{j=1}^{p} |\beta_j| \le t.$$

Gradient descent followed by Projection [1]
The Second Formulation

$$\hat{\beta}^{\text{lasso}} = \underset{\beta}{\operatorname{argmin}} \left\{ \frac{1}{2} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

Convex Composite Optimization [2]

An Example

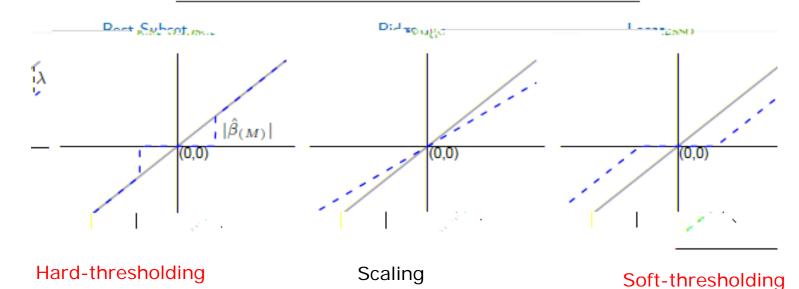


Hit 0 Piece-wise linear

Subset Selection, Ridge, Lassol

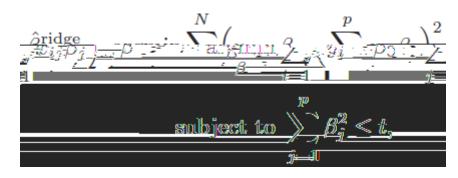
Columns of X are orthonormal

Estimator	Formula
Best subset (size M)	$\hat{\beta}_j \cdot I(\hat{\beta}_j \ge \hat{\beta}_{(M)})$
Ridge	$\hat{\beta}_j/(1+\lambda)$
Lasso	$\operatorname{sign}(\hat{\beta}_j)(\hat{\beta}_j - \lambda)_+$



Ridge v.s. Lasso (1)

Ridge Regression



 ℓ -norm appears in the constraint

Lasso

$$\hat{\beta}^{\text{lasso}} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2$$
subject to
$$\sum_{j=1}^{p} |\beta_j| \le t.$$

 ℓ -norm appears in the constraint

Ridge v.s. Lasso (2)

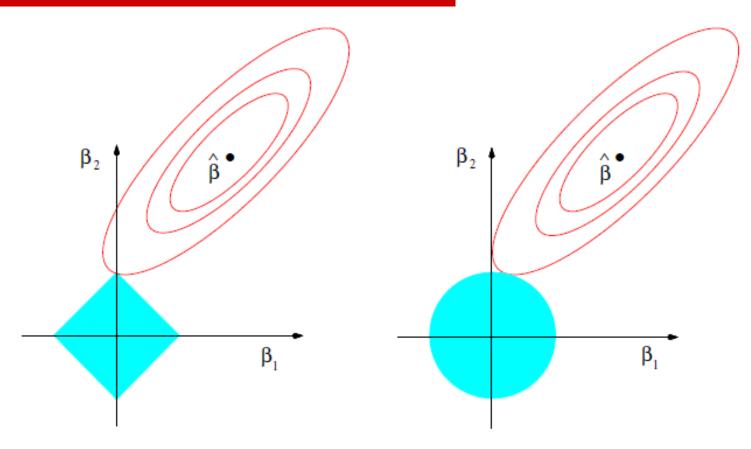


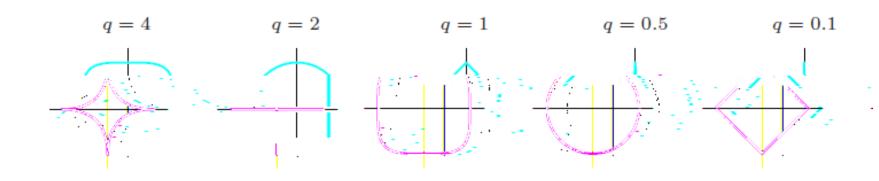
FIGURE 3.11. Estimation picture for the lasso (left) and ridae regression (rac^{1}). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $|\beta_1|^2 + |\beta_2|^2 \le t^2$, respectively, while the red-ellipses are the contours of the least-squares error function.

Generalization (1)

A General Formulation

$$\tilde{\beta} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|^q \right\}$$

Contours of Constant Value of $\sum |\beta|$



Generalization (2)

A Mixed Formulation

The elastic-net penalty

$$\lambda \sum_{j=1}^{p} (\alpha \beta^{2} + (1 - \alpha) \beta_{j})$$

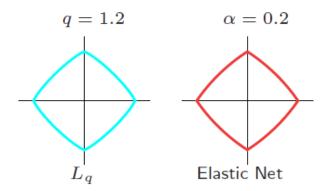


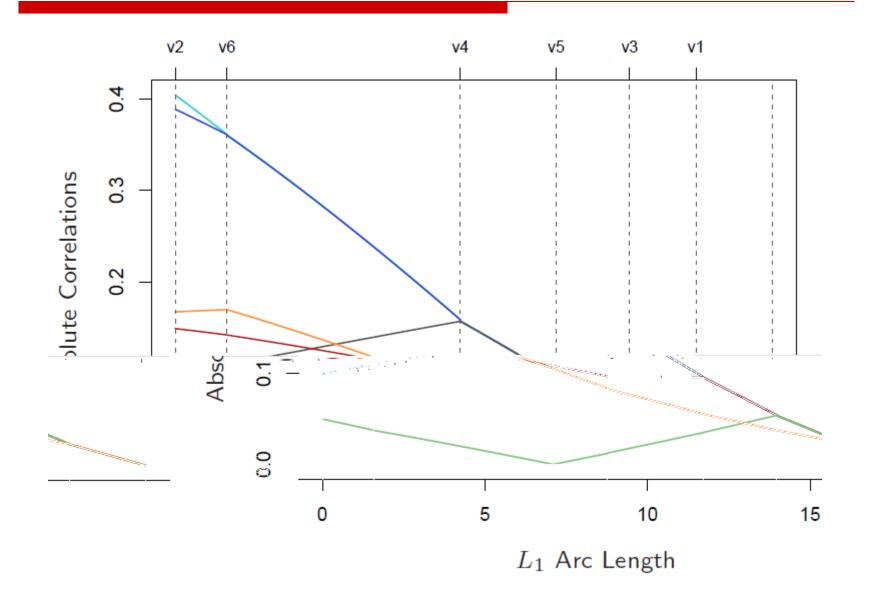
FIGURE 3.13. Contours of constant value of $\sum_{j} |\beta_{j}|^{q}$ for q = 1.2 (left plot), and the elastic-net penalty $\sum_{j} (\alpha \beta_{j}^{2} + (1-\alpha)\beta_{j}^{2})^{s}$ for $\alpha = 0.2$ (right plot). Although ly-very similar, the elastic-net has sharp (non-differentiable) corners, while visual = 1.2 penalty does not.

Least Angle Regression (LAR)

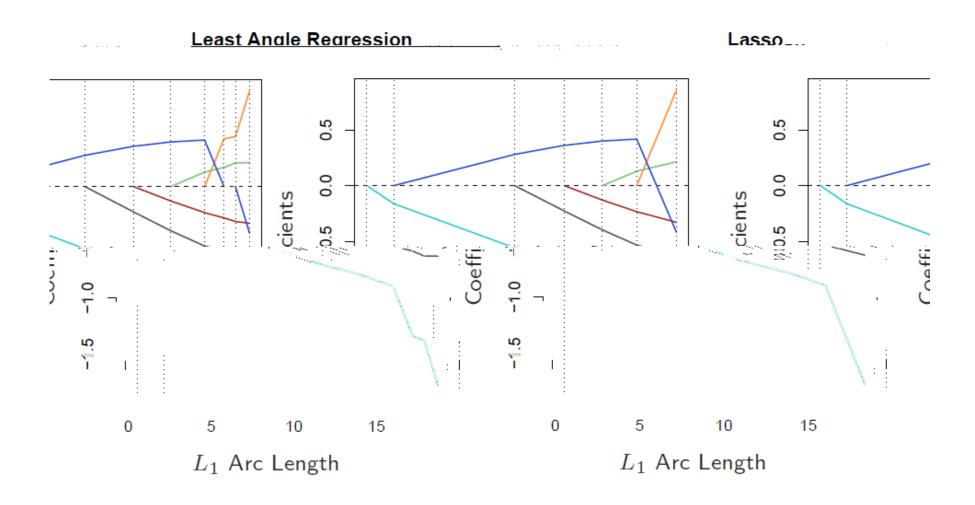
The Procedure

- 1. Identify the variable most correlated with the response
- 2. Move the coefficient of this variable continuously toward its least squares value
- As soon as another variable "catches up" in terms of correlation with the residual, the process is paused
- 4. The second variable then joins the active set, and their coefficients are moved together in a way that keeps their correlations tied and decreasing

An Example



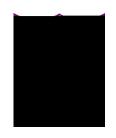
LAS v.s. Lasso



Outline

- Introduction
- Linear Regression Models and Least Squares
- Subset Selection
- Shrinkage Methods
- Methods Using Derived Input Directions
- **Discussions**
- Summary

Methods Using Derived Input Directions



We have a large number of inputs
Often very correlated

Generate a small number of linear combinations

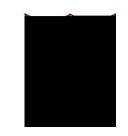
, 1,...,

of the original inputs X

2. Use Z in place of X as inputs in the regression

Linear Dimensionality Reduction + Regression

Principal Components Regression (PCR)



The linear combinations Z are generated by PCA

 ${\bf X}$ is centered, and ${\bf v}$ is the m-th right singular vector

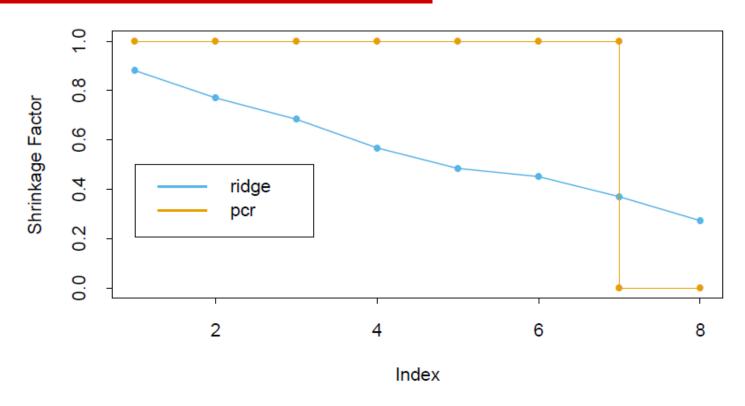
Since z 's are orthogonal

$$\hat{\mathbf{y}}_{(M)}^{\mathrm{pcr}} = \bar{y}\mathbf{1} + \sum_{m=1}^{M} \hat{\theta}_{m}\mathbf{z}_{m}$$

$$\hat{\mathbf{z}}_{m}^{\mathrm{pcr}} \hat{\mathbf{z}}_{m} \hat{\mathbf{z}}_{m}$$

$$\hat{\mathbf{z}}_{m}^{\mathrm{pcr}} \hat{\mathbf{z}}_{m} \hat{\mathbf{z}}_{m}$$
where $\hat{\theta}_{m} = \langle \mathbf{z}_{m}, \mathbf{y} \rangle / \langle \mathbf{z}_{m}, \mathbf{z}_{m} \rangle$

PCR v.s. Ridge



EICURE 3.17. Bidge regression drives by the regression welf-ivens of the gring condition of the principal service parties of the principal service parties of the principal temporation of the principal compone index.

Partial Least Squares (PLS)

The Procedure

- 1. Compute $\hat{\varphi} = \langle \mathbf{x}, \mathbf{y} \rangle$ for each feature \mathbf{x}
- 2. Construct the 1st derived input $\mathbf{z} = \sum \hat{\varphi} \mathbf{x}$
- 3. \mathbf{y} is regressed on \mathbf{z} giving coefficient $\hat{\theta}$
- 4. Orthogonalize x ,...,x with respect to z
- 5. Repeat the above process

Outline

Introduction

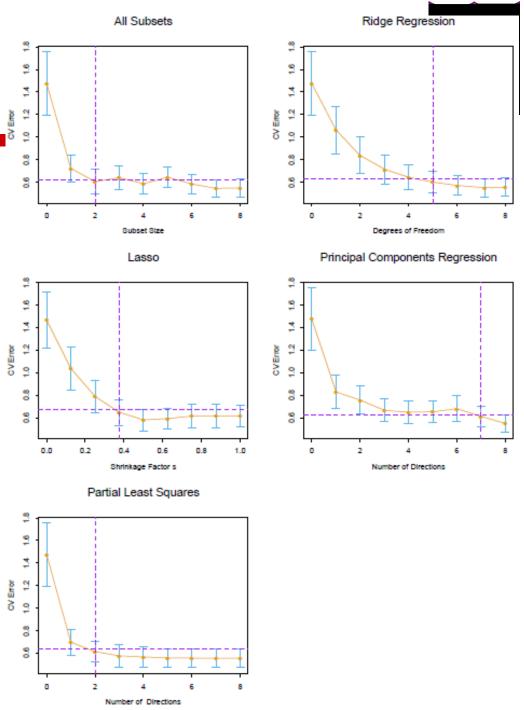
Linear Regression Models and Least Squares

Subset Selection

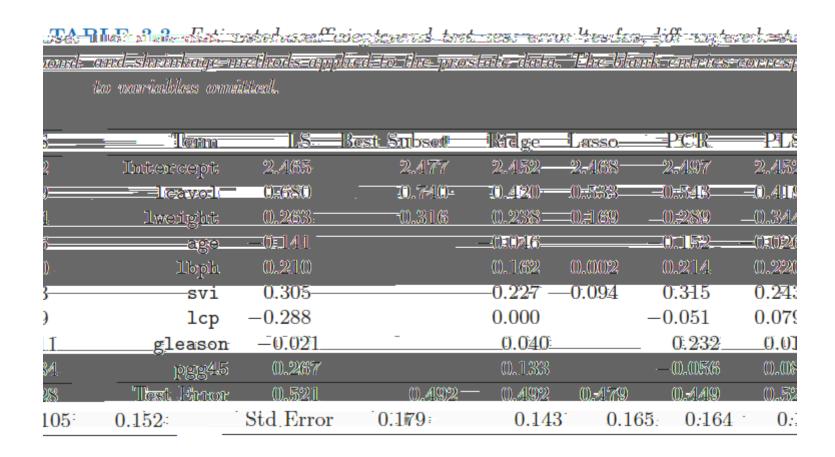
```
† Square7
†
```

Discussions (1

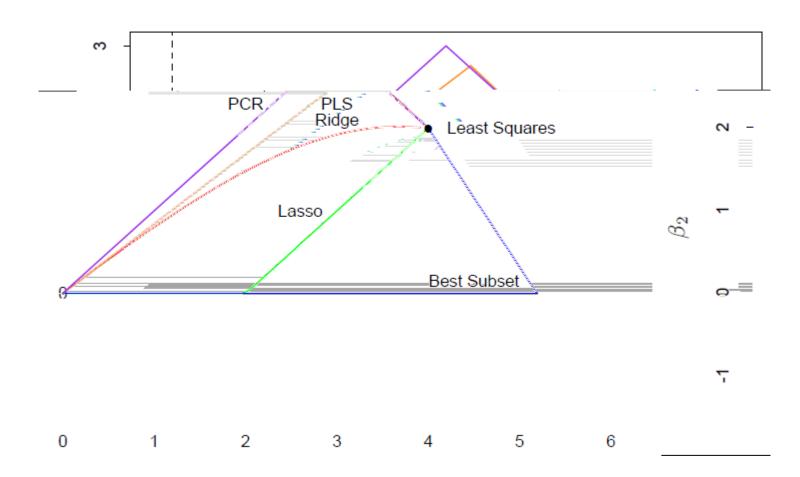
Model complexity increases as we move from left to right.



Discussions (2)



Discussions (3)



Outline

- Introduction
- Linear Regression Models and Least Squares
- Subset Selection
- Shrinkage Methods
- Methods Using Derived Input
- **Directions**
- **Discussions**
- **Summary**

Summary

Linear Regression Models

Least Squares

Shrinkage Methods

Ridge Regression

Lasso

Least Angle Regression (LAR)

Methods Using Derived Input Directions

Principal Components Regression (PCR)

Partial Least Squares (PLS)

Reference

[1] Duchi et al. Efficient projections onto the ℓ -ball for learning in high dimensions. In Proceedings of the 25th international conference on Machine learning, pp. 272-279, 2008.

[2] Nesterov. Gradient methods for minimizing composite functions. Mathematical Programming, 140(1): 125-161, 2013.